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Abstract: Micro-arc oxidation (MAO) ceramic coatings were formed on TC4 alloy surface in silicate
and metaphosphate electrolytes based with K2ZrF6 for various concentrations. X-ray diffraction
(XRD), Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) were used
to characterize the phase composition, microstructure and chemical compositions of the coatings.
The infrared emissivity of the coatings was measured at 50 ◦C in a wavelength range of 8–20 µm.
The microstructural observations all revealed the typical porousstructures. Moreover, adecline in
roughness and thickness of the prepared coatings can be observed when the concentration of K2ZrF6

increases. Combined with the results of XRD and XPS, it was found that all the oxides existed as the
amorphous form in the coatings except the TiO2 phase. The coatings exhibited the highest infrared
emissivity value (about 0.89) when the concentration of K2ZrF6 was 6 g/L, which was possibly
attributed to the defect microstructure and the optimal role of ZrO2.
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1. Introduction

With the development of infrared technology in recent years, the research of high emissivity
coatings has become a focus around the world. These coatings have been widely used in various fields
such as thermal protection systems and energy-saving in industrial furnace [1–5]. Substances such as
carbides (mainly SiC), transition metal oxides (MnO2, Fe2O3, ZrO2, Cr2O3, NiO, TiO2, Co3O4, et al.),
as well as ceramics and glass are usually used to prepare high emissivity coatings due to their high
infrared emissivity [6,7]. For instance, Li et al. prepared a kind of high infrared emissivity coating by
applying the mixture of ZrSiO4 and aluminosilicate glass powder to the SiC matrix, and then treated
by high temperature sintering. The average emissivity of the coatings in the waveband of 1–22 µm
demonstrated the highest value around of 0.93. Furthermore the coatings also had high temperature
oxidation resistance and compactness [8]. Likewise, Tang et al. added FeSO4 into the electrolyte to
prepare the micro-arc oxidation (MAO) coatings with high emissivity on TC4 alloys. The emissivity of
the coating with 3 g/L FeSO4 reached the maximum 0.87, and its bonding strength was higher than
33 MPa [9].

Up to now, many surface treatment techniques have been adapted to the preparation of high
emissivity coatings including brushing, sintering, electro deposition, electroless deposition and sol-gel
technique, etc. However, some widespread problems exist such as poor uniformity, low bonding
strength and high preparation costs. Micro arc oxidation, also named as Plasma electrolytic oxidation
or Micro plasma oxidation, is acknowledged as an advanced surface treatment technology of placing
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the valve metals or their alloys in electrolytes under the additional high voltage. During the reaction
process, the oxide film on the surface is instantly broken down and the appearance of the sparks leads
to the formation of the discharge channel, which makes the ceramic coatings grow in situ through the
reaction of the electrolytes and the metal substrate. Compared with the traditional anodization, the
MAO technology transforms the working area into a high-pressure discharge zone so as to prepare the
ceramic coatings, which could simultaneously achieve high wear resistance, better corrosion resistance
and stronger binding strength between the coatings and substrate [10,11]. Furthermore, this technology
also has the advantages of high production efficiency and less environmental pollution. In addition,
the MAO coatings of different composition can be obtained by adjusting the electrolyte composition
and process parameters. Therefore, using the MAO technique to deposit the functional coatings has
received much attention in recent years [12–14].

Ingeneral, the infrared emissivity of MAO coatings is related to the chemical composition,
surface condition, coating thickness, and electrolytic parameters, but the most influential factor
is the composition. It is worth noting that zirconium oxide has high thermal stability, oxidation
resistance and low specificheat as well as thermal conductivity as a kind of transition metal oxide.
Several authors have researched the effect of K2ZrF6 on properties of the ceramic coatings. Zhang
et al. observed the MAO coatings fabricated on an aluminum alloy which were produced in the
K2ZrF6-based electrolyte [15]. The study found that the deposition rate of the coatings and their
uniformity all increased obviously by adding K2ZrF6, and the coatings also exhibited the excellent
heat resistance. It is further reportedby various researchers that K2ZrF6 could increase the tensile
strength and shear strength of the MAO coatings [16,17]. However, most researches mainly focus on
the significant improvement in mechanical properties, thermal shock resistance as well as corrosion
resistance of the coatings, and there are few reports about the infrared emission performance [18–20].
In this work, the micro-arc oxidation method was carried out on TC4 alloy substrate under the different
concentration of K2ZrF6, the effect of the K2ZrF6 additives on the phase composition, microstructure,
chemical composition and infrared emissivity was systematically investigated. Meanwhile, this paper
also includes a further expatiation about the reaction details.

2. Materials and Methods

TC4 alloy (Fe ≤ 0.30, C ≤ 0.10, N ≤ 0.05, H ≤ 0.015, O ≤ 0.20, Al: 5.5–6.8, V: 3.5–4.5, all in
wt %) was cut into the regular specimens with dimensions of 30 mm × 30 mm × 2 mm and used as
the substrate to be treated. These specimens were ground successively to 1500 grit SiC papers, then
ultrasonically rinsed with ethyl alcohol and dried in room temperature. The specimens were used as
anode and a electrolyser which made of stainless steel served as cathode. In this work, the MAO process
was carried out for 40 min using a 300 kW positive pulsed device and the main pulse parameters were
fixed as follows: frequency 600 Hz, voltage 500 V, and a duty cycle of 15%. The reaction temperature
was cooled by a cooling water system to control the value between 25 ◦C–40 ◦C. The electrolytes were
composed of Na2SiO3 (10 g/L), (NaPO3)6 (6 g/L), NaOH (0.8 g/L), with K2ZrF6 0 g/L, 3 g/L, 6 g/L,
9 g/L respectively. After the preparation process, all samples were rinsed with distilled water and
dried with the blower.

Phase composition of the coatings was analyzed by a RICOH/max-rB automatic X-ray
diffractometer (XRD, D/max-2200pc, RIGAKU, Tokyo, Japan) using a Cu Kα source. The surface
and cross-section morphologies of the MAO treated coatings were observed by scanning electron
microscopy (SEM, JSM6460, JEOL, Tokyo, Japan), and the chemical compositions of the coatings
were measured by energy dispersive X-ray spectrometer (EDS) attached to SEM. X-ray photoelectron
spectroscopy (XPS, ESCALAB 250Xi, Thermo Fisher Scientific, Waltham, MA, USA) with an Al Kα

anode was utilized to determine the chemical states of the elements. The thickness and roughness of the
coatings were respectively measured by eddy current thickness meter (TT 260, Time Company, Beijing,
China) and surface roughness tester (TR-200, Time Company, Beijing, China). Fourier transform
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infrared (FT/IR-6100, JASCO, Tokyo, Japan) was used to measure the infrared emissivity of the
coatings at 50 ◦C.

3. Results

3.1. Surface and Cross-Section Microstructure

Figure 1 shows the thickness and roughness of the MAO coatings formed in different electrolytes.
Three samples were tested in each group, 10 points were selected on each sample and the average was
taken as the final measurement data. It can be seen that lower thickness and roughness were obtained
with the introduction of K2ZrF6. Furthermore, it can be noted that the thickness did not decline
significantly except when the additive quantity of K2ZrF6 reached 9 g/L and the roughness markedly
dropped when the K2ZrF6 concentration is up to 6 g/L. The reason for this may be attributed to the
inhibition of K2ZrF6 on the deposition of silicate and metaphosphate on the surface of the coatings.
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Figure 1. Thickness and roughness of the micro-arc oxidation (MAO) coatings under different
K2ZrF6 concentrations.

Figure 2 displays the surface morphologies of the MAO coatings prepared under various
conditions. All the coatings possess a porous structure with many crater-shaped micro-pores irregularly
distributed and the appearance of this structure is due to the molten oxides and the gas bubbles of the
discharge phenomena in the processes. In addition, the surface morphologies as shown in Figure 2
exhibit an obvious difference. With an increase in K2ZrF6 concentration, the roughness of the coatings
decreases, which is consistent with the results of Figure 1. From Figure 2a, large spherical particles
with the diameter of several micrometers distribute on the surface. As the concentration of K2ZrF6

increase to 3 g/L, some protrusions have a tendency to become smooth as shown in Figure 2b. A clearly
transformation occurs when the concentration of K2ZrF6 reaches 6 g/L and 9 g/L (Figure 2c,d), and
the spherical protrusions gradually change towards to the dense skeleton structure and the number of
pores apparently increase. This is because of the more intensive discharge reaction which was triggered
by the enhancement of the electrical conductivity with K2ZrF6 addition. All the details of changes can
be observed from the enlarged small diagrams more clearly. According to the previous studies, silicate
is considered to play the dominant role in the coating growth, and metaphosphate could promote
the penetrating discharges so as to improve the compactness of the coatings [21,22]. According to the
measurement results of the MAO coatings thickness, it is clear that the K2ZrF6 additive inhibited the
deposition of silicate on the surface of coatings.

Because the thickness of the coatings changes considerably at the K2ZrF6 concentration of 9 g/L,
here, as shown in Figure 3, the coatings prepared under the K2ZrF6 addition of 0 g/L and 9 g/L were
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presented as the examples to explore the cross-sectional morphology and the elemental distribution.
The thickness of the coatings decreases obviously with the maximum content of K2ZrF6 in the
electrolyte, but they all have good adhesion with substrate. The coatings all exhibit a relatively
dense structure with only a few micro-pores and cracks. In Figure 3b, it can be seen that the main
chemical elements of the coating are consistent with the EDS results. Take the binding surface of the
coating and substrate as the boundary, the content of Ti increases rapidly, while the opposite trend is
observed from elements Si, P, and Zr.
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Figure 3. Cross-sectional morphologies and elemental distribution of the MAO coatings formed in
different K2ZrF6 concentrations: (a) 0 g/L; (b) 9 g/L.

Table 1 shows the elemental distribution developed on the coatings surface of Figure 2. Generally
speaking, the type and content of the elements in coatings are closely related to the composition of the
electrolyte. It can be seen that the elements O, Si, P, Ti, Zr are the main content compared with other
elements in the coatings. When the concentration of K2ZrF6 increases from 0 g/L to 9 g/L, while the
content of Si element decreases quickly from 19.29% to 10.81%. Consequently, it can be concluded
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that the MAO coatings were mainly formed by the deposition of silicate compounds and the K2ZrF6

additive evidently inhibited this deposition which provides the basis to explain the changes of the
surface morphologies. In contrast, the content of P, Ti, Zr slightly increases. The increase of Zr content
is due to the increase of K2ZrF6 addition in the electrolyte, while the increase content of elements P
and Ti is because of the enhancement of the oxidation process.

Table 1. Element content of MAO coatings prepared under different K2ZrF6 concentrations.

K2ZrF6 Concetration (g/L)
Element Content of MAO Coatings (at%)

O Na Si P Ti K F Zr

0 71.59 1.41 19.29 2.31 5.39 - - -
3 71.97 0.82 18.62 2.54 5.58 0.12 0.10 0.25
6 72.94 0.30 12.15 4.44 7.19 0.10 0.34 2.52
9 72.44 0.30 10.81 4.71 6.60 0.10 1.17 3.87

3.2. Phase Composition

Figure 4 shows the XRD patterns of the prepared coatings at various K2ZrF6 concentrations. It can
be observed that the coatings are composed of anatase-TiO2, rutile-TiO2, brookite-TiO2 and Ti. Many
researchers have suggested that the reaction between (OH−) ions and (Ti4+) ions in the discharge
channel could be able to form TiO2 phases of different types [9–13,15–17,21]. Peaks conformed to Ti
substrate appeared because the testing depth was higher than the thickness of the coatings. From the
XRD pattern, it can also be seen that when the concentration of K2ZrF6 reaches 9 g/L, the peak of
brookite-TiO2 can be detected and the presence is probably due to the temperature changing during
the reaction process. Brookite-TiO2 has lower reflectivity compared to anatase-TiO2 and rutile-TiO2,
which could make a negative impact on the infrared emissivity of the coatings. In addition, no
peaks corresponding to Zr-related, Si-related and P-related species were observed. It is deduced that
these groups possibly existed as the amorphous phase. With the increase of K2ZrF6 addition, all the
diffraction peaks become sharper and the radian of the steamed bread peak is gradually weakened,
which indicated that the crystallinity of the samples tends to be better.
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The XPS measurement was employed to confirm the chemical composition of the MAO coatings.
A clean coating surface was obtained by sputtering with Ar ions for 2 min before testing. In addition,
the binding energies of all elements were corrected in reference to the C 1s peak at 284.6 eV. The survey
spectrum of the coating prepared in the electrolyte of 6 g/L K2ZrF6 and its high-resolution spectra
of major elements are shown in Figure 5. The survey spectrum discloses that the major elements in
coatings are O, P, Si, Zr, Ti, Na, which is consistent with the EDS results. The C 1s spectrum shows
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three peaks C-C, C-O and C=O at the bonding energy 284.6 eV, 286.1 eV and 288.8 eV respectively [23].
The O 1s spectrum can be divided into two peaks at 532.5 eV and 530.8 eV, the first peak is assigned to
the Si-O bond of SiO2 [24], while the second peak at 530.8 eV relates to O2− [25,26], which corresponds
with the oxides in the coatings. Two peaks of Ti 2p spectrum which are located at 464.8 eV and 458.9 eV
assert the existence of TiO2 [27]. The Si 2p spectrum exhibits two peaks at the bonding energy 102.8 eV
and 103.4 eV, the peak at 103.4 eV corresponds to SiO2, the second peak at 102.8 eV is attributed to
ZrSiO4 [28,29], the appearance of ZrSiO4 indicates the more complex reactions in the preparation
process. P 2p peaks are well fitted at 133.4 and 134.1 eV, which represent the PO3

− and P2O7
4−

separately. The ratio of the area of the two peaks is 50.27:49.73, and therefore indicates that half of the
PO3

− has converted to P2O7
4− [30,31]. The Zr 3d3/2 peak at 185.3 eV and Zr 3d5/2 peak at 182.9 eV

are assigned to ZrO2 [32]. Combined with the results of EDS, XRD and XPS, the elements Si, P, Zr were
all involved in the growth of the coatings and existed in the amorphous state.
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3.3. Infrared Emissivity Characterization

The emissivity is a property which characterizes the radiation properties of the objects, it reveals
the radiation radiates by the given body as compared with a blackbody. Higher emissivity is beneficial
to the objects for their application in the field of radiative thermal protection. Figure 6 shows infrared
emissivity curves measured in the wavelength of 7–20 µm of the as-prepared coatings. According to
Figure 6, the coatings formed in the electrolytes added with K2ZrF6 have obviously higher infrared
emissivity compared with the coating without K2ZrF6 addition. It is also found that all the coatings
exhibit a higher and more stable infrared emissivity value after the wavelength of 8 µm. Therefore, the
average infrared emissivity of the samples was calculated by the integration method in the wavelength
of 8–20 µm and then the ratio was calculated and compared to the blackbody in the same waveband;
the result is shown in Figure 7. It can be seen that the average infrared emissivity curves of the coatings
present the tendency of increasing firstly and then decreasing slightly. When the concentration of
K2ZrF6 is 6 g/L, the infrared emissivity reaches the maximum and the average infrared emissivity
value is 0.89.
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The infrared emissivity value of MAO coatings can be affected by a series of factors, such
as thickness, surface roughness, chemical composition and structure [33]. Ingeneral, the infrared
emissivity increases with the increases of thickness and surface roughness, but the test results did
not find a similar regularity. The main reason for this phenomenon is that the effect of chemical
composition and structure is much greater than that of thickness and roughness. Therefore, the
improvement of infrared emissivity is dependent on the addition of K2ZrF6 in the electrolyte. In terms
of chemical composition, K2ZrF6 existed as the form of ZrO2 in the MAO coatings according to the
XPS results. As a king of transition metal oxide, ZrO2 itself has high infrared emissivity which can
increase the infrared emissivity of the coatings directly. For the internal crystal structure, the lattice
defects caused by the Zr4+ doping effect is an effective way to promote the lattice vibration, which
results in the improvement of the infrared emissivity in the long wavebands. Furthermore, most
groups existed in an amorphous state and the disorder of this structure leads to the formation of the
local energy levels at amorphous region. The electrons could achieve the transition easily in these local
energy levels, resulting in the increase of the infrared emissivity in the short wavebands [34]. When
the K2ZrF6 concentration is 9 g/L, the slight decrease of the infrared emissivity may be due to the
formation of brookite-TiO2 and the improvement of the crystallization of the coatings [35].

4. Discussion

In short, micro arc oxidation is a complex process, the changes in the composition of the electrolyte
and the change of the process parameters will have a significant effect on the reaction. According to
the above presence of compound peaks in the coatings, the reaction between the TC4 substrate and
electrolyte are interpreted as follows:

Ti + 4OH− − 4e− → TiO2 + 2H2O (1)

2SiO3
2− − 4e− → 2SiO2 + O2↑ (2)

The reactions (1) and (2) are achieved by the oxidation of the TC4 substrate. While the reaction (2)
is the main reason to promote the silicate deposition, it should be noted that the SiO2 existed in the
coatings steadily in the form of amorphous state.

2PO3
− + 2OH− → P2O7

4− + H2O (3)

Corresponding to the reaction (3), the PO3− ions produced by the hydrolysis of (NaPO3)6 will
convert to P2O7

4− at high temperature over 800 ◦C, and it was easy to combine with Na+ icons in the
solution to form Na4P2O7 according to Hou’s research [31].

(ZrF6)2− + 4OH− → Zr(OH)4↓ + 6F− (4)

Zr(OH)4 → ZrO2 + 2H2O (5)

SiO2 + ZrO2 → ZrSiO4 (6)

Because of the existence of K2ZrF6 and NaOH in the solution, the Zr(OH)4 colloid precipitation
was formed through the chemical reaction between Zr4+ and OH−. Then the Zr(OH)4 could be
dehydrated to form ZrO2 during the sintering of the MAO process [36,37]. A series of transformations
occurred through the routes of reaction (4) and (5). By considering the ZrSiO4 which identified in the
XPS spectra, the reaction (6) deduces the formation of Zr-Si-O species in the electrolyte under thehigh
temperature and high pressure [38,39].

The prepared coatings can be applied to the thermal protection system (TPS) [40], which prevents
the heat transferring inward and thus protects the electron apparatus. It is especially applicable for
radiating the high friction heat between the aircraft surface and atmosphere and increasing the lifetime
of the space vehicles material. However, the MAO coatings maybe cracked and dropped during the
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extreme environment of high temperature and high pressure. The property of the coatings is affected
by many factorsin the process of MAO, how to keep or improve the stability and bond strength of the
coatings has become a problem to be researched in future applications.

5. Conclusions

In this study, MAO coatings were successfully formed on the TC4 alloy in Na2SiO3-(NaPO3)6

based solution with various K2ZrF6 concentrations. The main results of the present survey are as
follows:

1. With the increase of K2ZrF6 concentration, the surface morphologies of the coatings were changed
to dense network structure and the number of discharge holes was significantly increased. The
decrease ofthe thickness and the surface roughness also indicated that K2ZrF6 inhibited the
deposition of silicate on the coatings surface.

2. From the XRD analysis, the main phases in the coatings were asanatase-TiO2, rutile-TiO2 together
with Ti phases. The absence of any Si-based, P-based and Zr-based species in the XRD peaks
identification and the high-resolution spectra of XPS further confirmed that the elements Si, P
and Zr existed in the form of amorphous phase.

3. The infrared emissivity was drastically improved when the K2ZrF6 was added in the electrolyte.
In addition, its highest value was found for the coating with the K2ZrF6 concentration of 6 g/L
and the average could reach 0.89 at wavelength of 8–20 µm. It is considered that the doping of
Zr4+ and the formation of amorphous ZrO2 enhanced the infrared emissivity of the coatings.
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