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Abstract: In this work, nanocrystalline Ge1−xSnx alloy formation from a rapid thermal annealed
Ge/Sn/Ge multilayer has been presented. The multilayer was magnetron sputtered onto the
Silicon substrate. This was followed by annealing the layers by rapid thermal annealing, at
temperatures of 300 ◦C, 350 ◦C, 400 ◦C, and 450 ◦C, for 10 s. Then, the effect of thermal annealing
on the morphological, structural, and optical characteristics of the synthesized Ge1−xSnx alloys
were investigated. The nanocrystalline Ge1−xSnx formation was revealed by high-resolution
X-ray diffraction (HR-XRD) measurements, which showed the orientation of (111). Raman results
showed that phonon intensities of the Ge-Ge vibrations were improved with an increase in the
annealing temperature. The results evidently showed that raising the annealing temperature led to
improvements in the crystalline quality of the layers. It was demonstrated that Ge-Sn solid-phase
mixing had occurred at a low temperature of 400 ◦C, which led to the creation of a Ge1−xSnx alloy.
In addition, spectral photo-responsivity of a fabricated Ge1−xSnx metal-semiconductor-metal (MSM)
photodetector exhibited its extending wavelength into the near-infrared region (820 nm).

Keywords: semiconductors; thin films; Ge-Sn; nanocrystalline; sputtering; Raman spectroscopy;
scanning electron microscopy; X-ray diffraction

1. Introduction

Silicon (Si) has been the dominant semiconductor material for about a few decades.
The introduction of Ge1−xSnx alloys [1] has extended the dominance of Si technology into areas
previously dominated by III-V materials [2]. However, Si, Ge, and Ge1−xSix are indirect band-gap
semiconductors and, therefore, cannot be used to fabricate laser, since it requires a direct band-gap
material. Recently, Ge1−xSnx alloy, as a group-IV alloy semiconductor, has received significant attention
due to the potential possibilities for advanced optoelectronic devices, in future [3,4]. GeSn offers
tunable direct band-gap when the Sn content is larger than about 6.5%–11% [5–7]. In addition, this
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alloy band gap can be tuned in the infrared range. In recent years, several types of optoelectronics and
electronics devices such as laser [8], light emitting diodes (LEDs) [9], diodes [10], photoconductors [11],
and p-i-n photodetectors [12] have been fabricated from GeSn film.

The low solubility of Sn and Ge (>1%) [13], Sn surface segregation [14] and huge lattice mismatch
between α-Sn and Germanium [15] make the growing of epitaxial Ge1−xSnx films difficult and
introduce more challenges. However, non-equilibrium growth approaches have been developed
for growing GeSn alloys; including molecular beam epitaxy (MBE) [16,17], chemical vapor deposition
(CVD) [18–20], solid phase epitaxy (SPE) [21], pulsed laser deposition (PLD) [22], and magnetron
sputtering [12,23,24]. Consequently, high-quality epitaxial Ge1−xSnx alloy film have been grown by
these techniques. Compared to the above-mentioned growth methods, magnetron sputtering provides
some advantages, such as a low-cost technique, an independent and easily controlled growth rate
and growth temperature, a simple control over the alloy composition, and most significantly, the Ge
and Sn targets are much safer than the currently used precursor gas, in an MBE or CVD. In addition,
these techniques require a precise substrate temperature control and very clean Si surface. Up till now,
limited research has been carried out on the use of sputtering, to grow a GeSn alloy. Growing crystalline
GeSn layers, by post-deposition annealing, has also not been well-studied. Through this technique,
epitaxial GeSn films are formed by depositing an amorphous GeSn film on the Si or Ge substrate,
followed by an annealing process. The driving force for the GeSn formation is the incorporation
of the Sn into the Ge, through a solid-phase mixing. The post-deposition methods that have been
used to crystalize GeSn alloy consist of a solid-phase epitaxy, thermal, and laser annealing. The solid
phase crystallization temperature of GeSn is lower than those of the Ge and Si1−xGex. The annealing
temperature for SiGe annealing, using this technique, requires over 1000 ◦C to mix the germanium
and the silicon [25–27]. However, the employment of this technique for GeSn formation is desirable,
due to its simple process and low cost.

In this study, the multilayers of Ge/Sn/Ge were sputtered onto Si substrates, from high purity
targets. Then, the layers of the multilayer structure were rapid thermal annealed (RTA), at various
temperatures, over a short duration. The findings of this research present the effect of thermal annealing
on the morphological, structural, and optical characteristics of the synthesized GeSn alloy layers, on
Si. It was observed that utilizing the higher annealing temperatures resulted in an improvement of
the crystallinity and optical characteristics of the nanocrystalline layers. In this experiment, the Ge-Sn
solid-phase mixing (inter-diffusion) was a main driving force for the GeSn alloy formation, through
rapid thermal annealing.

2. Materials and Methods

Prior to the deposition process, the RCA (Radio Corporation of America) cleaning technique
was used to clean the n-type Si (100) wafers. The multilayer structure was obtained by subsequent
deposition of Ge and Sn layers, onto the Si substrate. The amorphous multilayer, Ge/Sn/Ge, were
sputtered in a radio frequency (RF) magnetron sputtering system (Edwards A500). The background
pressure of the chamber was 1.20 × 10−5 mbar and high purity Ar (99.999%) was used as a sputtering
gas. The diameter of Germanium (99.999%) and the Tin (99.999%) targets were 10 cm and were
placed 10 cm beneath the sample holder. The magnetrons were placed in a planar configuration.
The multilayer was sputtered at a Ge RF power of 100 W and Sn RF power of 15 W, at room temperature
(RT). After deposition, multilayers were rapid thermal annealed at 300 ◦C, 350 ◦C, 400 ◦C, and 450 ◦C,
for 10 s, in the nitrogen ambient.

To fabricate a metal-semiconductor-meal photodetector (MSM PD), Nickel was deposited onto
the GeSn thin films, via vacuum thermal evaporation, to make two interdigitated Schottky contacts,
through a metal mask (fingers pattern). Schematic of the MSM photodetector is shown in Figure 1a.
In addition, as shown in Figure 1b, each electrode had five fingers. The width and length of each
finger were 230 µm and 3.3 mm, respectively. The spacing between each finger was 400 µm. The
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fabricated devices were annealed at 400 ◦C, in the tube furnace, with nitrogen flowing for five minutes.
The thickness of the metal contacts was about 200 nm.Materials 2018, 11, x FOR PEER REVIEW  3 of 13 
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Figure 1. (a) Schematic of the metal-semiconductor-meal photodetector (MSM PD); and (b) schematic
of the metal contact for the MSM PD fabrication.

The surface morphology of the samples was characterized via Field emission scanning electron
microscopy (FESEM) (Nova NanoSEM 450, FEI, Netherlands). Energy-dispersive X-ray spectroscopy
(EDX) was employed to recognize the elements existing in the films at 10 KV acceleration voltage.
Atomic force microscopy (AFM) (Dimension edge, Bruker, Billerica, MA, USA) was used to acquire
AFM images, with a non-contact operation mode and a Nano Drive dimension-edge-tapping
image-processing software (Version 6.13). Raman measurement was carried out with a Jobin-Yvon
(HR800) spectrometer (Horiba, Longjumeau, France), where the thin films were excited at room
temperature (RT) with an argon ion laser (514.5 nm, 20 mW). The crystallographic characterization of
the layers was analyzed using a high-resolution X-ray diffractometer (HR-XRD) system (X’Pert3040)
(Panalytical, Malvern, UK). The electrical measurements of the MSM photodetector were performed at
RT, with a computer-controlled integrated SourceMeter Instrument (Model Keithley 2400, USA).

For the spectral responsivity measurement of the Ge1−xSnx MSM PD, the combination of a Xenon
lamp and monochromator were used to generate the spectrum of light, with different wavelengths.
The spectral responsivity of an optical detector is a measure of its electrical response to optical radiation,
at a specified wavelength, which can be given as:

R =
Iphoto − Idark

E

where Iphoto is the photocurrent, Idark is the dark current, and E is the incident optical power.

3. Results and Discussion

The HR-XRD spectra of the rapid thermal annealed multilayer of Ge/Sn/Ge, at different
temperatures, are shown in Figure 2. The sharp and intense peak detected at 2θ = 69.32◦ is attributed
to the underlying Si (400) substrate. There are no diffraction patterns for the as-grown and annealed
samples, at 300 ◦C (not shown). The XRD results of the annealed multilayer, at various annealing
temperatures, are presented in Table 1.
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Figure 2. XRD pattern of the RTA samples at 350 ◦C, 400 ◦C, and 450 ◦C.

Table 1. XRD data for the annealed multilayer Ge/Sn/Ge samples at different temperatures.

Sample Orientation 2θ (Deg.) FWHM (Deg.) Crystalline Size (nm) Sn Composition (%)

400 ◦C
(111) 27.16 0.4208 20.30

2.7(220) 45.20 0.9012 9.97

450 ◦C
(111) 27.22 0.3653 23.38

1.5(220) 45.25 0.5963 15.05

By raising the annealing temperatures over 400 ◦C, a cubic (111) diffraction pattern became
pronounced, which indicated the formation of Ge1−xSnx alloy and an improvement in crystallinity of
the annealed layers. This peak was between the 2θ angles of a-Sn (111) and c-Ge (111), 23.7◦~27.3◦,
which is assigned to the cubic Ge1−xSnx (111) structure [28]. The (111) diffraction pattern of the
annealed sample at 450 ◦C had shifted to a higher angle, compared to the heated one at 400 ◦C.
The position of the peaks for the annealed layers, at temperatures of 400 ◦C and 450 ◦C, were detected
at the diffraction angles of 27.17◦ and 27.22◦, respectively.

Moreover, the observed peaks at 2θ = 45.20◦, and 2θ = 45.25◦, for the heated films at 400 ◦C and
450 ◦C, respectively, belonged to the (220) orientation between the 2θ angles of 39.2◦ (a-Sn) and 45.3◦

(c-Ge). It was detected that increasing the annealing temperature led to a small shift to a higher 2θ
angle, which was a result of a reduction of the layer’s Sn content, upon heat treatment, as a result of
the Sn surface segregation. Another low intensity diffraction pattern was observed at (311) orientation,
between the 2θ angles of 39.2◦ (a-Sn (311)) and ~45.3◦ (c-Ge (311)), as shown in Figure 2. It was
clear that the (111) diffraction pattern was stronger than the (220) and (311) peaks. The (111) planes,
in a diamond cubic structure, have the closest-packed arrangement. Therefore, these planes show the
lowest surface/interface free energy [29]. Consequently, the presence of a sharp (111) plane is probable,
as a result of its tendency to diminish the surface/interface free energy [30]. The two other observed
peaks in the annealed layer, at 450 ◦C, was attributed to Tin, because of surface segregation.

To estimate the average crystallite size from the full width half maximum (FWHM), Scherrer’s
formula [31] was used. For the annealed layer at 450 ◦C, the crystallite size was higher than the one
annealed at 400 ◦C. The sample heated at 450 ◦C exhibited the largest crystallite size (23 nm). The high
temperature annealing leads to an increase in the mobility of the individual atoms, over the crystallite
surface [32], which leads to the formation of a larger crystallite size. The reduction of the FWHM of
the peaks, upon post-deposition annealing, indicated an enhancement in the average crystallite size,
and consequently, an enhancement in the crystallinity of the Ge1−xSnx alloy films.
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For estimating the Sn concentration in the annealed binary Ge1−xSnx films, Vegard’s law [33] was
used for the 2θ angle of (111) diffraction (the shift in (220) peaks gives similar results):

a(x) = aGe(1 − x) + aSnx + bGeSnx(1 − x) (1)

where a is the lattice constant, x is the Sn concentration, and bGeSn is the bowing parameter of GeSn
(b = 0.041 Å) [34]. As given in Table 1, the estimated Sn concentration from the XRD measurements
were 2.7%, 1.5% for the sample annealed at 400 ◦C and 450 ◦C, respectively. The annealed film at
450 ◦C showed lower Sn concentration, which suggested that a lesser amount of Sn dissolved in the
Ge1−xSnx film. This was verified via the 2θ peak shifting to a higher angle. The synthesized Ge1−xSnx

thin films became crystalline, at a low temperature of 400 ◦C, which was analogous to other research
that had utilized RTA [30,35]. It was clear that the Sn incorporated in the Ge, was higher than the Sn
solid solubility in Ge.

Figure 3 displays the Raman spectra of all layers obtained at RT. Phonon peak position, intensity,
FWHM, and peak shift for all layers are given in Table 2. The main sharp peak can be attributed to the
Ge-Ge vibrations and the other, at 520.1 cm−1, belonged to the underlying Si wafer. The Ge-Sn peak
was not observed. This was mainly due to the laser wavelength of 514.5 nm, used in this study, which
was far from the resonance condition with the E1 − E1 + ∆1 optical transitions [36,37]. The Ge-Sn bond
was observed when the layer was excited by higher wavelengths; like 633 nm [38,39] and 647.1 nm [37].
The Sn-Sn mode exhibited as a very low-intensity bump shape around 150 cm−1, as shown in Figure 3b.
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Figure 3. (a) Raman spectra of as-sputtered sample and annealed samples at 300 ◦C, 350 ◦C, 400 ◦C,
and 450 ◦C. The spectra have been offset for clarity. (b) Sn-Sn mode of the samples.

Table 2. The details of the Ge-Ge mode of Raman spectra for the Ge1−xSnx alloy films. The frequency
shift value was compared to the as-sputtered sample.

Samples Ge-Ge
(cm−1)

Peak Intensity
(a.u.)

FWHM
(cm−1)

Raman Shift *
(cm−1)

Raman
Shift (cm−1) WL/WR

As-grown 276.32 661.00 45 24.71 - -
300 ◦C 274.78 621.611 42 26.25 - -
350 ◦C 274.62 659.833 35 26.41 - -
400 ◦C 294.39 1773.83 12.76 6.64 18.07 3.231
450 ◦C 296.60 1719.00 8.29 4.43 20.28 1.274

* Raman shift compared to the bulk Ge peak (301.03 cm−1).
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Applying the heat treatment to the sputtered films made significant changes on the peak and
shape of the Raman spectra. Raman results exhibited significant changes in raising the treatment
temperature to 400 ◦C. As shown in Figure 3a, there was no significant changes in the Raman spectra
of the layers annealed at 300 ◦C and 350 ◦C, compared to the as-sputtered one. However, increasing
the annealing temperatures to 400 ◦C and 450 ◦C made significant changes on the Ge-Ge mode peak
intensity, FWHM, and the curve shapes. This was attributed to the Ge-Sn mixing to produce the
Ge1−xSnx alloy. Note that this crystallization temperature, at 400 ◦C, was lower than the one for the
polycrystalline Ge [40,41] and the Si1−xGex [25–27].

The post-deposition annealing resulted in an increase in the intensity of the Ge-Ge phonon peak, as
given in Figure 3a. The layers heated at a higher annealing temperature of 400 ◦C and 450 ◦C, showed
the highest phonon peak intensity, which showed intensities nearly three times higher than that of
the as-deposited ones, indicating higher interactions with the incident photons, and consequently, an
improvement in the crystalline structure of the Ge1−xSnx alloy film produced.

In addition to phonon intensity variation, the Ge-Ge peak position had shifted upon the RTA
process. This peak position for the as-grown and RTA samples, at 300 ◦C and 350 ◦C, was located
around 275 cm−1, which indicated their amorphous structure. In addition, the Ge-Ge peak in these
samples belonged to the pure Ge layers, since no Ge-Sn intermixing had occurred. For the layers
annealed at 400 ◦C and 450 ◦C, the Ge-Ge peak had moved to a higher frequency, which had a shift
of about 18.07 cm−1 and 20.28 cm−1, respectively, compared to the as-sputtered ones. In addition,
the Ge-Ge peaks of all layers were downshifted and asymmetrically broadened towards the lower
frequency side, with respect to the bulk Ge peak (301.03 cm−1). As given in Table 2, the FWHM of
the Ge-Ge peak of the resulted Ge1−xSnx alloy had reduced with an annealing temperature increment,
demonstrating an enhancement in the crystallinity of the heated layers, at high temperatures.

Figure 3a shows the Ge-Ge peak broadening for the as-sputtered and the RTA samples, at 300 ◦C
and 350 ◦C, which was due to compositional fluctuations in the alloy and the local disorder [42,43].
However, this broadening was decreased in the RTA annealed layers, at 400 ◦C and 500 ◦C, by
raising the annealing temperatures, indicating the presence of a nanocrystalline-phase with good
crystallinity. Note that the bulk Ge was ωTO = 301.3 cm−1, FWHM ≈ 3.88 cm−1. As a result of the
observed asymmetric Ge-Ge peak, the half-width at half-maximum (HWHM) were achieved for the
RTA annealed samples, at 400 ◦C and 500 ◦C, as mentioned in [17,44]. The Raman spectra displayed
that the left low-energy side (WL) was clearly larger than the right high-energy side (WR). Table 2 shows
that the ratio of the WL/WR was slightly decreased by increasing the heating temperature, indicating
a reduction in the asymmetry and an improvement in crystallinity. As mentioned in Reference [44],
the value of WL/WR has a direct correlation with the Tin content, as was also obtained in our research.
The WL/WR ratio was higher for the annealed sample at 400 ◦C and lower for the annealed sample at
450 ◦C. It has been proposed that the detected asymmetry and the phonon peak shifting were owing
to the Sn addition to the Ge matrix.

Figure 4 shows the planar and cross-section views of the FE-SEM micrograph for the as-sputtered
Ge/Sn/Ge multilayers on the Si substrate. In Figure 4a, the planar morphology of the as-grown sample
displayed a densely-packed morphology. The surface contained large clusters, which resulted from
the coalescence of small grains. Their range varied approximately from 15 nm to 50 nm. Figure 4b
shows the cross-sectional view of the as-sputtered sample, which has clear interfaces between the Ge,
Sn, and the Si. The Sn layer was embedded between the two Ge layers. The thickness of the top and
the bottom layers of the Ge and Sn layers were about 80 nm, 60 nm, and 20 nm, respectively. The total
thickness of the multilayer was around 160 nm from the FE-SEM figure.
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Figure 4. FE-SEM (a) planar and (b) cross-sectional views of the as-sputtered multilayer Ge/Sn/Ge structure.

Figure 5 displays the effect of the thermal annealing treatment on the multilayer Ge/Sn/Ge
samples. FE-SEM images revealed quite significant changes in the surface morphology, upon RTA.
However, the sample’s surface preserved the densely-packed morphology, after the annealing process.
The RTA at 300 ◦C and 350 ◦C caused the appearance of fracture or nano-cracks on the film’s surface.
From Figure 5c (the annealed sample at 400 ◦C), it is clear that the surface morphology had significantly
changed, compared to the other low-temperature annealed samples. There was no sign of cracks
on the surface of this sample, and the grains were slightly rounded. The film surface became more
granular, with the lateral size ranging from a few tens of nanometers to about 80 nm. It was clear
that that the surface aggregation was smaller at RTA of 400 ◦C. The reason was that the enhanced
Sn atoms diffusion that was distributed on the coated flux on the layer surface, upon RTA, helped
the growth of new grains and, therefore, produced a denser and finer film, which could be seen as
round-shaped grains. It should be noted that the thermal expansion coefficient of Sn (23 × 10−6)
was much higher than Ge (6.1 × 10−6) [45], which enhanced the solid-phase mixing. Increasing the
annealing temperature, until 450 ◦C, led to the creation of voids on the surface of the layer, which
was attributed to a greater surface segregation of Tin. These findings demonstrated the important
variations in the morphology of the samples, upon RTA.
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The cross-sectional FESEM images of multilayer structures in Figure 6 exhibited well-defined and
flat heterojunction interfaces and reveals a good adhesion to the Si substrate. The cross-sectional views
also reveal the Ge-Sn inter-diffusion at the annealed temperature of 400 ◦C and 450 ◦C. There is no sign
of Ge and Sn layers and one single layer has been observed, which is attributed to Ge1−xSnx alloy film
on Si substrate. While in the other samples, the Sn layer can be observed clearly. The appearance of
these features indicated solid-phase mixing of Ge and Sn to form Ge1−xSnx alloy through inter-diffusion
mechanism, which demonstrates that the incorporation of Tin into Germanium is needed to provoke the
solid-phase mixing with the RTA temperature at least at 400 ◦C [45]. Note however, this crystallization
temperature at 400 ◦C is much lower than the one for pure Ge, which is around 500 ◦C [46].
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Figure 6. FE-SEM cross-sectional view of the rapid thermal annealed (RTA) multilayer samples:
(a) 300 ◦C; (b) 350 ◦C; (c) 400 ◦C; and (d) 450 ◦C.

The three-dimensional AFM images of the as-deposited multilayer structure and the annealed
layers in a scanned area of 5 µm × 5 µm are shown in Figure 7. The root mean square (RMS) surface
roughness of the films is shown in Table 3. The RMS surface of the as-sputtered multilayer sample
was 1.02 nm. Significant changes were observed in the RTA annealed films at 400 ◦C and 450 ◦C,
in which the RMS surface increased to 1.77 nm and 2.85 nm, respectively. The possible reason for
this phenomenon was due to the solid-phase mixing (inter-diffusion) of the Ge and Sn atoms, in the
multilayer structure [45], which caused the Sn surface segregation, and consequently the surface of
thin films became rough, as was evident from the FE-SEM images.

Materials 2018, 11, x FOR PEER REVIEW  8 of 13 

 

The cross-sectional FESEM images of multilayer structures in Figure 6 exhibited well-defined 

and flat heterojunction interfaces and reveals a good adhesion to the Si substrate. The cross-sectional 

views also reveal the Ge-Sn inter-diffusion at the annealed temperature of 400 °C and 450 °C. There 

is no sign of Ge and Sn layers and one single layer has been observed, which is attributed to Ge1−xSnx 

alloy film on Si substrate. While in the other samples, the Sn layer can be observed clearly. The 

appearance of these features indicated solid-phase mixing of Ge and Sn to form Ge1−xSnx alloy 

through inter-diffusion mechanism, which demonstrates that the incorporation of Tin into 

Germanium is needed to provoke the solid-phase mixing with the RTA temperature at least at 400 

°C [45]. Note however, this crystallization temperature at 400 °C is much lower than the one for pure 

Ge, which is around 500 °C [46]. 

 

Figure 6. FE-SEM cross-sectional view of the rapid thermal annealed (RTA) multilayer samples: (a) 

300 °C; (b) 350 °C; (c) 400 °C; and (d) 450 °C. 

The three-dimensional AFM images of the as-deposited multilayer structure and the annealed 

layers in a scanned area of 5 μm × 5 μm are shown in Figure 7. The root mean square (RMS) surface 

roughness of the films is shown in Table 3. The RMS surface of the as-sputtered multilayer sample 

was 1.02 nm. Significant changes were observed in the RTA annealed films at 400 °C and 450 °C, in 

which the RMS surface increased to 1.77 nm and 2.85 nm, respectively. The possible reason for this 

phenomenon was due to the solid-phase mixing (inter-diffusion) of the Ge and Sn atoms, in the 

multilayer structure [45], which caused the Sn surface segregation, and consequently the surface of 

thin films became rough, as was evident from the FE-SEM images. 

 

Figure 7. AFM images of GeSn thin films, (a) as-sputtered and annealed at (b) 300 °C; (c) 350 °C; (d) 

400 °C; and (e) 450 °C. 

Figure 7. AFM images of GeSn thin films, (a) as-sputtered and annealed at (b) 300 ◦C; (c) 350 ◦C;
(d) 400 ◦C; and (e) 450 ◦C.



Materials 2018, 11, 2248 9 of 12

Table 3. Root mean square (RMS) surface roughness of the as-sputtered multilayer annealed structures
and at different annealing temperatures.

Samples As-Sputtered 300 ◦C 350 ◦C 400 ◦C 450 ◦C

Surface Roughness (nm) 1.02 1.18 1.2 1.77 2.85

The current-voltage (I-V) characteristics of the MSM PD on the RTA annealed film, at 400 ◦C,
is shown in Figure 8, under dark and visible light illumination. The inset shows the current gain.
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Figure 8. Current-voltage characteristics of the MSM PD on the RTA annealed sample, at 400 ◦C,
measured in the dark (Idark), and under illumination (IPhoto). The inset shows the current gain
(Iphoto/Idark).

The response of a Ge1−xSnx MSM PD increased with the bias voltage and saturated gradually
at a voltage above 1.0 V, which was due to the movement of all carriers, toward the PD electrodes.
It was obvious that the photocurrent produced a higher current than that of the dark, due to the
photo-generation current, upon light illumination. Comparing the current at 5 V bias, the photocurrent
was 5.39 × 10−4 A, while the dark one was 7.21 × 10−5 A. In addition, the current gain of this RTA
sample exhibited a value of about 80, at 0.8 V bias, which indicated its higher sensitivity to the
incident illumination. Meanwhile, this indicated a high photo-responsivity of the RTA Ge1−xSnx

film. The higher current gain at this low voltage could be due to the increase of the surface resistivity.
As shown in the AFM image, the RMS surface roughness of this sample (400 ◦C) was 1.77 nm, which
was higher, compared to the as-sputtered one and moreover some small holes were observed in the
FE-SEM image (Figure 5c), due to the Sn surface segregation. Therefore, this slightly high surface
roughness, enhanced the resistivity of this sample and, thus, decreased the dark current value. In
addition, the spectral photo-response measurement had been performed on the optimized MSM PD
sample, which went through RTA at 400 ◦C. Figure 9 illustrates the responsivity for the Ge0.973Sn0.027

MSM PD versus the wavelength, which was measured at RT. The investigated wavelength area was
from 500 nm to 1000 nm. The photocurrent value was measured at a fixed voltage of 5 V. It was
clearly observed that the responsivity dropped around the 820 nm. The measured responsivity at this
wavelength was ~0.17 A/W. Due to the alloy broadening, the absorption edge was not as steep as that
of the pure material.
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4. Conclusions

The nanocrystalline Ge1−xSnx alloy were successfully grown on the Si substrate, via Ge/Sn/Ge
multilayer magnetron sputtering, after rapid thermal annealing. The Raman analysis exhibited an
enhancement in the intensities of the Ge-Ge peak, upon RTA at 400 ◦C, and above. The XRD results
demonstrated that the Ge-Sn solid-phase mixing had occurred at a low temperature of 400 ◦C, which
led to the creation of the Ge1−xSnx alloy. The crystallinity of the Ge1−xSnx thin films improved
expressively in the (111) orientation. RTA at 400 ◦C resulted in a uniform GeSn layer, with enhanced
optical characteristics. The fabricated Ge1−xSnx MSM PD exhibited its photosensitivity at 820 nm.
The obtained results exposed the potentiality of using the sputtering technique and the RTA to produce
crystalline Ge1−xSnx material on the Si substrate, for photonic and light-sensing device applications.
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