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Abstract: The phase equilibrium of the Ni–Al–La ternary system in a nickel-rich region was
observed at 800 ◦C and 1000 ◦C using scanning electron microscopy backscattered electron imaging,
energy dispersive X-ray spectrometry and X-ray diffractometry. The solubility of Al in the Ni5La
phase was remeasured at 800 ◦C and 1000 ◦C. Herein, we report a new ternary phase, termed Ni2AlLa,
confirmed at 800 ◦C. Its X-ray diffraction (XRD) pattern was indexed and space group determined
using Total Pattern Solution (TOPAS), and the suitable lattice parameters were fitted using the Pawley
method and selected-area electron diffraction. Ni2AlLa crystallizes in the trigonal system with a space
group R3 (no. 146), a = 4.1985 Å and c = 13.6626 Å. A self-consistent set of thermodynamic parameters
for the Al–La and Ni–La binary systems and the Ni–Al–La ternary system includes a Ni2AlLa
ternary phase, which was optimized using the CALPHAD method. The calculated thermodynamic
and phase-equilibria data for the binary and ternary systems are consistent with the literature and
measured data.
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1. Introduction

Nickel-based single-crystal superalloys are used extensively in the blades of power turbines in
modern aero-engines because of their excellent high-temperature properties, such as high-temperature
strength, excellent creep and fatigue resistance, good oxidation resistance and hot corrosion
resistance [1–4]. However, as the aero-engine thrust-to-weight ratio increases, turbine engines
face the challenge of higher temperatures, and a nickel-based single-crystal superalloy is required
to improve their high-temperature oxidation resistance and high-temperature corrosion resistance.
The excellent performance of nickel-based superalloys is attributed to the addition of elements, such as
Al, Mo, Cr, W, V and Ti [1]. Among these, the addition of a small amount of the rare-earth element
La can significantly improve high-temperature oxidation resistance, corrosion resistance [5,6] and
manufacturing performance [7]. However, excessive addition leads to an increase in the tendency
to form a topologically close-packed (TCP) phase and to deterioration in the alloy properties [8],
therefore it is vital that the amount of La added is precisely controlled. Alloy design depends on the
thermodynamic database [9,10] CALPHAD (CALculation of PHAse Diagram) method [11–13] which
can reduce the experimental time, shorten the development cycle and provide theoretical guidance for
material design. In this study, we consider the rare-earth element La and use the CALPHAD method to
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optimize the Ni–Al–La ternary system thermodynamically and to establish a nickel-based superalloy
database [14] which contains the rare-earth element, La.

Limited experimental equilibrium information exists for the Ni–Al–La ternary system. In the
1980s, Abramyan [15] studied a small part of the phase-equilibrium information at 800 ◦C and 1000 ◦C
in the nickel-rich corner, although no detailed experimental data were provided. Therefore, it is
important and necessary to acquire phase-equilibrium information for the Ni–Al–La ternary system to
obtain more accurate thermodynamic parameters and to provide effective and reasonable theoretical
guidance for the design of nickel-based superalloys.

The purpose of this work was to investigate the phase equilibria relationship of the Ni–Al–La
system in the nickel-rich region at 800 ◦C and 1000 ◦C by using scanning electron microscopy
(SEM)-backscattered electron imaging (BSE), energy dispersive X-ray spectroscopy (EDS) and X-ray
diffraction (XRD). Based on the experimental results of this study and previous literature data,
a thermodynamic assessment of the Ni–Al–La system was conducted using the CALPHAD approach.

2. Literature Review

2.1. Al–La Binary System

Phase-equilibrium information on the Al–La binary system has been widely reported in the
literature [16–19]. Four solid–solution phases (liquid, fcc, bcc, dhcp) and six intermetallic compounds
(AlLa3, Al2La, AlLa, Al7La3, Al3La, Al11La3) exist, including an allotropic transformation of the Al11La3

phase. La solubility in Al solid solution was reported by Drits et al. [20]. Thermodynamic optimization
of the Al–La system has been conducted by various authors [21–25]; however, the latest experimental
data [18] were not considered in previous optimization work [21]. An associate model and modified
quasichemical model were applied to the liquid phase in the work of Zhou and Napolitano [24] and
Jin [25], respectively, which is not applicable in the pan-nickel database. The calculated temperature of
the peritectoid reaction Al7La3 → Al3La + Al2La was 1051 ◦C [23], which deviates substantially from
the experimental value of 1190 ◦C [16]. The phase diagram and thermodynamic evaluation calculated
by Yin et al. [22] are consistent with the literature data, however, the Al11La3 phase is not treated
as β_Al11La3 and α_Al11La3. Therefore, our work adds an allotropic transformation on this basis,
and adjusts the parameters of the Al11La3 phase slightly. Furthermore, the solubility of La in the Al
solid–solution is also considered.

2.2. Ni–La Binary System

The phase equilibria of the Ni–La binary system were measured by Zhang et al. [26], Qi et al. [27]
and Buschow et al. [28]. In the assessment by Okamoto [29] and Pan et al. [30], there were four solution
phases (liquid, fcc, bcc, dhcp) and nine intermediate phases (Ni3La7, NiLa3, NiLa, Ni3La2, Ni16La7,
Ni3La, α-Ni7La2, β-Ni7La2, Ni5La). Despite a reported new Ni19La5 phase [31–34], this phase has
not been taken into account in the optimization work [35,36]. Recently An et al. [37] confirmed the
formation of a Ni19La5 phase from a peritectoid reaction Liq. + Ni5La→Ni19La5, and this has also been
considered in their optimization work. Therefore, we have used most of thermodynamic parameters
from reference [37] in this work. Although the mutual solubilities of Ni and La in the terminal solution
phases of the La (hcp, bcc, fcc) and Ni (fcc) are very low, the high-temperature oxidation resistance of
a nickel-based superalloy can be improved by La solubility. Hence, the solubility of La (0.2 ± 0.05 at.%)
measured by Dischinger et al. [35] was used in this assessment.

2.3. Ni–Al Binary System

The Ni–Al binary system has been assessed in our previous work [38] and is adjusted slightly
based on Huang’s thermodynamic parameters [39]. The Ni-Al phase diagram as shown in Figure 1,
and thermodynamic parameters of the Ni–Al system have been adopted from previous work
without changes.
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Figure 1. Calculated Ni–Al phase diagram.

2.4. Ni–Al–La Ternary System

The Ni–Al–La ternary system was assessed by Ferro et al. [40] and Raghavan [41]. Two isothermal
sections at the nickel-rich corner were measured at 800 ◦C and 1000 ◦C by a hardness and X-ray
diffraction method, however, detailed experimental data were lacking, and only phase-equilibrium
information was obtained [15]. The author also reported that the solubility of Al in the Ni5La phase
increased with temperature and exceeded 20 at.%. Based on his paper, we found that the solubility
of Al in Ni5La is of the order of 23 at.% at 800 ◦C, and increases to 25 at.% at 1000 ◦C. A vertical
section Al90La—Al90Ni was determined by Gödecke et al. using a metallographic observation and
a DTA method [42], and a ternary eutectic reaction Liq → Fcc + Al11La3 + Al3Ni at 625 ◦C was
determined. Cordier et al. [43] and Takeshita et al. [44] reported the intermetallic compounds NiAlLa and
Ni4AlLa in the nickel-rich corner. The open-source first-principle-database Open Quantum Materials
Database (OQMD) [45], Materials Project [46] and Aflow (Automatic flow) [47] provide the ternary
intermetallic-compound and crystal-structure information using first-principles calculation. All ternary
intermetallic compounds and their crystal structures in the nickel-rich region of the Ni–Al–La ternary
system from the literature and the open-source first-principle databases are listed in Table 1.

The enthalpies of mixing of the ternary liquid at different sections were measured by Feufel et al. [48]
with an adiabatic calorimeter. Sommer and Schmid [49,50] adopted the same method to study the heat
of the liquid Ni–Al–La alloy, but the liquidus temperature values of the Ni–Al–La alloys obtained from
Cp–measurements were very low in comparison to the melting temperatures of the alloy, which resulted
in the Cp values of their work exceeding the actual value. Thus, their thermodynamic optimization
procedure is not utilized in this work. Additionally, Pasturl et al. [51] and Borzone et al. [52] used
isoperibol calorimetry and a high-temperature direct-reaction drop calorimeter, respectively, to determine
the formation of Ni4AlLa and NiAlLa ternary intermetallic compounds.

Table 1. Crystal structure of ternary compound in nickel-rich corner of Ni–Al–La ternary system from
different sources.

Crystal System Space Group Structure Type
Lattice Constants (Å)

Source
a b c

Ni9Al2La Cmmm - 8.599 5.040 8.062 OQMD
F1 - 5.048 8.599 8.035 Materials project

Ni4AlLa P6/mmm CaCu5 5.069 5.069 4.074 [51]
NiAlLa Pnma - 7.199 4.203 16.085 [52]
Ni2AlLa Fm-3m Cu2MnAl 6.724 6.724 6.724 OQMD

P4/mmm - 4.640 4.640 3.1615 Aflow
P4/mmm - 3.117 3.117 6.793 Aflow
P4/mmm - 3.074 3.074 6.900 Aflow
P4/mmm - 3.126 3.126 6.919 Aflow

Cm - 4.001 7.189 5.641 Aflow
Fm-3m - 6.536 6.536 6.536 Aflow
Pmm2 - 3.129 3.159 6.875 Aflow
F-43m - 6.591 6.591 6.591 Aflow
Cmmm - 6.574 6.596 3.141 Aflow
I-4m2 - 4.012 4.012 8.892 Aflow
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3. Materials and Methods

Four representative alloys, each weighing 15 g on an electronic balance with an accuracy of
0.0001 g, were prepared using high-purity nickel (99.99 wt.%), aluminum (99.999 wt.%) and lanthanum
(99.9 wt.%) as starting materials. Mixed metals were transferred into a water-cooled copper-crucible arc
furnace, vacuumed to 10−3 Pa and smelted in a high-purity argon (99.999%) atmosphere. Each sample
was turned over and re-melted at least six times during the smelting process to ensure a homogeneous
composition. The mass loss during arc smelting was less than 0.5 wt.%. The smelted sample was cut
into two parts by a wire-cutting machine and sealed in quartz tubes which were evacuated and filled
with high-purity argon gas for annealing at 800 ◦C and 1000 ◦C for 30 days and 15 days, respectively.
Finally, the quartz tubes were quenched in cold water and broken.

The X-ray diffraction data for all alloys were obtained at room temperature using a Bruker
SMART APEX II single-crystal X-ray diffractometer (Karlsruhe, Germany) with Cu Kα-radiation in
the 2θ scan range of 10–90◦. The alloy phase distributions were observed by BSE imaging of the
FEI MLA650F field-emission SEM (Hillsboro, OR, USA) after standard metallographic preparation,
and the elemental composition of the phases was measured by equipped EDS. The crystallographic
information of the intermetallic compound was indexed using Total Pattern Solution (TOPAS) [53]
software (TOPAS-Academic 6) and Pawley fits were carried out to refine lattice parameters and
confirm space groups of the phases recorded before structure solution was attempted [54]. To further
support the structural information acquired from XRD, we ground the alloy to below 100-µm thick
and performed ion thinning (Gatan 691) and a FEI Tecnai G2 F20 (Hillsboro, OR, USA) for selected
area electron diffraction (SAED).

4. Calculations

Pandat software [55] was used for thermodynamic calculations. The thermodynamic model for
the Gibbs free energy G of the solution phases, including liquid, fcc, bcc and dhcp, is:

Gϕ
m = ∑

i=Al,Ni,La

(
xi

0G ϕ
i

)
+ RT ∑

i=Al,Ni,La
(xi ln(xi)) +

exG ϕ
m (1)

where i represents elements Al, La and Ni; x is the composition; 0G ϕ
i is the Gibbs free energy for pure

element i in the structure ϕ phase and is obtained from Dinsdale [56]; R is the gas constant; T is the
temperature in K; and exG ϕ

m is the excess Gibbs free energy, which is described as:

exG ϕ
m = xAlxNiL

ϕ
Al,Ni + xAlxLaLϕ

Al,La + xLa,xNiL
ϕ
La,Ni + xAlxNixLaLϕ

Al,Ni,La (2)

where LϕAl,Ni, LϕAl,La and LϕLa,Ni are the interaction parameters in the Al–Ni, Al–La and La–Ni binary
systems and the LϕAl,Ni,La corresponds to the interaction parameters of the Ni–Al–La ternary system.
All parameters were obtained by optimizing the experimental data.

Thermodynamic models for most of the binary phases were taken from previous work [22,37,38]
except for the Ni5La phase. Because of the solubility of Al in the Ni5La phase, the thermodynamic
model for the Ni5La phase was modified to:

G(Al,Ni)5La = yAlGAl:La + yNiGLa:Ni + 5RT(yAl ln(yAl) + yNi ln(yNi)) + yAlyNiLLa:Al,Ni (3)

where yAl and yNi are the site fractions of Al and Ni in the first sublattice; GAl:La and GLa:Ni are Gibbs
free energies for end-members and LLa:Al,Ni is the interaction term between the two sublattices to
be optimized.

Ternary intermetallic NimAlnLal phases were treated as stoichiometric compounds, and the Gibbs
free energy was expressed as:

GNi2AlLa
Al:Ni:La = nxAl Gfcc

Al + l xLaGdhcp
La + m xNi Gfcc

Ni + A + BT (4)
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where A and B are the thermodynamic parameters to be optimized.

5. Results and Discussion

5.1. Microstructure and Phase Equilibria

BSE images of the Ni–Al–La ternary alloys are shown in Figure 2, and EDS results in Table 2.
All components were expressed in atomic percentage. #1 alloy exhibits a three-phase equilibrium
at 800 ◦C as shown in Figure 2a. The dark area indicates a NiAl phase and the light-grey area is
an unknown phase. A few bright-phase regions contain very fine precipitates and irregular stripes,
which are likely to be the liquid phase prior to alloy removal from the furnace, and fine precipitates
and irregular stripes formed during solidification. The unknown phase is a new phase consisting of
52.63Ni–24.02Al–23.36La based on the EDS result. This phase indicates a Ni2AlLa ternary phase that
has not been measured experimentally, but only calculated using an ab initio method in the Ni–Al–La
ternary system of the OQMD and Aflow database. Figure 2b shows the two-phase microstructure
(Ni2AlLa + liquid) of the #2 alloy annealed at 800 ◦C for 30 days. The light-grey region is an unknown
phase and is likely the Ni2AlLa phase from the EDS result (53.47Ni–23.74Al–22.79). The remaining
stripes are precipitated by liquid during cooling. Figure 2c shows the three-phase region of #3 alloy at
800 ◦C. The dark area indicates a NiAl phase, where the dark-grey area is the (Ni, Al)5La phase and the
light-grey area is an unknown phase. This light-grey component is likely to be 51.83Ni–24.30Al–23.86La
from the EDS result, and it is suggested that it is the same phase, Ni2AlLa, observed in the #1 and #2
alloys. Figure 2d presents the two-phase equilibrium microstructure in the #4 alloy annealed at 800 ◦C
for 30 days. The dark area is the NiAl phase, and the dark-grey area is the (Ni,Al)5La phase. Figure 2e
shows the presence of a two-phase region (NiAl + liquid) for the #1 alloy annealed at 1000 ◦C for
15 days. The dark region is the NiAl phase and an irregular stripe is formed during the cooling of the
liquid phase. Figure 2f shows the BSE image of the #2 alloy annealed at 1000 ◦C for 15 days. All stripes
were formed during liquid solidification, so this is a single-phase region. Figure 2g,h represent the
BSE images of #3 and #4 alloys, respectively, annealed at 1000 ◦C for 15 days, which represent the
three-phase region (NiAl + (Ni,Al)5La + liquid). The dark region is the NiAl phase, the dark-grey area
is the (Ni,Al)5La phase, the bright region contains very fine precipitates, and the irregular stripes were
the liquid phase prior to the alloy removal from the furnace.

(Ni,Al)5La is a solid solution, based on the Ni5La binary phase. The (Ni,Al)5La phase exists in
the #3 and #4 alloys. According to the corresponding EDS results, the maximum solubility of Al in
Ni5La is 23.53 at.% at 800 ◦C, which is consistent with the experimental value (23.53 at.%) reported
by Abramyan in 1979 [15]. When the temperature reaches 1000 ◦C, the maximum solubility of Al
in Ni5La is in the order of 19.78 at.%, which is much less than the 25 at.% reported by Abramyan.
Because of the unreliable experimentation and the lack of detailed experimental data in Abramyan’s
results [15], the value of solid solution of Al in Ni5La is not convincing. Thus, the maximum solubility
of Al in Ni5La from our present work is more reliable as the key experiment was done. The reason the
solubility of Al in Ni5La at 1000 ◦C is less than that at 800 ◦C is mainly because with a temperature
increase to 1000 ◦C, the liquid is more stable, which reduces the solubility of Al in the Ni5La phase.
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Table 2. Heat-treatment conditions and equilibrium composition of the determined Ni–Al–La ternary system.

Temperature Alloys (at.%) Annealed Time Phase by XRD
Phase Composition (at.%)

by SEM and EDS Ni Al La

800 ◦C

Ni50Al35La15 (#1) 30 days NiAl + Ni2AlLa
NiAl 49.68 50.28 0.05

Ni2AlLa 53.63 23.02 23.36
Liquid 22.87 43.30 33.83

Ni50Al18La32 (#2) 30 days Ni2AlLa
Ni2AlLa 53.47 23.74 22.79
Liquid 50.04 6.61 43.38

Ni57Al23La20 (#3) 30 days Ni2AlLa + Ni5La
NiAl 50.48 49.05 0.47

Ni2AlLa 51.83 24.30 23.86
Ni5La 60.77 23.53 15.37

Ni60Al30La10 (#4) 30 days NiAl + Ni5La
NiAl 52.33 47.50 0.17
Ni5La 63.35 21.71 14.94

1000 ◦C

Ni50Al35La15 (#1) 15 days NiAl
NiAl 51.35 48.65 0.00

Liquid 51.05 20.38 28.57

Ni50Al18La32 (#2) 15 days Liquid 57.03 10.72 27.85

Ni57Al23La20 (#3) 15 days NiAl + Ni5La
NiAl 47.18 52.66 0.15
Ni5La 65.09 19.78 15.13
Liquid 55.29 17.89 26.82

Ni57Al23La20 (#4) 15 days NiAl + Ni5La
NiAl 46.74 53.26 0.00
Ni5La 66.95 17.95 15.09
Liquid 55.29 17.75 26.96

5.2. Phase Determination

Figure 3 shows the XRD patterns obtained from #1 to #4 alloys annealed at 800 ◦C for 30 days
and 1000 ◦C for 15 days. The #1 alloy exists in the three-phase region (NiAl + Ni2AlLa + liquid).
A NiAl phase was identified, and the remaining peaks result from the Ni2AlLa phase and the liquid
phase during cooling. The #2 alloy exists in the two-phase region (Ni2AlLa + liquid) at 800 ◦C.
Its corresponding XRD pattern is shown in Figure 3a. All peaks result from the Ni2AlLa phase and the
liquid phase during cooling. The three-phase region, NiAl + (Ni,Al)5La + Ni2AlLa, exists in the #3 alloy
that was annealed at 800 ◦C. It contains two phases in the XRD pattern Figure 3a, (Ni,Al)5La phase
labelled with a triangle and possibly a new Ni2AlLa phase. The NiAl phase was not observed due to
the small amount. The potential characteristic peaks of the Ni2AlLa phase in the #3 alloy annealed
at 800 ◦C (marked with stars) were also found in the XRD pattern of the #1 and #2 alloys annealed
at 800 ◦C. The #4 alloy is a two-phase region, and consists of the NiAl + (Ni,Al)5La phase; all phases
were confirmed. All alloy phases in the #1 to #4 alloys that were annealed at 1000 ◦C for 15 days have
been identified as shown in Figure 3b, except the liquid phase. The unknown remaining peaks result
from the liquid phase, because liquid-phase solidification is a complex phase-transition process.

A new phase, termed Ni2AlLa, with a stoichiometric ratio of 2:1:1 (Ni:Al:La) was determined for
the first time. It was observed in SEM-BSE, as shown in Figure 2 in the #1, #2 and #3 alloys annealed
at 800 ◦C, as well as in the XRD presented in Figure 3a. Potential characteristic peaks of the Ni2AlLa
phase are indicated with stars. The crystal structure of the Ni2AlLa phase was calculated by the ab
intio method in the Ni–Al–La ternary system of the OQMD and Aflow database, and the calculated
structures are listed in Table 1. The XRD pattern of the Ni2AlLa phase calculated by the OQMD and
Aflow database match our experimental measurements, so the crystal structure solution of the Ni2AlLa
phase was attempted. TOPAS was used to index the potential characteristic peaks of the Ni2AlLa
phase for possible lattice constants and space group. The suitable cell parameters and space groups
were fitted using the whole powder pattern decomposition (WPPD) Pawley method. After satisfying
Pawley fits of various candidates were achieved, we narrowed down to two different crystal structures
for the new Ni2AlLa intermetallic compound. Selective candidate cells are listed in Table 3. To confirm
the crystal information from the XRD pattern is challenging at this stage due to the poor quality of the
experimental XRD pattern. Furthermore, a great peak selection, which is essential for indexing, is hard
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to perform due to the peaks overlapping from multiple-phase components. To further confirm the
crystal information of this phase, SAED using TEM of the #3 alloy annealed at 800 ◦C was carried out.
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Figure 4 presents the crystal morphology and SAED patterns of the #3 alloy annealed at 800 °C 

for 30 days, and indicates that a three-phase region, NiAl + (Ni,Al)5La and Ni2AlLa phase, existed. 

The calibration results of the SAED of the NiAl and Ni5La phase are shown in Figure 4b,c. Figure 4b 

Figure 3. XRD patterns from: (a) Ni50Al35La15 (#1), Ni50Al18La32 (#2), Ni57Al23La20 (#3) and
Ni60Al30La10 (#4) alloy annealed at 800 ◦C for 30 days; and (b) Ni50Al35La15 (#1), Ni50Al18La32 (#2),
Ni57Al23La20 (#3) and Ni60Al30La10 (#4) alloy annealed at 1000 ◦C for 15 days.

Table 3. Possible crystal structure of the Ni2AlLa intermetallic compound.

Crystal System Space Group
Lattice Constants (Å)

a b c

Hexagonal/Trigonal
P3c1 10.740 10.740 3.367
R3 4.189 4.189 14.663

P31c 8.138 8.138 3.396

Orthorhombic
F222 9.739 10.130 2.195
C222 3.263 2.733 7.021

Figure 4 presents the crystal morphology and SAED patterns of the #3 alloy annealed at 800 ◦C
for 30 days, and indicates that a three-phase region, NiAl + (Ni,Al)5La and Ni2AlLa phase, existed.
The calibration results of the SAED of the NiAl and Ni5La phase are shown in Figure 4b,c. Figure 4b
shows the diffraction spot of the NiAl phase on the [111] zone axis, and the diffraction spot of the
(Ni,Al)5La phase on the [

_
111] zone axis is exhibited in Figure 4c. For the Ni2AlLa new phase, the SAED

images of five different crystal zone axes were taken as shown in Figure 4e,f. The orthorhombic and
hexagonal/trigonal cell choices obtained using TOPAS (Table 3) were used to calibrate the SAED image
of the five different zone axes. It is impossible to calibrate any one of the SAED images using any of
the two sets of lattice parameters of the orthorhombic system. Furthermore, the crystal structure of
the Ni2AlLa ternary phase calculated by the OQMD and Aflow database cannot calibrate any of the
electron diffraction images. All electron-diffraction images were indexed and showed high agreement
with the cell in the trigonal system R3 space group, with the indexing result presented in Figure 4e,f.
Based on the EDS, XRD and SAED results, a new Ni2AlLa phase has been confirmed. The crystal
structure of the Ni2AlLa intermetallic compound was trigonal, with a space group R3 (no. 146) and
a = 4.1985 Å, c = 13.6626 Å. The assignment of each reflection of the Ni2AlLa phase with indices hkl
based on the indexing result is shown in Figure 5.
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Figure 4. Crystal morphology and SAED patterns of #3 alloy annealed at 800 ◦C for 30 days. (a) crystal
morphology of NiAl and (Ni, Al)5La phase, (b) SAED image of NiAl phase with zone axis of [111],
(c) SAED image of (Ni,Al)5La phase with zone axis of [

_
111], (d) crystal morphology of Ni2AlLa phase,

(e) SAED image of Ni2AlLa phase with zone axis of [3
_
1

_
21], (f) SAED image of Ni2AlLa phase with

zone axis of [10
_
11], (g) SAED image of Ni2AlLa phase with zone axis of [0001], (h) SAED image of

Ni2AlLa phase with zone axis of [0
_
22

_
1], (i) SAED image of Ni2AlLa phase with zone axis of [550

_
1].
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Figure 5. XRD pattern of #3 alloy annealed at 800 ◦C for 30 days.
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5.3. Thermodynamic Calculation

Table 4 lists the optimized thermodynamic parameters for the Ni–Al binary system using the
phase diagram as calculated in Figure 1. The phase diagram was calculated for the Ni–La binary
system and is shown in Figure 6a. The solubility of La in the fcc Ni solution has been added, which fits
the literature data [35] as shown in Figure 6b. The invariant reactions have not been affected, except the
eutectic reaction Liq→ fcc-Ni + Ni7La2. The temperature (1272 ◦C) of this eutectic reaction increases
by less than 4 ◦C compared with the reference [41] and is closer to the experimental data (1275 ◦C) [28].
The calculated phase diagram of the Al–La binary system is shown in Figure 7a. The solubility of La in
the fcc-Al phase is also considered to be ~0.01 at.%, which is consistent with the experimental data [20]
in Figure 7b. The Al11La3 phase is divided into two phases, α_Al11La3 and β_Al11La3, according to
their crystal structure stable at low and high temperature, respectively. The transformation temperature
between the two Al11La3 phases is 915 ◦C, which is the same as that reported in the literature [16].
The temperature of the eutectic reaction Liq→ Fcc + α-Al11La3 is calculated to be 631 ◦C, which is
consistent with the 634 ◦C reported by Kononenko and Golubev [18]. Other invariant reactions remain
unchanged. Overall, the calculated phase diagram in this work reproduces the literature data well.

Table 4. Optimized thermodynamic parameters of the Ni–Al–La ternary system.

Phase Models Parameters Source

Liquid (Al,Ni,La)

0LLiq
Al,Ni,La = 51, 547− 20T This work

1LLiq
Al,Ni,La = 76, 000− 90 T This work

2LLiq
Al,Ni,La = 0 This work

fcc (Al,Ni,La)

0LFcc
Al,La = −63, 500− 10 T This work

1LFcc
Al,La = −80, 000 This work

0LFcc
Ni,La = −2000 This work

1LFcc
Ni,La = −58, 800 This work

bcc (Al,Ni,La) 0LBcc
Al,La = −68, 800 This work

α_Al11La3 (Al)11(La)3 0Gα_Al11La3
Al:La = −740, 070.1+ 83.031 T+ 3 0Gdhcp

La + 11 0Gfcc
Al This work

β_Al11La3 (Al)11(La)3 0Gβ_Al11La3
Al:La = −738, 882.1+ 82.031 T+ 3 0Gdhcp

La + 11 0Gfcc
Al This work

Ni5La (La) (Al,Ni)5

0GNi5La
La:Ni = −168, 451.2983 + 29.256 T Ref [38]

0GNi5La
La:Al = −8550 + 50 T + 0Gdhcp

La + 50Gfcc
Al This work

0LNi5La
La:Al,Ni = −939, 000 + 50 T This work

Ni2AlLa (Ni)2(Al)(La) 0GNi2AlLa
Al:Ni:La= −205, 500 + 0.5 T + Gfcc

Al +
0Gdhcp

La + 2 0Gfcc
Ni This work
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The thermodynamic parameters of the Ni–Al–La ternary system optimized based on our
experimental data and experimental information from the literature, are listed in Table 4. The calculated
isothermal sections at 800 ◦C and 1000 ◦C are shown in Figures 8 and 9, where the red marks indicate
the current experimental data. The phase-equilibrium information calculated for the isothermal sections
shows high agreement with current experimental data. The calculated solubility of Al in the Ni5La
phase is 22.82 at.% and 19.72 at.% at 800 ◦C and 1000 ◦C, respectively, which is consistent with our
current EDS results. The calculated phase equilibrium of the vertical section at Al90La–Al90Ni, as shown
in Figure 10, matches the experimental literature data [42]. The eutectic reaction Liq→ Fcc + Al11La3 +
Al3Ni temperature calculated in our work is 1 ◦C higher than the experimental value of 625 ◦C [42].
In general, the calculated phase-equilibrium information is consistent with both the previous literature
and current experimental information. The calculated liquid-phase mixing of the different cross sections
of the Ni–Al–La ternary is shown in Figure 11 compared with Reference [49], and it is clear that our
results match those in the literature.Materials 2018, 11, x FOR PEER REVIEW  12 of 15 
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Figure 8. Isothermal section of the Ni–Al–La ternary system at 800 ◦C. (a) Our calculated isothermal
section compared with our experimental results, (b) literature data [15].
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6. Conclusions

1. The nickel-rich-region isothermal sections of the Ni–Al–La ternary system were updated at
800 ◦C and 1000 ◦C. The maximum solubility of Al in Ni5La was in the order of 23.53 at.% at
800 ◦C. When the temperature increased to 1000 ◦C, the maximum solubility of Al in Ni5La was
19.84 at.%.

2. A new phase, termed Ni2AlLa, has been discovered experimentally and confirmed for the
first time. The structural information of the new ternary intermetallic compound Ni2AlLa was
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determined. The investigated compound crystallizes in the trigonal system, space group R3
(no. 146) with a = 4.1985 Å, c = 13.6626 Å.

3. Based on the current experimental data and experimental information reported in the literature,
a thermodynamic optimization of the Ni–Al–La ternary system was carried out using the
CALPHAD method. The solubility of La in the fcc (Ni) and fcc (Al) and an allotropic transformation
of the Al11La3 phase were considered, and the Al–La and Ni–La binary systems were re-optimized.
All optimized results and experimental information reflect good consistency. This work can be
used as part of a thermodynamic database of multicomponent nickel-based alloys.
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