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Abstract: Using first-principles calculations based on density functional theory, the elastic constants
and some of the related physical quantities, such as the bulk, shear, and Young’s moduli, Poisson’s
ratio, anisotropic factor, acoustic velocity, minimum thermal conductivity, and Debye temperature,
are reported in this paper for the hexagonal intermetallic compound Ti3Al. The obtained results are
well consistent with the available experimental and theoretical data. The effect of pressure on all
studied parameters was investigated. By the mechanical stability criteria under isotropic pressure,
it is predicted that the compound is mechanically unstable at pressures above 71.4 GPa. Its ductility,
anisotropy, and Debye temperature are enhanced with pressure.
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1. Introduction

Elastic constants are very important quantities to describe the mechanical properties of materials.
They are evidently and directly employed to evaluate the elastic strains or energies in materials under
stress of various origins: external, internal, thermal, etc. The plastic properties of materials are closely
correlated with the shear moduli along the slip planes of mobile dislocations since these dislocations
can dissociate into partials with a spacing determined by the balance between the planar fault energy
and the repulsive elastic force [1]. Values of elastic constants provide valuable information on the
structural stability, the bonding characteristic between adjacent atomic planes, and the anisotropic
character of the bonding [1]. Elastic properties are also closely associated with many fundamental
solid-state properties, such as acoustic velocity, thermal conductivity, Debye temperature, interatomic
potentials, and so on.

The intermetallic titanium aluminides Ti3Al and TiAl are promising high-temperature structural
materials for engine and airframe applications due to their low density and excellent high-temperature
properties [2]. However, one main technological problem is to improve the room-temperature ductility
of Ti3Al and TiAl for their practical use. It is well known that the crystal structure of a material plays a
crucial role in determining its ductility. The ductility of the Ti3Al intermetallic compound is mainly
attributed to the hexagonal crystal structure of the Ni3Sn-type DO19 with a limited number of available
activated slip systems and the covalent bonding between the constituent elements. The slip on the
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(100) prism plane can be activated in DO19 Ti3Al while the slip on the (001) basal plane is seldom
observed due to a high critical resolved shear stress [3]. On the other hand, alloys based on the TiAl
intermetallic compound with a good balance of higher strength and better ductility generally possess
dual-phase lamellar structures composed mainly of the L10-ordered tetragonal TiAl (γ) phase and a
small amount of the hexagonal Ti3Al (α2) phase [4]. The anisotropy of the deformation mode of the
α2 phase strongly affects the plastic behavior of dual-phase alloys and, thus, the control of the plastic
anisotropy of the α2 phase holds the key to improving the ductility of the alloys [5]. The growing
interest in dual-phase alloys further encourages our interest in the intermetallic compound Ti3Al.

It is known that pressure is a key variable to tune a material’s solid-state properties. Nevertheless,
only a few studies on the properties of Ti3Al under pressure have been carried out, to the best of our
knowledge. Using the technique of high-pressure X-ray diffraction, Sahu et al. revealed that pressure
in the range of 10–15 GPa induces the original Ni3Sn-type DO19 structure of Ti3Al to transform into
the Ni3Ti-type DO24 one [6]. Subsequently, Rajaopalan et al. confirmed the pressure-induced phase
transition in Ti3Al using first-principles calculations with the tight-binding linear muffin-tin orbital
(TB-LMTO) method [7]. However, Dubrovinskaia et al. investigated in detail the behavior of Ti3Al
with various Al content at pressures up to 25 GPa by means of high-pressure in situ powder X-ray
diffraction and first-principles calculations with linear muffin-tin orbital atomic-sphere (LMTO-ASA)
and full-potential linear muffin-tin orbital (FP-LMTO) methods [8]. They revealed there was no
pressure-induced structural phase transition in Ti3Al up to 25 GPa. Thereafter, Zhang et al. studied
the structural, elastic, and thermodynamic properties of Ti3Al under pressure up to 30 GPa using
first-principles calculations based on density functional theory (DFT) and ultrasoft pseudo-potential
(USPP) methods [9]. They found that the hexagonal structure of Ti3Al is elastically stable in the
pressure range of 0–30 GPa, and the pressure can improve its ductility.

To gain a deeper understanding of the high-pressure properties for Ti3Al, in the present work,
we focus on studying the elastic constants and some properties related to these constants for this
compound in the range of 0–80 GPa by first-principles calculations based on DFT and projector
augmented wave (PAW) methods.

2. Theoretical Methods

2.1. Computational Details

All the calculations based on DFT were carried out using the Vienna Ab initio Simulation Package
(VASP, version 5.4) [10–12]. The ion–electron interaction is described by the PAW method [13,14].
The exchange-correlation functional is treated with the Perdew, Burke, and Ernzerhof (PBE) generalized
gradient approximation (GGA) [15,16]. The valence electron configurations for Ti and Al correspond
to 3s23p63d24s2 and 3s23p1. The plane wave cut-off energy was set as 600 eV. A convergence criterion
of 10−6 eV/atom was used for the electronic self-consistency loop. The k-point meshes for the Brillouin
zone sampling was constructed through the Monkhorst-Pack scheme [17]. An 11× 11× 13 k-points
grid was used. Before calculating the elastic constants of the Ti3Al intermetallic compound at a
given pressure P, the unit cell of the compound at the corresponding pressure was optimized by full
relaxation with respect to the volume, shape, and internal atomic positions until the atomic forces were
less than 10−2 eV/Å.

2.2. Calculations of Elastic Constants

The number of independent single-crystal elastic constants is five for the hexagonal intermetallic
compound Ti3Al, i.e., C11, C12, C13, C33, and C44. Starting from the optimized unit cells under
different pressures, in this study, we used the strain–stress relationship method to determine all
five elastic constants, as implemented in the VASP [18]. The elastic constants are defined as the first
derivatives of the stresses with respect to the strain tensor. The elastic tensor was determined by
performing six finite distortions of the lattice and deriving the elastic constants from the strain–stress
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relationship [19]. The elastic tensor was calculated for rigid ions, as well as allowing for relaxation of the
ions. The ionic contributions were determined by inverting the ionic Hessian matrix and multiplying
with the internal strain tensor [20]. The final elastic constants include both the contributions from
distortions with rigid ions and the contributions from the ionic relaxations.

3. Results and Discussion

3.1. Bulk Properties at Zero Pressure

The crystal structures of the hexagonal intermetallic compound Ti3Al are shown in Figure 1.
There are a total of eight atoms in the unit cell of the compound. Among these atoms, six Ti atoms
occupy 6 h Wyckoff positions and two Al atoms occupy 2c Wyckoff positions. Experimentally,
the single-crystal elastic constants of Ti3Al have been measured by Tanaka and Koiwa [21] using the
rectangular parallelepiped resonance method. Theoretically, the elastic properties of Ti3Al have been
investigated by Zhang et al. [9], Wei et al. [22], and Liu et al. [23] with the USPP and the GGA methods,
by Music and Schneider [24] with the PAW and the GGA methods, and by Fu et al. [25] with the
full-potential linearized augmented plane-wave (FLAPW) and the local density approximation (LDA)
methods. Table 1 presents the ground-state equilibrium lattice parameter and the elastic constants of
the Ti3Al intermetallic compound in comparison with reported experimental data [21,26] and other
theoretical values [9,22–25]. Comparison of the lattice parameters a and c/a shows that the present
results are well consistent with the available experimental and theoretical results. The c/a ratio of 0.808
is correctly predicted in this study and fits well with the experimental value of 0.80. The presently
obtained elastic constants are in good agreement with the experimental data [21], exhibiting smaller
deviations as compared to the other theoretical results [9,22–25]. These indicate that the present
calculation conditions are sufficiently reliable. Moreover, the mechanical stability conditions for
hexagonal crystals at 0 GPa are as follows [27]:

C44 > 0, C11 − |C12| > 0, C33(C11 + C12)− 2C2
13 > 0 (1)

These conditions are associated with different deformations of the crystals. A value approaching
zero indicates the shear deformation of the cell for C44, the expansion of the direction along the spindle
axis during the contraction of the other symmetry direction perpendicular to the spindle axis for
C11 − |C12|, and the deformation of the volume for C33(C11 + C12)− 2C2

13. The elastic constants of
Ti3Al obtained in this study satisfy the three conditions above, which shows that its hexagonal structure
is mechanically stable at zero pressure.

Figure 1. Crystal structure of Ti3Al.
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Table 1. The optimized lattice parameters a (in Å), c/a, and elastic constants (in GPa) of Ti3Al at
zero pressure.

a c/a C11 C12 C13 C33 C44

Present 5.758 0.808 186.18 85.57 62.76 233.03 59.75
Exp. [21,26] 5.77 0.80 183.2 89.0 62.6 225.1 64.1
Theo. [22] 5.74 0.81 184.67 82.37 63.41 225.08 53.97
Theo. [24] 5.772 0.803 72
Theo. [9] 5.76 0.809 192.2 80.5 62.5 232.9 61.6

Theo. [23] 5.72 0.81 185 83 63 231 57
Theo. [25] 5.64 0.81 221 71 85 238 69

3.2. Pressure-Dependent Structure Parameters

Figure 2 shows the pressure dependence of the lattice constant ratio c/a, the normalized lattice
parameters a/a0, c/c0, and the normalized volume V/V0 of Ti3Al, where a0, c0, and V0 are the
optimized lattice constants and volume at 0 GPa, respectively. The slight increase of the value for c/a
with pressure in the figure indicates the better resistance to compression along the c axis. Meanwhile,
the values of a/a0, c/c0, and V/V0 monotonically decrease with pressure. The normalized parameter
a/a0 changes more rapidly than the counterpart c/c0. At same pressure, the value of a/a0 is always
smaller than that of c/c0. These also indicate the better resistance to compression along the c axis.
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Figure 2. The ratios of structural parameters as a function of pressure for Ti3Al.

3.3. Pressure-Dependent Elastic Constants and Mechanical Properties

The calculated results of the elastic constant for Ti3Al under different pressures are presented in
Table 2. The elastic constants C11 and C33 represent the elasticity in length. The other constants C12,
C13, and C44 are associated with the elasticity in shape. One can find that the four elastic constants for
the hexagonal Ti3Al increase monotonically with pressure except for C44. The constants C11 and C33

change rapidly with pressure, C12 and C13 change moderately under pressure, while C44 incipiently
increases slightly with pressure up to 40 GPa and then decreases gently under higher pressure. One can
also find that the elastic constant C11 is always smaller than the counterpart C33 at the same pressure,
showing that it is easier to compress along the [100] direction than along the [001] direction. Moreover,
for hexagonal crystals, the conditions of mechanical stability under isotropic pressure are given by [28]

C̃44 > 0, C̃11 − |C̃12| > 0, C̃33(C̃11 + C̃12)− 2C̃2
13 > 0 (2)

with
C̃ii = Cii − P (i = 1, 3, 4), C̃12 = C12 + P, C̃13 = C13 + P (3)
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Table 2. The elastic constants Cij (in GPa) of Ti3Al under pressure up to 80 GPa.

P C11 C12 C13 C33 C44

0 186.18 85.57 62.76 233.03 59.75
10 224.30 108.15 75.51 286.13 66.15
20 261.44 124.83 89.61 323.41 70.22
30 291.09 142.23 105.72 354.83 72.90
40 318.32 157.86 122.34 380.17 74.16
50 343.06 174.27 135.46 402.06 74.06
60 366.48 191.39 149.52 430.75 73.29
70 389.37 208.75 161.36 460.66 71.69
80 409.54 228.60 172.83 492.29 69.81

The three conditions are related to different deformations of the crystals under isotropic pressure.
A value approaching zero indicates the shear deformation of the cell under isotropic pressure for C̃44,
the expansion of the direction along the spindle axis under isotropic pressure during the contraction of
the other symmetry direction perpendicular to the spindle axis under isotropic pressure for C̃11− |C̃12|,
and the deformation of the volume under isotropic pressure for C̃33(C̃11 + C̃12)− 2C̃2

13. Figure 3 shows
the pressure dependence of C̃44 for the Ti3Al intermetallic compound. When the value of C̃44 is no
longer larger than zero, it indicates that the hexagonal structure of the compound is mechanically
unstable above pressures of about 71.4 GPa.
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Figure 3. The constant C44 − P as a function of pressure for Ti3Al .

Sahu et al. [6] performed high-pressure X-ray diffraction studies of Ti3Al, and revealed a phase
transition from the DO19 to DO24 structure in the pressure range of 10–15 GPa. Then, Rajaopalan et al. [7]
theoretically confirmed the finding by taking the TB-LMTO approach within the atomic-sphere
approximation (ASA) and the LDA. Dubrovinskaia et al. [8] pointed out that the high-pressure study in
Ref. [6] was conducted on one single sample, and the interpretation of the results was not unambiguous,
in addition to the fact that the calculations reported in Ref. [7] were conducted within the so-called ASA,
which sometimes fails to resolve small structural energy differences. Thus, they performed a series of
experiments on a number of samples with different compositions of Ti3Al by means of high-pressure in
situ powder X-ray diffraction, and theoretically complemented them by using the LMTO-ASA method
with the coherent potential approximation (CPA), and the FP-LMTO method with the GGA [8]. In their
study, neither experiment nor theory observed the pressure-induced phase transition from the DO19

to the DO24 structure under pressure conditions of up to 25 GPa, and the possible reasons for the
difference between their experimental study results and those of Sahu et al. [6] were also analyzed in
detail. Zhang et al. [9] studied the structural stability of Ti3Al under pressures up to 30 GPa with the
USPP and the GGA methods and found that the DO19 structure of Ti3Al is mechanically stable in the
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pressure range of 0–30 GPa. The result of our theoretical study agrees with that of the experimental
and theoretical study in Ref. [8] and the theoretical study in Ref. [9].

From the obtained constants Cijs of a single crystal, the bulk modulus (B) and shear modulus (G)
of the polycrystal materials can be calculated by the Voigt–Reuss–Hill (VRH) approximation [29–31].
For the hexagonal structure, the bulk and shear moduli in the VRH approximation are given by

B =
BV + BR

2
, G =

GV + GR
2

(4)

where BV and GV correspond to Voigt’s bulk modulus and shear modulus, BR and GR are Reuss’s bulk
modulus and shear modulus, respectively, and they are given by [32,33]

BV =
2C11 + 2C12 + 4C13 + C33

9
, GV =

C11 + C12 − 4C13 + 2C33 + 12C44 + 12C66

30
,

BR =
(C11 + C12)C33 − 2C2

13
C11 + C12 − 4C13 + 2C33

, GR =
5[(C11 + C12)C33 − 2C2

13]C44C66

6BVC44C66 + 2[(C11 + C12)C33 − 2C2
13](C44 + C66)

(5)

with
C66 =

C11 − C12

2
(6)

Further, the Young’s modulus (E) and Poisson’s ratio (ν) are estimated by [29–31]

E =
9BG

3B + G
, ν =

3B− 2G
6B + 2G

(7)

Figure 4 shows the pressure dependence of bulk, shear, and Young’s moduli and Poisson’s
ratio for the Ti3Al intermetallic compound. The bulk modulus reflects the resistance of materials
against volume change. The shear modulus reflects the resistance of materials against shape change.
The Young’s modulus measures the stiffness of materials, and the larger its value, the stiffer the material.
From Figure 4, it is clearly seen that the values of B, G, and E increase monotonously with pressure,
and the change trend is linear for B while nonlinear for G and E. These results mean that the volume
change resistance increases linearly, while the shape change resistance and stiffness increase nonlinearly
with pressure. Our calculated bulk, shear, and Young’s moduli at zero pressure are 114.04, 59.33,
and 151.69 GPa, respectively, which are in excellent agreement with the corresponding experimental
data of 113, 59, and 151 GPa [21]. Meanwhile, our calculated zero-pressure bulk modulus is also in
excellent agreement with the theoretical values of 114 GPa [22] and 112.54 GPa [24].
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Figure 4. Bulk (B), shear (G), and Young’s (E) moduli as a function of pressure for Ti3Al.
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For the specific case of hexagonal crystals, the Cauchy pressure is defined as (C13 − C44) for
(100) plane and (C12 − C66) for the (001) plane. Figure 5 shows the pressure dependence of the B/G
ratio, Poisson’s ratio, and Cauchy pressures for the Ti3Al intermetallic compound. These quantities
allow us to assess the ductility/brittleness of materials. According to Pugh’s rule [34], the high and
low values of B/G are related to ductility and brittleness, respectively. Ductile behavior is exhibited
in materials when B/G > 1.75, otherwise the materials behave in a brittle manner. As shown in
Figure 5a, the B/G ratio increases monotonically with pressure, which is always more than 1.75 in the
studied pressure range. These indicate that Ti3Al becomes more ductile with pressure. According to
the rule proposed by Frantsevich et al. [35], a brittle behavior is exhibited in materials when ν < 0.26,
otherwise the materials behave in a ductile manner. As shown in Figure 5b, Poisson’s ratio also
increases monotonically with pressure, which is always more than 0.26 in the studied pressure range.
These also indicate that Ti3Al becomes more ductile with pressure. According to Pettifor’s rule [36],
the materials with larger positive Cauchy pressures have more metallic bonds and thus become more
ductile, otherwise the Cauchy pressures of the materials are more negative, they have more angular
bonds, and thus exhibit more brittleness. As shown in Figure 5c,d, the increase of positive values
for both Cauchy pressures with pressure indicate that there is more metallic bonding in Ti3Al with
pressure, and thus it becomes more ductile. At the same pressure, the Cauchy pressure (C12 − C66) is
always larger than the counterpart (C13 − C44), implying that the metallic character of the bonding in
the (001) plane is more significant than that in the (100) plane. Hardness is a measure of the resistance to
elastic deformation, plastic deformation, or failure under external force; these are dependent on elastic
constants, plasticity, strain, ductility, strength, etc. Theoretically, the hardness (H) of polycrystalline
materials can be estimated by [37]

H = 2(
G3

B2 )
0.585 − 3 (8)

The pressure dependence of theoretical hardness is shown in Figure 6. It is clearly observed that
the hardness decreases approximately with pressure.
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function of pressure for Ti3Al.
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Figure 6. Hardness as a function of pressure for Ti3Al.

3.4. Pressure-Dependent Elastic Anisotropy

In material science, elastic anisotropy is the directional dependence of the physical properties
of materials. Most materials exhibit elastically anisotropic behavior. Some examples are the
directional dependence of the bulk modulus, Young’s modulus, shear modulus, and Poisson’s ratio.
For hexagonal system, the linear bulk modulus along the a and c principle axes (Ba and Bc) are given
by [38]

Ba = a
dP
da

=
λ

2 + α
, Bc = c

dP
dc

=
Ba

α
(9)

with
λ = 2(C11 + C12) + 4C13α + C33α2, α =

C11 + C12 − 2C13

C33 − C13
(10)

where α also signifies the anisotropy of linear compressibility along the a or c axis. For an isotropic
material, the value of α must be unity. A deviation less than or greater than unity represents the
degree of anisotropy. As shown in Figure 7b, Ti3Al presents elastic anisotropy due to its α being a
value smaller than unity. The values of α increase approximately with pressure, but the variation is
very small.
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Figure 7. Linear bulk modulus along the a and c principle axes (a) and its anisotropy α (b) as a function
of pressure for Ti3Al.

The average Young’s modulus on the (210) and (010) prismatic planes and the (001) basal plane
(E(210), E(010), and E(001)) are given by [30,39]
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E(210) = E(010) =
1

S11
, E(001) =

1
S33

(11)

with
S11 =

1
2
[

C33

C33(C11 + C12)− 2C2
13

+
1

C11 − C12
], S33 =

C11 + C12

C33(C11 + C12)− 2C2
13

(12)

The average shear modulus on the (210) and (010) prismatic planes and the (001) basal plane
(G(210), G(010), and G(001)) are given by [30,39]

G(210) = G(010) =
2

2(S11 − S12) + S44
, G(001) =

1
S44

(13)

with
S11 − S12 =

1
C11 − C12

, S44 =
1

C44
(14)

The average Poisson’s ratio on the (210) and (010) prismatic planes and the (001) basal plane
(ν(210), ν(010), and ν(001)) are given by [30,39]

ν(210) = ν(010) = −
S12 + S13

2S11
, ν(001) = −

S13

S33
(15)

with
S11 =

1
2
[

C33

C33(C11 + C12)− 2C2
13

+
1

C11 − C12
],

S12 =
1
2
[

C33

C33(C11 + C12)− 2C2
13
− 1

C11 − C12
],

S13 = − C13

C33(C11 + C12)− 2C2
13

, S33 =
C11 + C12

C33(C11 + C12)− 2C2
13

(16)

The calculated results of S11, S12, S13, S33, and S44 for Ti3Al under different pressures are
presented in Table 3. The calculated results of Young’s modulus, shear modulus, and Poisson’s
ratio on the prismatic and basal planes for Ti3Al under different pressures are presented in Figure 8.
It is clearly found that the values of E(210), E(010), and E(001) on the prismatic and basal planes increase

with pressure. The Young’s modulus on the (210) and (010) prismatic planes are much smaller than the
counterpart on the (001) basal plane, indicating the very significant anisotropic behavior of Ti3Al under
different pressures. Meanwhile, the difference between the prismatic planes E(210) and E(010) and the
basal plane E(001) increases with pressure, indicating that the elastic anisotropy of Ti3Al increases
with pressure. However, the shear modulus on the two prismatic planes are closed to the counterpart
on the basal plane, and the same result occurs for Poisson’s ratio.

Table 3. The elastic compliances Sij (in ×10−3GPa−1) of Ti3Al under pressure up to 80 GPa.

P S11 S12 S13 S33 S44

0 7.07 −2.87 −1.13 4.9 16.74
10 6.01 −2.6 −0.901945 3.97 15.12
20 5.15 −2.17 −0.823186 3.55 14.24
30 4.71 −2.01 −0.804515 3.3 13.72
40 4.37 −1.86 −0.809706 3.15 13.48
50 4.14 −1.79 −0.790763 3.02 13.5
60 3.96 −1.75 −0.764448 2.85 13.64
70 3.80 −1.74 −0.722140 2.68 13.95
80 3.73 −1.8 −0.679304 2.51 14.33
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Figure 8. Young’s modulus (a), shear modulus (b), and Poisson’s ratio (c) on the (210), (010), and (001)
planes as a function of pressure for Ti3Al.

An alternative method is the investigation of various anisotropic factors. The shear anisotropic
factor for the {100} planes between 〈011〉 and 〈010〉 directions is [31]

A{100} =
4C44

C11 + C33 − 2C13
(17)

For the {010} planes between 〈211〉 and 〈001〉 directions, it is [31]

A{010} =
4C55

C22 + C33 − 2C23
(18)

For the {001} planes between 〈110〉 and 〈120〉 directions, it is [31]

A{001} =
4C66

C11 + C22 − 2C12
(19)

For an isotropic material, the value of A{100}, A{010}, and A{001} must be unity. A deviation less
than or greater than unity represents the degree of anisotropy. The calculated results of A{100}, A{010},
and A{001} for Ti3Al under different pressures are presented in Figure 9. It is clearly seen that the values
of A{100} and A{010} are significantly smaller than unity and decrease monotonously with pressure,
whereas the value of A{001} under different pressures is always equal to unity. These results show that
as pressure increases, the elastic anisotropy on the {100} and {010} planes of Ti3Al increases, while
the compound always exhibits isotropic behavior on the {001} basal plane, which agrees with the
general property of hexagonal materials.

The percentage anisotropy for the bulk modulus (AB) and shear modulus (AG) is given by [40]

AB =
BV − BR
BV + BR

× 100%, AG =
GV − GR
GV + GR

× 100% (20)

The universal anisotropy index (AU) is given by [41]

AU =
BV
BR

+ 5
GV
GR
− 6 (21)
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The scalar log-Euclidean anisotropy index (AL) is given by [42]

AL =

√
[ln(

BV
BR

)]2 + 5[ln(
GV
GR

)]2 (22)

For an isotropic material, the values of AB, AG, AU , and AL must be zero. A deviation greater
than zero represents the degree of anisotropy. The calculated results of AB, AG, AU , and AL are also
presented in Figure 9 for Ti3Al under different pressures. It is clearly seen that as pressure increases,
the value of AB is almost kept at zero, while that of AG increases approximately. At identical pressure,
the value of AB is significantly smaller than that of AG. Similar to AG, the values of AU and AL also
increase approximately with pressure. The results indicate that the shear anisotropy of Ti3Al is more
significant than the compressibility anisotropy, and its elastic anisotropy is approximately enhanced
with pressure.
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Figure 9. Shear anisotropic factors A{100}, A{010}, and A{001} (a), percentage anisotropy in compressibility
AB and shear AG (b), the universal anisotropy index AU and the log-Euclidean anisotropy index AL)
(c) as a function of pressure for Ti3Al.

3.5. Pressure-Dependent Acoustic and Related Properties

The pure longitudinal (vl) and transverse (vt) sound velocities in the [100] and [001] principal
directions for hexagonal Ti3Al can be calculated from the obtained constants Cijs of a single crystal
following the procedure of Brugger [43]. The sound velocities in the [100] direction are given by [44,45]

[100]vl =

√
C11 − C12

2ρ
, [010]vt1 =

√
C11

ρ
, [001]vt2 =

√
C44

ρ
(23)

and those in the [001] direction are given by [44,45]

[001]vl =

√
C33

ρ
, [100]vt1 = [010]vt2 =

√
C44

ρ
(24)
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where vt1 and vt2 correspond to the first and the second transverse modes, and ρ represents the
mass density of the compound. Since these sound velocities are determined by the elastic constants,
their anisotropic properties also reflect the elastic anisotropy in Ti3Al. Additionally, the longitudinal
(VL) and transverse (VT) sound velocities of polycrystal Ti3Al can also be calculated from the obtained
bulk modulus B and shear modulus G, which are given by [46]

VL =

√
3B + 4G

3ρ
, VT =

√
G
ρ

(25)

Further, the average sound velocity (VM) can be calculated by [47]

VM = [
1
3
(

1
V3

L
+

2
V3

T
)]−

1
3 (26)

The calculated results of longitudinal and transverse sound velocities for Ti3Al under different
pressures are presented in Figure 10. It is clearly seen that the values of [100]vl , [010]vt1, and [001]vl of
a single crystal increase while those of [001]vt2, [100]vt1, and [010]vt2 decrease with pressure, which
is consistent with the variation trend of the corresponding elastic constants. Meanwhile, the value
of VL of the polycrystal also increases while those of VT and VM increase firstly and then decrease
with pressure. Moreover, the value of [100]vl is much smaller than that of [001]vl at identical pressure,
and the corresponding absolute difference increases with pressure. The results indicate that the
anisotropy of sound velocity for Ti3Al is very significant and increases with pressure.
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Figure 10. Mass density ρ (a), longitudinal and transverse sound velocities vl , vt1, and vt2 in the [100]
(b) and [001] (c) principle directions, and polycrystalline longitudinal, transverse, and average sound
velocities VL, VT , and VM (d) as a function of pressure for Ti3Al.

The minimum thermal conductivity is defined as an extreme value of the thermal conductivity
decreasing with temperature. From the obtained Young’s modulus and mass density, the minimum
thermal conductivity (kmin) of Ti3Al can be calculated according to Clarke’s model [48]:
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kmin = 0.87kB
3

√
(

nρNA
M

)2

√
E
ρ

(27)

where kB, n, NA, and M are, in turn, the Boltzmann constant, total atoms per primitive cell,
Avogadro’s number, and relative molecular weight. However, the model averages the anisotropic
elastic stiffness of a crystal. To calculate precisely the minimum thermal conductivity of the crystal
with elastic anisotropy, the model was further modified by Liu et al. [49] as

kmin = {1
3
[2(

1
2 + 2ν

)−
3
2 + (

1
3− 6ν

+
2

3 + 3ν
)−

3
2 ]}−

1
3 kB

3

√
(

nρNA
M

)2

√
E
ρ

(28)

Figure 11 shows the pressure dependence of minimum thermal conductivity for Ti3Al. It is clearly
observed that the value of kmin obtained from the two models increases monotonously with pressure.
At the same pressure, the kmin value calculated by the modified Clarke’s model is significantly smaller
than that calculated by Clarke’s model. This shows that the minimum thermal conductivity of Ti3Al is
markedly reduced after considering its elastic anisotropy.

0 20 40 60 80

0.9

1.0

1.1

1.2

1.3

1.4

1.5

 

 

k m
in
 (W

/m
/K

)

P (GPa)

 Clarke
 Liu

Figure 11. Minimum thermal conductivities as a function of pressure for Ti3Al.

In addition to minimum thermal conductivity, the Debye temperature (ΘD) of Ti3Al can be
calculated from the average sound velocity of its polycrystal by [47]

ΘD =
h

kB
[
3n
4π

(
NAρ

M
)]

1
3 VM (29)

where the parameters h, kB, n, NA, and M are, in turn, the Plank constant, the Boltzmann constant,
number of atoms in the molecule formula, Avogadro’s number, and molecular weight. Figure 12 show
the pressure dependence of Debye temperature for Ti3Al. It is clearly found that the value of ΘD

increases monotonously with pressure and exhibits a change trend similar to the minimum thermal
conductivity, following the Callaway–Debye theory [50]. Experimentally, the Debye temperature of
Ti3Al was determined as 495 K from specific heat measurements [51] and 478 K from the single-crystal
X-ray diffraction pattern [52], which agree well with our calculated value of 485.16 K at zero pressure.
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Figure 12. Debye temperature as a function of pressure for Ti3Al.

4. Conclusions

The elastic constants and their related properties, such as elastic moduli, Poisson’s ratio, anisotropic
factor, acoustic velocity, minimum thermal conductivity, and Debye temperature, were investigated for
hexagonal Ti3Al under different pressures up to 80 GPa by using first-principles calculations. The present
results at zero pressure are in good agreement with the previous experimental and theoretical values.
The resistance to compression along the c axis is better than along the a axis under each pressure.
According to the mechanical stability criteria under isotropic pressure, the hexagonal structure of Ti3Al
is judged to be mechanically stable under pressures up to 71.4 GPa. The bulk modulus, shear modulus,
Young’s modulus, Poisson’s ratio, Cauchy pressures, and hardness were calculated, which show that
the ductility of Ti3Al is improved with pressure. The linear bulk modulus, the direction-dependent
Young’s modulus, shear modulus, and Poisson’s ratio, the shear anisotropic factors, the percentage
anisotropy of bulk modulus and shear modulus, and the universal and the log-Euclidean anisotropy
indexes were also calculated, which show that the elastic anisotropy of Ti3Al is very significant and
increases with pressure. Moreover, the significant anisotropy of sound velocity for Ti3Al increases with
pressure. The obtained minimum thermal conductivity and Debye temperature increase with pressure.
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