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Abstract: Surface corrosion resistance of nickel-based superalloys after grinding is an important
consideration to ensure the service performance. In this work, robotic belt grinding is adopted
because it offers controllable material processing by dynamically controlling process parameters
and tool-workpiece contact state. Surface corrosion behavior of Inconel 718 after robotic belt
grinding was investigated by electrochemical testing in 3.5 wt % NaCl solution at room temperature.
Specimens were characterized by morphology, surface roughness and residual stress systematically.
The potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS) analysis
indicate the corrosion resistance of the specimen surface improves remarkably with the decrease of
abrasive particle size. It can be attributed to the change of surface roughness and residual stress.
The energy dispersive X-ray spectroscopy (EDS) indicates that niobium (NDb) is preferentially attacked
in the corrosion process. A plausible electrochemical dissolution behavior for Inconel 718 processed
by robotic belt grinding is proposed. This study is of significance for achieving desired corrosion
property of work surface by optimizing grinding process parameters.

Keywords: robotic belt grinding technique; corrosion behavior; nickel-based superalloy; roughness;
residual stress

1. Introduction

Inconel 718 superalloy has been widely utilized in gas turbine engineering, submarine, nuclear
reactors, oil and gas production parts because of its good service performance [1-3]. For ship gas
turbine and submarine which mainly work in the marine environment, the corrosion behavior of
Inconel 718 must be fully understand to adopt effective countermeasures ensuring the safety of the alloy
system. In addition, a good corrosion resistance is beneficial to the service life of the parts because most
cracks commence at the surface of the material. Corrosion performance is mainly affected by material
compositions [4] and surface states such as surface roughness and surface stress [5]. The high nickel
content of Inconel 718 makes the alloy have a relatively strong resistance to chloride stress cracking
corrosion. At the same time, due to the presence of chromium, corrosion resistance is even better
than pure nickel in the oxidizing environment. Wang et al. [6] investigated the corrosion behavior of
Inconel 718 in electrochemical machining, suggesting that the generated niobium carbide and niobium
oxide have an important influence on the corrosion process of nickel-based superalloy. Jebaraj et al. [7]
reported hydrogen permeation of Inconel 718 in different states and found that the hydrogen trapping
in cold rolled and precipitation hardened Inconel 718 is irreversible. These studies objectively analyze
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the chemical elements influencing the corrosion performance of the alloy. Additional effective measures
need to be devised to improve corrosion performance.

In order to enhance the corrosion resistance of nickel-based superalloy, various processing
technologies were globally employed. Karthik et al. [8] reported the enhanced corrosion performance
in Inconel 600 through laser shock peening without coating. They found the larger and deeper
compressive residual stresses and smaller surface roughness are the main reasons for the increased
corrosion performance. However this study was conducted on Inconel 600, and was not supported
by an actual corrosion experiment, such as immersion tests. Huang et al. [9] investigated the
electrochemical corrosion behavior of Inconel 718 sheets treated by electron beam welding in 3.5 wt %
NaCl solution. To reduce the adverse impact on corrosion performance, they adopted a method
of subsequent heat treatment. Khan et al. [10] studied the corrosion performance of Inconel 718
in the simulated body fluid. The results show that laser surface-modified process can improve
the corrosion resistance of materials effectively. Akyol et al. [11] deposited Ni-P-W-CNF (Carbon
Nanofibers) composites on the works by electroless method, and obtained a good wear and corrosion
resistance. However, this improvement approach causes pollution. Narayanan et al. [12] analyzed
the change of impingement angle to compare the corrosion resistance of nickel-based superalloy
which was laser surface treated. The corrosion performance was increased by about 1.5 times due to
the minimized energy transfer of laser. It is a feasible process to improve erosion resistance under
the premise of ensuring efficiency. Arrizubieta et al. [13] combined laser material deposition and
laser surface processes for the complete manufacturing of Inconel 718 components. The surface
quality was improved and the roughness was reduced. Nevertheless, the process is relatively
complicated. Karthik et al. [5] reviewed laser peening without protective coating technology as
a mechanical surface modification method. The method can significantly improve the corrosion
resistance of metallic materials due to the factors including surface roughness and compressive residual
stress. These studies analyze the corrosion properties and influencing factors of nickel-based alloys
under different conditions. However, methods to improving corrosion resistance require additional
processing, such as material deposition, laser peening, etc. These measures not only consume time
and resources, but also inevitably increase production costs. It is desired that a robotic belt grinding
process could improve the corrosion performance by optimizing its process parameters and without
additional processing.

Robotic belt grinding offers controllable material processing by dynamically controlling process
parameters and tool-workpiece contact state, which is otherwise difficult to achieve by manual
grinding [14]. While conventional CNC grinding machine offers position control, a robotic grinding
system can readily incorporate both position and force control. As a result, desired profile finishing
accuracy and surface properties can be obtained by online tool condition monitoring and optimal
process control [15,16]. As such, we have adopted robotic belt grinding in this study.

Pradhan et al. [17] analyzed the influence of surface roughness on corrosion behavior of Inconel
718 in a simulated marine environment at high temperature for a relatively long time. The results
show that the higher roughness increases the surface area for the corrosion behavior and reduces
the corrosion resistance of the works. However, roughness is only one of the contributing factors
affecting corrosion resistance. Based on our previous study [18], we found that the finished surface
obtains a considerable residual stress, which has a significant impact on surface corrosion performance.
This phenomenon, which is neither fully understood nor discussed by existing works, is investigated
in detail in this paper. By controlling appropriate parameters, the robotic belt grinding process can
achieve the ideal compressive residual stress in the sub-surface and lower surface roughness, which
improves surface corrosion performance. To the best of our knowledge, the mechanism of residual
stress affecting corrosion Ni-based superalloys has not been reported elsewhere.

Tressia et al. [19] investigated the influence of abrasive particle size and different aqueous solution
on the abrasive wear mechanisms in the grinding process. Turnbull et al. [20] reported the sensitivity
of stress corrosion cracking of stainless steel to surface machining and grinding procedure. The above
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research works mostly based on manual grinding suffer from their uncontrollability and inconsistency.
Robotic belt grinding is a relatively new precision machining technique, and has attracted great
attention for its advantages over conventional manual grinding procedure [21,22]. Although great
progress on the corrosion behavior of nickel-based superalloy has been made, the related research
on surface corrosion behavior and influencing factors of nickel-based superalloy after robotic belt
grinding has been barely reported.

In this work, electrochemical corrosion of Inconel 718 was investigated to evaluate the corrosion
behavior of the alloy under robotic belt grinding. The experiment was carried out in 3.5 wt % NaCl
solution, which is a commonly used corrosive solution in electrochemical corrosion experiments [23].
The potentiodynamic polarization curves and electrochemical impedance spectra (EIS) were measured.
Furthermore, the corroded specimens were examined by scanning electron micrograph (SEM) and
energy dispersive X-ray spectroscopy (EDS). The influencing factors including surface roughness and
residual stress were discussed in detail.

2. Materials and Methods

2.1. Materials

The nickel-based superalloy Inconel 718 used in this study was provided by Baoshan Iron & Steel
Co., Ltd. (Shanghai, China). The Inconel 718 was hot forging state, and annealed at 980 °C for 10 min
followed by air cooling. Then, the materials were acid pickled. The acid used is a mixed solution,
whose concentration is 10 vol % HNOj; + 7 vol % HE. The purpose of acid pickling is to remove the
oxide formed on the surface of the material during heat treatment. Its chemical compositions were
investigated by inductively coupled plasma-optical emission spectroscopy (ICP-OES) and the results
are listed in Table 1.

The as-received material was cut into square bars with dimensions of 15 mm x 15 mm x 500 mm
using electric discharge machine wire cutting. The annealing process can improve the ductility and
formability, which is meaningful for the subsequent processing.

Table 1. Chemical compositions of Inconel 718 (wt %).

C Si Mn Al Co Ti Mo Nb Cr Ni Fe
0.05 0.23 0.25 0.43 0.65 0.9 2.86 5.25 18.2 52.8  Balance

2.2. Experiment Set-Up

The robotic belt grinding system used in this study mainly consists of four components which are
control cabinet, industrial PC, FANUC (Fuji Automatic Numerical Control) robot with a force control
sensor and a belt machine, as shown in Figure 1. The abrasive belt was supplied by 3 M China Limited,
and its abrasive particles is special Al;O3 stocked on an elastic paper strip reinforced with fibers.
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Figure 1. Schematic diagram of experimental setup.
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The prepared specimens were ground by the optimum processing parameters of grinding force
178 kPa and belt speed 21 m/s. Three kinds of belt with different particle size were selected, which are
36, 80 and 120 M, corresponding to grain sizes of about 500, 178, and 125 pm, respectively. The mesh
number is inversely proportional to the particle size. The larger the mesh is, the smaller the abrasive
particle. Therefore, there are three sets of parameters in this experiment: 36 M with 178 kPa and 21 m/s,
80 M with 178 kPa and 21 m/s, 120 M with 178 kPa and 21 m/s.

2.3. Test Methods

After the grinding process, a series of tests were carried out. The surface roughness of the
ground specimens was tested with a roughness tester (SJ-410, Mitutoyo, Kawasaki, Japan) and the
measuring direction was perpendicular to the grinding direction. The residual stress states on the
ground surface were measured by an X-ray Stress Analyzer (LXRD, Proto, Sacramento, CA, USA)
with Mn-K 4 radiation and Cr filter, using standard sin? ) method under 18 kV (voltage) and 4 mA
(current). The (311) plane with a 26 of 165.32 was chosen as the shifts of diffraction peaks.

To evaluate the corrosion resistance of the alloy, electrochemical testing was employed at room
temperature in 3.5 wt % NaCl solution and free air. The samples were held in corrosive solution
for 65 min, including 20 min of immersion time and 45 min of corrosion time. It was conducted
using a CHI 660E electrochemical system with Saturated Calomel Electrode (SCE), Pt wire and the
ground specimen as reference, auxiliary and working electrode respectively. The dimension of the
test specimen was 10 mm x 10 mm with an area of 100 mm?. Potentiodynamic polarization testing
was performed over the applied potential ranging from —1.2 V to 1.5 V at a sweep rate of 1 mV/s.
Each potentiodynamic polarization measurement was repeated three times to obtain a reliable result.
Tafel extrapolation method was used to calculate the corrosion potential (Ecorr) and corrosion current
(Leorr). EIS testing was conducted with the same device under the same condition. The perturbation
voltage is 10 mV. The frequency ranges from 100 kHz to 10 mHz. The EIS test was carried out at open
circuit potential (Ecorr). EIS test was also repeated three times.

Immersion tests were also conducted after the grinding process. The ground specimens of 15 mm
x 15 mm were rinsed carefully by acetone, ethanol and distilled water in turn. The immersion tests
were carried out in 3.5 wt % NaCl solution at room temperature. Corrosion products were removed by
chemical cleaning with 10 vol % HNO3 + 7 vol % HF. The mass loss of the specimens were measured by
an analytical balance (FA124, Sunny Hengping, Shanghai, China) with a precision of 10 pg. Each mass
loss was measured for three times to obtain a reliable result.

Morphology characterization was accomplished using a JSM-7600F field-emission scanning
electron microscope (SEM, JEOL, Akishima, Japan) at the accelerating voltage of 5 kV and probe
current of 2 x 1071 A. The SEM machine was equipped with an energy dispersive X-ray spectroscopy
(EDS) to identify the compositions of specimen surface. The accelerating voltage is 20 kV and the
working distance is 15 mm.

3. Results and Discussion

3.1. Electrochemical Analysis

Figure 2 shows potentiodynamic polarization curves of the ground surface with different abrasive
particle sizes. The potentiodynamic polarization curves exhibit similar shape for the three specimens
and there are obvious passivation regions in accord with the current response [24]. The current density
has an increasing trend as the applied anodic voltage increases. In working electrodes, there exists a
cathodic reduction process, which is a hydrogen evaluation reaction [25].

In the anodic regions, there is a typical active-passive-trans-passive behavior, displaying a limiting
current density with the increase of the corrosion potential. This is owing to the existence of the
compact oxidation film on the ground surface [26]. The passivation region begins near the corrosion
potentials and there is a rapid increase of current density when the applied potential increases to a
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certain value around 1.25 V due to the dissolution of the oxidation film. In addition, the pit corrosion
occurs according to the steep increase of the current. Simultaneously, the oxidation reaction of Inconel
718 proceeds, leading to a passivation oxidation film on the specimen surface.

- --36M,178 KPaand 21 m/s -
80M,178 KPaand 21 m/s
—— 120 M,178 KPa and 21 m/s
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Figure 2. Potentiodynamic polarization curves of the ground surface with different abrasive particle
sizes. Saturated Calomel Electrode (SCE).

To compare the corrosion performance of the ground specimens clearly, corrosion current density
(Icorr) and corrosion potential (Ecorr) are calculated from the potentiodynamic polarization curves [27],
as presented in Table 2. The corresponding errors are also listed and have a good repeatability. It can
be found that corrosion potential (Ecorr) increases forwards the positive direction and the corrosion
current density (Icorr) decreases with the decrease of the particle size. It is well known that the more
positive the corrosion potential is, the higher corrosion resistance [28]. In addition, the corrosion
property is also influenced by corrosion rate, which can be represented by the corrosion current density
(Icorr) according to Faraday’s law [29]. The specimen ground by particle size of 120 M shows the
highest corrosion potential and the lowest corrosion current density, indicating the best corrosion
property. From the analysis above, it can be concluded that the corrosion property of the specimen
surface increases remarkably with the decrease of particle size.

Table 2. Tafel polarization parameters of the ground specimens with different abrasive particle sizes.

Particle Size (M) Ecorr mV vs. SCE) Icorr (WA/cm?)
36 —800 (£ 13) 35.74 (£ 2.5)
80 —680 (£ 9) 10.64 (£ 1.2)
120 —627 (£ 11) 5.28 (£ 0.6)

In order to further understand the electrochemical corrosion behavior of Inconel 718 treated by
robotic belt grinding, EIS testing was carried out. Typical Nyquist plots of the specimens are shown
in Figure 3. There is an obvious capacitance loop, because the corrosion process is dominated by
the charge transfer step. The capacitance loop is not a standard semicircle due to the heterogeneous
corrosion surface [30]. The diameter of capacitance loop increases with the decrease of abrasive
particle size. The value of the diameter represents the corrosion resistance of the test specimen [31].
Samples ground using larger particle sizes have better corrosion performance [32]. It can be concluded
that a smaller abrasive particle size is beneficial to the corrosion resistance of the specimen surface.
The results of EIS testing are consistent with the potentiodynamic polarization tests well.
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Figure 3. Nyquist plots of the ground surface with different abrasive particle sizes. Constant phase
elements (CPE).

To further explain the corrosion behavior, an equivalent circuit diagram was used, as shown
in the insert of Figure 3. The Rg represents the solution resistance, Rct represents charge transfer
resistance at the interface. Moreover, pure capacitors were substituted by constant phase elements
(CPE) and the impedance of CPE was defined by equation: Zcpr = [Q(jw)"] 71, where Q is the
frequency independent constant; n is the exponential coefficient, the value of which is between 0 and 1;
j is an imaginary unit and w is an angular frequency [33]. The fitted resistance values Rct were listed
in Figure 4. It could be found that the Rct increases as the abrasive particle size decreases, indicating
that the corrosion resistance increases with the decrease of abrasive particle size in NaCl solution.

Resistance R_ (kQcm’)
- - N N w
(=] (4] o (<] o

(=]
T

1 i 1 i 1 " L i 1
40 60 80 100 120
Abrasive particle size (M

Figure 4. Rct of the equivalent circuit evaluated by fitting the impedance spectra of the ground surface

with different abrasive particle sizes.

3.2. Corrosion Morphology Analysis

Ideally, electrochemical corrosion of metals should be uniform and homogeneous. Nevertheless,
Inconel 718 contains many other elements to improve its mechanical properties, resulting in
non-uniformity and inhomogeneity. To observe the corrosion morphology, the corroded surfaces
of the ground specimens are investigated by SEM equipped with EDS to determine the change of
alloying elements after the measurement of potentiodynamic polarization curves. Figure 5 shows SEM
images of the corroded surface under different abrasive particle sizes. There are many corrosion pits
and corrosion products with a size of about 50 um, which indicates serious corrosion in the surface
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of specimens. To clearly compare the degree of corrosion behavior, the average number of corrosion
pits per unit area is counted. Twenty different regions are chosen to calculate the average number of
corrosion pits. The results are presented in Figure 6. It can be seen that the number of corrosion pits
has an obvious decreasing trend as the abrasive particle size decreases. It can be concluded that the
size reduction of abrasive particle facilitates the improvement of corrosion performance.

W - - = = 2
SEM HV. 5.0 kV WD: 8.43 mm SEM HV: 5.0 kV WD: 8.43 mm ‘[ L1l MIRA3 TESCAN
SEM MAG: 100 x | Vlew fleld; 2.77 mm 500 um SEM MAG: 100x  View fleld: 2.77 mm 500 ym

Det: SE

SEM HV: 5.0 kv WD: 14.98 mm |

SEMMAG: 100X View field: 2.77 mm 500 ym
Det: SE

Figure 5. Scanning electron microscope (SEM) images of the corroded surface of samples prepared
using under different particle sizes: (a) 36 M, (b) 80 M, (c) 120 M.
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Figure 6. The number of corrosion pits per unit area at the corroded surface.

To further investigate the corrosion behavior of the Inconel 718 under robotic belt grinding system,
the change of alloying elements on the corroded surface are determined by EDS. Figure 7 shows the
EDS results for different regions (uncorroded region, corrosion products, and corrosion pits) on the
corroded surface. Compared with the uncorroded region and the corrosion pits, the content of Nb
and O is the highest in corrosion products, which is similar to the previous results [6]. There might
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exist Nb-rich regions in the corrosion products. The boundary of the Nb-rich region was firstly eroded.
The content of Nb and O in the corrosion pits decreases with the shedding of corrosion products.

B s,
-
SEM HV: 5.0 kV WOD: 9.06 mm

SEM MAG: 500 x View fleld: 654 ym 100 pm
Det. SE

Figure 7. SEM and energy dispersive X-ray spectroscopy (EDS) results for the corroded specimens:
(a) SEM image; (b) Uncorroded surface; (c) Corrosion products; (d) Corrosion pits.
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3.3. Mass Loss Analysis

Figure 8 shows the average mass loss of the specimens ground by different abrasive particles after
different immersion times. The average mass loss of the specimens increases with the extension of
immersion time. It is also found that the average mass loss decreases with the decrease of the abrasive
particle size. The results indicate that the corrosion resistance of the ground surface is improved with
the decrease of abrasive particle size.

- 600  —m—36M,178 kPa and 21 m/s T
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o - —A— . a and 21 m/s

E-)

= 400}

@

o 300

7] L

g 200 ;

= 100} é /‘

ot e
1 " 1 1 i 1 " 1 " L

N
[}

0 10 20 30 40
Abrasive particle size (M

Figure 8. Average mass loss of the specimens after immersion for 1, 5, 10, 15, 25, 35, and 50 days.

3.4. Surface Roughness Influence

In order to further elucidate the influencing factors of corrosion resistance on nickel-based
superalloys under robotic belt grinding, the surface roughness was tested. The average roughness
(Ra) is measured with 2D stylus profiler over a length of 6 mm. The surface roughness of treated
specimens as a function of different abrasive particle size is presented in Figure 9. There is an obviously
monotonous decrease with the decrease of abrasive particle size. This is due to different surface ablation
of materials during the grinding process. The larger the abrasive particle size is, the greater surface
ablation and the higher surface roughness. The corrosion behavior is accelerated by the presence of
large peaks and valleys which yields a larger ground surface area [34]. A larger surface area derived
from higher roughness facilitates the diffusion of the electrolyte and promotes the corrosion rate [17],
which is consistent with the improvement of corrosion performance as the abrasive particle size
decreases. Moreover, the rough surface is harmful to the formation of the passive film [35], which is a
protective film of the parts.

:h
=]
T

25F

2.0}

1.5}

Surface roughness (um

1.0}

L s L
40 60 80 100 120
Abrasive particle size (M

Figure 9. Surface roughness of treated specimens as a function of different abrasive particle sizes.
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3.5. Residual Stress Analysis

Residual stress is also a significant factor affecting the corrosion property in the grinding
process [36]. During processing, metals often form part deformation and non-uniform stress.
In grinding process, the residual stress forms on the specimen surface mainly due to the plastic
deformation and temperature change during grinding process [37]. Normally, the corrosion occurs
easily in high tensile stress and high energy state [38]. A considerable residual stress occurs in ground
metallic structure [39]. Based on the importance of stress, the surface residual stress were tested in
two directions (the grinding direction is defined as X and material flowing direction is defined as Y)
under different abrasive particle sizes, as depicted in Figure 10. The residual stresses in both directions
exhibit a similar change trend. As the abrasive particle size decreases, the residual stress in the X
direction changes from the tensile stress to the compressive stress. The residual stress in the Y direction
is shown as the compressive stress, and the compressive stress gradually increases with the decrease
of abrasive particle size.

The effect of residual stress on corrosion performance is similar to that of stress corrosion. In stress
corrosion, the metal exerts brittle cracking below yield strength in the specific corrosive medium and
the tensile stress (including the applied stress and residual stress) [40]. The open circuit potential
is always lower in the tensile stress concentration zone which acts as the anode of a corrosive cell.
However, the compressive stress is beneficial to the formation of the passive film and enhances the
corrosion resistance of the specimen surface [41,42]. The specimen surface ground by abrasive particle
size of 120 M with the largest comprehensive residual stress in both directions has the best corrosion
performance. This further consolidates our research result.

(a) (b)

=100
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=200

=100 - =250

=300
=200

=350

=300 "

Residual stress in X direction (MPa)

Residual stress in Y direction (MPa)

=400 N M L I L

' L il i L 1
40 60 80 100 120 40 60 80 100 120
Abrasive particle size (M) Abrasive particle size (M)

Figure 10. The relationship between surface residual stress and abrasive particle size: (a) X direction
and (b) Y direction.

3.6. Electrochemical Dissolution Behavior

Based on the results and discussion above, a plausible electrochemical dissolution behavior for
Inconel 718 ground by the robotic belt grinding system can be schematically illustrated, as shown in
Figure 11. The oxidation film has a porous structure which provides many natural active sites for
corroding [43], and the dissolution process predominantly begins from the defective pores of the oxide
film, as shown in Figure 11a. It is reasonable that the open circuit electrochemical potential of Nb
is more negative, compared with other elements of Inconel 718. The Nb-rich regions occur at the
defective pores of the oxide film during the corrosion process. Some corrosion products are generated
in this regions. As the corrosion process continues, the dissolution occurs on the boundary between
the Nb-rich region and nickel matrix according to the steep increase of current in Figure 2. The grooves
are generated at the boundary which is in a high energy state and easily corroded. This is similar to
the traditional pitting process [44]. With the further extension of corrosion time, the groove deepens
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due to the potential difference and high stress concentration, as presented in Figure 11b. With the
corrosion process evolving, more products accumulate on the specimen surface and then shed into
the electrolyte, leaving a large number of corrosion pits. During the shedding process, undissolved
components is peeled off with the removal of the corrosion products [6]. Finally, the corrosion products
shed to the electrolyte leaving the corrosion pits, as displayed in Figure 11c.

In this experiment, the specimen surface ground by abrasive particle size of 120 M obtains the
smallest roughness and the largest compressive residual stress. The smallest roughness generates a
small corrosion surface area and the largest compressive residual stress protects corrosion products
from shedding to electrolyte. Moreover, a small roughness can reduce the stress concentration.
The combination of these factors ultimately leads to the best corrosion performance. The results further
validate the electrochemical dissolution behavior of Inconel 718.

Uncorroded surface---+--» Corrosion products ====+=== Corrosion pits

Figure 11. Schematic of the electrochemical dissolution behavior of Inconel 718 ground by robotic belt
grinding system: (a) Uncorroded surface, (b) Corrosion products, (b) Corrosion pits.

4. Conclusions

This paper has focused on the electrochemical corrosion behavior of Inconel 718 after robotic belt
grinding. From the analysis above, the following conclusions can be made:

1.  The corrosion resistance of the specimen surface improves remarkably with the decrease of
surface roughness and residual stress, which result from the abrasive particle size.

2. Corrosion of Inconel 718 ground by the robotic belt grinding system proceeds from oxide film
defect occurrence and Nb-rich region formation, to corrosion product generation. Then the
corrosion products shed into the electrolyte due to the dissolution of the boundary, leaving a
large number of corrosion pits.

3. The small roughness reduces the corrosion surface area and oxide film defect, increasing the
resistance to corrosion product formation. In addition, the compressive residual stress can
impede the exfoliation of corrosion products. This reasonably explains that small abrasive
particle size improves the corrosion performance by producing small roughness and compressive
residual stress.

This work provides significant insights in understanding of corrosion behavior of Inconel 718
treated by robotic belt system, and analyzing the influencing factors including surface roughness and
residual stress. Further research in precision robotic grinding of nickel-based superalloys will revolve
around modelling and optimal control of the process parameters to achieve desired properties.
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