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Abstract: We provide new data on the mechanism of Noccaea caerulescens acclimation to Cd exposure
by elucidating the process of photosystem II (PSII) acclimation by chlorophyll fluorescence imaging
analysis. Seeds from the metallophyte N. caerulescens were grown in hydroponic culture for 12 weeks
before exposure to 40 and 120 µM Cd for 3 and 4 days. At the beginning of exposure to 40 µM
Cd, we observed a spatial leaf heterogeneity of decreased PSII photochemistry, that later recovered
completely. This acclimation was achieved possibly through the reduced plastoquinone (PQ) pool
signaling. Exposure to 120 µM Cd under the growth light did not affect PSII photochemistry,
while under high light due to a photoprotective mechanism (regulated heat dissipation for protection)
that down-regulated PSII quantum yield, the quantum yield of non-regulated energy loss in PSII
(ΦNO) decreased even more than control values. Thus, N. caerulescens plants exposed to 120 µM
Cd for 4 days exhibited lower reactive oxygen species (ROS) production as singlet oxygen (1O2).
The response of N. caerulescens to Cd exposure fits the ‘Threshold for Tolerance Model’, with a
lag time of 4 d and a threshold concentration of 40 µM Cd required for the induction of the
acclimation mechanism.

Keywords: Cd toxicity; detoxification mechanism; photochemical quenching; photosynthetic
heterogeneity; photoprotective mechanism; phytoremediation; plastoquinone pool; redox state;
spatiotemporal variation

1. Introduction

Cadmium is a non-essential heavy metal that can occur in the environment in high concentrations
as a consequence of numerous human activities, thus becoming toxic to all organisms [1–5]. Plants have
developed several exclusive and effective mechanisms for Cd detoxification and tolerance, including
control of Cd influx and acceleration of Cd efflux, Cd chelation and sequestration, Cd remobilization,
and scavenging of Cd-induced reactive oxygen species [5–10].

Hyperaccumulators are plant species that vigorously take up heavy metals, translocate them
into the above-ground parts and isolate them into a risk-free state [4,11]. These plants can
accumulate several percent of heavy metals in their dry mass [4]. Hyperaccumulators also have
to stock the absorbed heavy metal in a manner that is not detrimental to vital enzymes and
especially photosynthesis [12,13]. Hyperaccumulators can be used for phytoremediation and also for
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phytomining [4,14–16]. Phytoremediation is a cost-effective and environmentally-friendly technology
that uses plants to remove the toxic metals from soils; it has been widely used in practice [14,17].

Noccaea caerulescens is known as a zinc–cadmium–nickel hyperaccumulator because it can
accumulate these metals at extremely high concentrations in its aboveground tissues [18], and has
been proposed as an ideal species for examining metal tolerance and hyperaccumulation [19]. It has
recently gained a lot of attention due to its potential use in phytoremediation and phytomining [20,21].
Certain ecotypes of N. caerulescens can store as much as 14,000 µg Cd g−1 dry biomass without showing
toxicity signs [22–24]. Cadmium concentrations in the leaves above 0.01% dry biomass are considered
extraordinary and are the limit level for Cd hyperaccumulation [24,25].

Photosynthesis has been shown to be very sensitive to Cd either directly or indirectly [4,26–31].
A Cd-induced decrease in photosynthetic efficiency may result from disturbances in the electron
transport [32,33], enzymatic activities involved in CO2 fixation [34,35], or from stomatal closure [36,37].
Photosystem II (PSII) is extremely sensitive to Cd that exerts multiple effects on both donor (it inhibits
oxygen evolution) and acceptor sites (it inhibits electron transfer from quinone A, QA to quinone B,
QB) [28,33,38,39]. The less susceptible component of the photosynthetic apparatus to Cd is thought to
be PSI [28,40].

We investigated photosynthetic acclimation to Cd toxicity using the hyperaccumulator Noccaea
caerulescens. Our previous study indicated that despite the substantial high toxicity levels of Zn and Cd
in N. caerulescens aboveground tissues, the photochemical energy use at PSII did not differ compared
to controls [13]. However, the underlying mechanism of photosynthetic acclimation has not been
elucidated. In the present study, in order to investigate the mechanism of N. caerulescens acclimation to
Cd exposure and to clarify the process of photosynthetic acclimation, we treated in hydroponic culture
N. caerulescens plants with 40 and 120 µM Cd for 3 and 4 days.

2. Materials and Methods

2.1. Seed Collection and Experimental Design

Seeds of Noccaea caerulescens F.K. Mey collected from a former Copper Mine area at Røros (Norway)
were cultivated hydroponically in an environmental growth chamber as described previously [13].

After growth for 12 weeks, some plants were exposed to 40 or 120 µM Cd (supplied as
3CdSO4.8H2O) for 3 and 4 days while others were left to control growth conditions.

2.2. Chlorophyll Fluorescence Imaging Analysis

Chlorophyll fluorescence measurements were carried out with an Imaging-PAM Chlorophyll
Fluorometer (Walz, Effeltrich, Germany) in dark-adapted leaves (15 min) of N. caerulescens plants,
grown at 0 (control), 40 or 120 µM Cd for 3 and 4 days, as described previously [13,41]. Five leaves
were measured from five different plants with eight areas of interest in each leaf. Two light intensities
were selected for chlorophyll fluorescence measurements, a low light intensity that was similar to the
growth light (300 µmol photons m−2 s−1, GL) and a high light intensity (1000 µmol photons m−2 s−1, HL,
more than three times that of the growth light). The measured and calculated chlorophyll fluorescence
parameters with their definitions are given in Table 1.

Representative results of the measured chlorophyll fluorescence parameters are also displayed as
color-coded images.

2.3. Statistical Analyses

All measurements that are expressed as mean ± SD were analyzed by student t-test (p < 0.05).
Five leaves from five different plants were analyzed in each treatment. In all graphs, the error bars are
standard deviations, while columns with the same letter are not statistically different at p < 0.05.
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Table 1. Definitions of all measured and calculated chlorophyll fluorescence parameters.

Chlorophyll Fluo-Rescence
Parameter Definition Calculation

Fo
Minimum chlorophyll a fluorescence in the
dark-adapted leaf (PSII centers open)

Obtained by applying measuring photon
irradiance of 1.2 µmol photons m−2 s−1

Fm
Maximum chlorophyll a fluorescence in the
dark-adapted leaf (PSII centers closed)

Obtained with a saturating pulse (SP) of
6000 µmol photons m−2 s−1

Fs Steady-state photosynthesis
Measured after 5 min illumination time before
switching off the actinic light (AL) of 300 µmol
photons m−2 s−1 or 1000 µmol photons m−2 s−1

Fo
′ Minimum chlorophyll a fluorescence in the

light-adapted leaf

It was computed by the Imaging Win software
(Heinz Walz GmbH, Effeltrich, Germany) as Fo′ =
Fo/(Fv/Fm + Fo/Fm′) [42]

Fm
′ Maximum chlorophyll a fluorescence in the

light-adapted leaf

Measured with saturating pulses (SPs) every 20 s
for 5 min after application of the actinic light (AL)
of 300 µmol photons m−2 s−1 or 1000 µmol
photons m−2 s−1

Fv/Fm
The maximum quantum efficiency of PSII
photochemistry Calculated as (Fm − Fo)/Fm

ΦPSII
The effective quantum yield of photochemical
energy conversion in PSII Calculated as (Fm

′ − Fs)/Fm
′

qP The redox state of QA Calculated as (Fm
′ − Fs)/(Fm

′ − Fo
′)

NPQ The non-photochemical quenching that
reflects heat dissipation of excitation energy Calculated as (Fm − Fm

′)/Fm
′

ETR The relative PSII electron transport rate Calculated as ΦPSII x Photosynthetic Photon Flux
Density × 0.5 × 0.84

ΦNPQ

The quantum yield of regulated non-
photochemical energy loss in PSII, that is the
quantum yield for dissipation by down
regulation in PSII

Calculated as Fs/Fm
′ − Fs/Fm

ΦNO
The quantum yield of non-regulated energy
loss in PSII Calculated as Fs/Fm

1 − qP The fraction of closed PSII reaction centers Calculated as 1 − qP

3. Results

3.1. Changes in the Maximum Quantum Efficiency of PSII Photochemistry after Cd Exposure

At the beginning of exposure to 40 µM Cd, the maximum quantum efficiency of PSII photochemistry
(Fv/Fm) in N. caerulescens decreased significantly but increased to control values at 120 µM Cd
(Figure 1).Materials 2018, 11, x FOR PEER REVIEW  4 of 15 
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Figure 1. Changes in the maximum quantum efficiency of PSII (Fv/Fm) in N. caerulescens plants grown
at 0 (control), 40 or 120 µM Cd2+ for 3 and 4 days.



Materials 2018, 11, 2580 4 of 14

3.2. Changes in the Allocation of Absorbed Light Energy in PSII after Cd Exposure

The quantum yield of photochemical energy conversion in PSII (ΦPSII), at both growth light (GL)
and high light (HL) intensity decreased significantly compared to the control, after 3 d at 40 µM Cd,
while it improved during the 4 d (Figure 2). However, ΦPSII increased to control values after 3 d at
120 µM Cd at GL and stabilized to control values after 4 days of exposure (Figure 2a). High light (HL)
exposure to 120 µM Cd resulted in decreased ΦPSII compared to controls (Figure 2b).
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Figure 2. Changes in the quantum efficiency of PSII photochemistry (ΦPSII) in N. caerulescens measured
(a) at 300 µmol photons m−2 s−1 or (b) 1000 µmol photons m−2 s−1. N. caerulescens plants were grown
at 0 (control), 40, or 120 µM Cd2+ for 3 and 4 days.

The quantum yield of regulated non-photochemical energy loss in PSII (ΦNPQ) decreased
significantly compared to the control after 3 d at 40 µM Cd at GL and increased to control values
during the 4 d (Figure 3a). Exposure to 120 µM Cd resulted in decreased ΦNPQ at GL compared to
controls during the 4 d (Figure 3a). At HL, ΦNPQ remained unchanged at 40 µM Cd, but increased
significantly at 120 µM Cd (Figure 3b).Materials 2018, 11, x FOR PEER REVIEW  5 of 15 
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Figure 3. Changes in the quantum yield for dissipation by down regulation in PSII (regulated heat
dissipation, a loss process serving for protection) (ΦNPQ) measured at (a) 300 µmol photons m−2 s−1

or (b) 1000 µmol photons m−2 s−1. N. caerulescens plants were grown at 0 (control), 40, or 120 µM Cd2+

for 3 and 4 days.

The quantum yield of non-regulated energy loss in PSII (ΦNO), a loss process due to PSII inactivity,
at both GL and HL intensity, increased significantly compared to the control after 3 d exposure to
40 µM Cd, while during the 4 d it decreased compared to 3 d (Figure 4). After exposure to 120 µM Cd
for 3 d at GL, ΦNO retained the same values compared to the controls, but increased during the 4 d
(Figure 4a). However, ΦNO decreased more than the control values at 120 µM Cd at HL (Figure 4b).
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Figure 4. Changes in the quantum yield of non-regulated energy dissipated in PSII (non-regulated heat
dissipation, a loss process due to PSII inactivity) (ΦNO) measured at (a) 300 µmol photons m−2 s−1 or
(b) 1000 µmol photons m−2 s−1. N. caerulescens plants were grown at 0 (control), 40, or 120 µM Cd2+

for 3 and 4 days.

3.3. Non-Photochemical Quenching and Electron Transport Rate in Response to Cd

Non-photochemical quenching (NPQ) that reflects heat dissipation of excitation energy, decreased
significantly compared to the control after 3 d at 40 µM Cd at GL, while it improved during the 4 d
(Figure 5a). Exposure to 120 µM Cd resulted in decreased NPQ at GL compared to controls during
the 4 d (Figure 5a). At HL, NPQ decreased significantly compared to the control after 3 d exposure to
40 µM Cd, and increased to control values during the 4 d, while after exposure to 120 µM Cd increased
significantly compared to the controls (Figure 5b).Materials 2018, 11, x FOR PEER REVIEW  6 of 15 
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Figure 5. Changes in non-photochemical fluorescence quenching (NPQ) measured at (a) 300 µmol
photons m−2 s−1 or (b) 1000 µmol photons m−2 s−1. N. caerulescens plants were grown at 0 (control),
40 or 120 µM Cd2+ for 3 and 4 days.

The electron transport rate (ETR), at both GL and HL intensity, decreased significantly compared
to the control after 3 d at 40 µM Cd, while it improved during the 4 d (Figure 6). However, ETR
increased to control values after 3 d exposure to 120 µM Cd at GL and stabilized to control values after
4 d exposure (Figure 6a). High light exposure to 120 µM Cd resulted in decreased ETR compared to
the controls (Figure 6b).
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Figure 6. Changes in the relative PSII electron transport rate (ETR) measured at (a) 300 µmol photons
m−2 s−1 or (b) 1000 µmol photons m−2 s−1. N. caerulescens plants were grown at 0 (control), 40 or
120 µM Cd2+ for 3 and 4 days.

3.4. Changes in the Redox State of PSII after Cd Exposure

The redox state of QA (qP) that is a measure of the fraction of open PSII reaction centers, at both
GL and HL intensity, decreased significantly compared to the control after 3 d at 40 µM Cd, while it
improved during the 4 d (Figure 7). However, qP increased to control values after 3 d exposure to
120 µM Cd at GL and stabilized to control values after 4 d exposure (Figure 7a). High light exposure to
120 µM Cd resulted in a more reduced redox state of QA compared to controls, i.e., a lower fraction of
open PSII reaction centers (Figure 7b).Materials 2018, 11, x FOR PEER REVIEW  7 of 15 
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Figure 7. Changes in the photochemical fluorescence quenching, that is the relative reduction state of
QA, reflecting the fraction of open PSII reaction centers (qP) measured at (a) 300 µmol photons m−2 s−1

or (b) 1000 µmol photons m−2 s−1. N. caerulescens plants were grown at 0 (control), 40, or 120 µM Cd2+

for 3 and 4 days.

3.5. Spatiotemporal Variation of PSII Responses to Cd Exposure

The major veins (mid-vein, first- and second-order veins) in N. caerulescens leaves grown under
control growth conditions at both GL and HL defined areas with a lower fraction of open PSII
reaction centers or a more reduced redox state of QA, while mesophyll cells expressed larger spatial
heterogeneity with a larger fraction of open PSII reaction centers or a more oxidized redox state
(Figures 8e and 9d).

The maximum quantum efficiency of PSII photochemistry (Fv/Fm) show the smallest spatial
heterogeneity even though it decreased significantly at 40 µM Cd and increased to control values
at 120 µM Cd (Figure 8a). The quantum yield of photochemical energy conversion in PSII (ΦPSII)
decreased significantly after 3 d at 40 µM Cd at GL, while it improved during the 4 d, showing a
high spatiotemporal leaf heterogeneity (Figure 8b). Among the chlorophyll fluorescence parameters
with high spatiotemporal heterogeneity observed at GL, were the images of the quantum yield
of non-regulated energy dissipated in PSII (non-regulated heat dissipation, a loss process due to
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PSII inactivity) (ΦNO) (Figure 8d) and the images of the redox state of the PQ pool (qP) (Figure 8e).
The most severely affected leaf area after 3 d at 40 µM Cd, was the left and right leaf side, while the
central area was less affected (Figure 8d,e). At the left and right leaf side after 3 d exposure to
40 µM Cd, the quantum yield of non-regulated energy loss in PSII (ΦNO) increased; thus, these areas
exhibited increased singlet oxygen (1O2) production (Figure 8d), and also presented the lower qP

values (Figure 8e). However, in the left and right leaf side after 4 d exposure to Cd, ΦNO decreased
(Figure 8d) and the redox state of the PQ pool increased (qP) (Figure 8e). At exposure to 120 µM Cd at
GL, leaf spatial heterogeneity decreased, and both ΦNO (Figure 8d) and qP (Figure 8e) stabilized to
control values.Materials 2018, 11, x FOR PEER REVIEW  8 of 15 
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Figure 8. Representative chlorophyll fluorescence images of the maximum quantum efficiency (Fv/Fm)
of PSII after 15 min dark adaptation (a) and after 5 min illumination at 300 µmol photons m−2 s−1

actinic light; of the actual (effective) quantum yield of PSII photochemistry (ΦPSII) (b), the quantum
yield for dissipation by downregulation in PSII (ΦNPQ) (c), the quantum yield of non-regulated energy
loss in PSII (ΦNO) (d), and the relative reduction state of QA, reflecting the fraction of open PSII reaction
centers (qP) (e). N. caerulescens plants were grown at 0 (control), 40 or 120 µM Cd2+ for 3 and 4 days.
The colour code depicted at the right side of the images ranges from black (pixel values 0.0) to purple
(1.0). The eight areas of interest are shown in each image. The average value of each photosynthetic
parameter of the leaf is presented in the figure.

Exposure of N. caerulescens to HL increased the spatiotemporal leaf heterogeneity (Figure 9) and
the plants suffered more from Cd toxicity during the 3 d of exposure to 40 µM Cd, but they recovered
during the 4 d. However, exposure to 120 µM Cd at HL revealed mild effects. This was realized by an
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increase in ΦNPQ (Figure 9b) that down-regulated PSII quantum yield (ΦPSII) (Figure 9a) and decreased
the quantum yield of non-regulated energy loss in PSII (ΦNO) (Figure 9c).
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Figure 9. Representative chlorophyll fluorescence images after 5 min illumination at 1000 µmol
photons m−2 s−1 actinic light; of the actual (effective) quantum yield of PSII photochemistry (ΦPSII)
(a), the quantum yield for dissipation by downregulation in PSII (ΦNPQ) (b), the quantum yield of
non-regulated energy loss in PSII (ΦNO) (c), and the relative reduction state of QA, reflecting the fraction
of open PSII reaction centers (qP) (d) N. caerulescens plants were grown at 0 (control), 40 or 120 µM Cd2+

for 3 and 4 days. The colour code depicted at the right side of the images ranges from black (pixel
values 0.0) to purple (1.0). The eight areas of interest are shown in each image. The average value of
each photosynthetic parameter of the leaf is presented in the figure.

4. Discussion

The type of damage on PSII that has frequently been identified as the main target of Cd toxicity on
photosynthesis strongly depends on light conditions [4,43–46]. At GL, the damage of the PSII function
is mainly due to the impairment that results from the replacement by Cd2+ of the Mg2+ ion in the
chlorophyll molecules of the light-harvesting complex II, while in HL it is mainly from direct damage
to the PSII reaction center [4,44–46].

N. caerulescens leaves grown under control growth conditions at both GL and HL show a spatial
heterogeneity in PSII functionality (Figures 8 and 9). This spatial heterogeneity may be attributed
to ‘patchy stomatal behavior’, in which stomata in adjacent regions exhibit significantly different
mean apertures from each other, resulting in significantly different stomatal conductance (gs) [47,48].
Stomatal conductance decreases when the stomata close; this is used as an indicator of the extent
of stomatal opening [49,50]. It is assumed that spatial variation in the quantum efficiency of PSII



Materials 2018, 11, 2580 9 of 14

photochemistry (ΦPSII) arises from local differences in internal CO2 concentrations, which in turn
result from changes in stomatal conductance due to patchy stomatal behavior [51]. A body of evidence
suggests that patterns of ΦPSII can be used to calculate stomatal conductance [51–55].

At the beginning of exposure to 40 µM, Cd ΦPSII decreased significantly at the left and right leaf
sides (Figures 8b and 9a), with a simultaneous decrease in ΦNPQ (Figures 8c and 9b) resulting in an
increase of the quantum yield of non-regulated non-photochemical energy loss (ΦNO) (Figures 8d and 9c).
The increase in ΦNO indicates that photochemical energy conversion and photoprotective regulatory
mechanism were insufficient, pointing to serious problems of the plant to cope with the absorbed light
energy [56,57]. ΦNO consists of chlorophyll fluorescence internal conversions and intersystem crossing,
which indicate the formation of singlet oxygen (1O2) via the triplet state of chlorophyll (3chl *) [13,58,59].
After 3 d exposure to 40 µM Cd, N. caerulescens leaves exhibited increased 1O2 production at the left and
right leaf sides, since ΦNO increased significantly at those areas. Thus, although Cd2+ is a redox-inert
element, it produces reactive oxygen species [28]. The simultaneous reduced PQ pool that was observed
mainly at the left and right leaf sides mediated stomatal closure probably through the generation of
mesophyll chloroplastic hydrogen peroxide (H2O2) [60]. The stomatal closure at these areas implies
decreased transpiration rates that slow down Cd supply.

During the 4 d exposure to 40 µM Cd, ΦPSII increased at the left and right leaf sides
(Figures 8b and 9a), with a simultaneous increase in ΦNPQ (Figures 8c and 9b) resulting in a decrease of
ΦNO (Figures 8d and 9c) compared to 3 d exposure. This response is attributed to both the possible Cd
detoxification mechanism achieved by vacuolar sequestration, that seems to be the main mechanism
for Cd detoxification [61–63], and to the reduced plastoquinone (PQ) pool that mediated stomatal
closure and decreased Cd supply at the affected leaf area, leading to the acclimation of N. caerulescens
to Cd exposure. Under exposure to 120 µM Cd at HL, the quantum yield of non-regulated energy
loss in PSII (ΦNO) decreased even more than control values, and thus exhibited lower singlet oxygen
(1O2) production. This was due to the photoprotective mechanism that can divert absorbed light to
other processes such as thermal dissipation, preventing the photosynthetic apparatus from oxidative
damage [64–70].

The observed spatial heterogeneity in the quantum yield of linear electron transport (ΦPSII)
in N. caerulescens leaves exposed to 40 µM Cd for 3 d (Figures 8b and 9a) is in accordance to
elemental imaging using laser ablation inductively-coupled plasma mass spectrometry, performed
on whole leaves of the hyperaccumulator N. caerulescens that revealed differences in the supply of
Cd over the whole leaf area, suggesting a heterogeneous distribution across the leaf [71]. Useful
information can be obtained by combining chlorophyll fluorescence images, followed by laser
ablation inductively-coupled plasma mass spectrometry on whole leaves of the hyperaccumulator
N. caerulescens exposed to Cd.

It seems that spatiotemporal variations in the redox state of the PQ pool related to stomatal
conductance, an indicator of the extent of stomatal opening [50], are interconnected to the heterogeneous
distribution of Cd over the entire leaf area [71]. Thus, the spatial heterogeneity in the redox state of the
PQ pool throughout the whole leaf area (Figures 8e and 9d) reveals a spatial supply of Cd across the
leaf. Recently, Cd2+ root influx has been shown to exhibit spatiotemporal patterns [72]. A heterogeneous
distribution of a reduced PQ pool gives rise to a spatial distribution of H2O2 accumulation [73].
Still, reactive oxygen species (O2

−, H2O2) production corresponds to spatial accumulation metal
patterns [74].

In our work, the response of N. caerulescens to Cd exposure fits the ‘Threshold for Tolerance
Model’, with a lag time or/and a threshold concentration required for the induction of a tolerance
mechanism [75–78]. Concurrent to this model, mild stress or short exposure times can produce
significant effects on plants, while moderate stress or longer exposure times have less or no effect [79].
In accordance with this model, 40 µM Cd and 3d exposure time caused significant effects on PSII
functioning, while 120 µM Cd or 4d exposure time have less or no effect. A lag-time of 4d exposure to
40 µM Cd was required for N. caerulescens to activate stress-coping mechanisms.
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5. Conclusions

Acclimation to Cd exposure was achieved through the possible Cd detoxification mechanism
done by vacuolar sequestration and the reduced plastoquinone (PQ) pool signaling that mediated
stomatal closure and decreased Cd supply at the affected leaf area. The response of N. caerulescens to Cd
exposure fits the ‘Threshold for Tolerance Model’, with a lag time of 4 d and a threshold concentration
of 40 µM Cd required for the induction of the acclimation mechanism through the reduced PQ pool that
mediated stomatal closure probably by the generation of mesophyll chloroplastic hydrogen peroxide
(H2O2) [60], which acts as a fast acclimation signaling molecule [73,80], as well as activates the Cd
detoxification mechanism through vacuolar sequestration [61–63]. The mode of Cd damage on PSII
strongly depends on the irradiance conditions [4,43–46]. Chlorophyll fluorescence imaging analysis is
a non-invasive tool to assess the physiological status of plants and detect the impacts of environmental
stress [81–83], permitting also the visualization of the spatiotemporal variations in PSII efficiency [76].
As it was shown in our experiments, it is also capable of elucidating the mechanism of photosystem II
acclimation to Cd exposure.
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