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Abstract: A commercial formulation of poly(tetrafluoroethylene) (PTFE) sheets were surface modified
by using non-thermal air at 40 kHz frequency (DC) and 13.56 MHz radiofrequency (RF) at different
durations and powers. In order to assess possible changes of PTFE surface properties, zeta
potential (C), isoelectric points (IEPs) determinations, contact angle measurements as well as
Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) imaging were carried out
throughout the experimentation. The overall outcome indicated that {-potential and surface energy
progressively changed after each treatment, the IEP shifting to lower pH values and the implicit
differences, which are produced after each distinct treatment, giving new surface topographies and
chemistry. The present approach might serve as a feasible and promising method to alter the surface
properties of poly(tetrafluoroethylene).

Keywords: Poly(tetrafluoroethylene); Teflon; plasma treatment; zeta potential; surface energy; contact
angle measurement

1. Introduction

One straightforward strategy to modify certain surface properties without altering polymer
bulk properties is by using non-thermal plasma technologies, such as corona, dielectric barrier,
radiofrequency and microwave discharges. Furthermore, plasma treatment is a very versatile
technique, since various carrier gases may be employed, giving unique features to the treated
material [1-5]. Poly(tetrafluoroethylene) (PTFE), known commercially as Teflon® is a type of
fluorinated polymer formed by a succession of molecules of two fluorine atoms (F) and one of
carbon (C), its chemical structure is similar to polyethylene; instead of having carbon and hydrogen
atoms, the latter are replaced by fluorine atoms as shown in Figure 1.
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Figure 1. Chemical structure of poly(tetrafluoroethylene) (PTFE).

Materials 2018, 11, 2013; d0i:10.3390/ma11102013 www.mdpi.com/journal/materials


http://www.mdpi.com/journal/materials
http://www.mdpi.com
https://orcid.org/0000-0002-6837-6878
https://orcid.org/0000-0002-5368-5029
http://www.mdpi.com/1996-1944/11/10/2013?type=check_update&version=1
http://dx.doi.org/10.3390/ma11102013
http://www.mdpi.com/journal/materials

Materials 2018, 11, 2013 2 0of 10

The strong cohesive force between fluorine and carbon makes poly(tetrafluoroethylene) an inert
and nonstick material. Except for other PTFE-like molecules, there is no other molecule that adheres
to it [6-8]. One of PTFE’s properties is thermal stability, since it is one of the most thermostable
plastic materials; for instance it does not show any decomposition above 250 °C, keeping most of
its properties. PTFE’s thermal conductivity coefficient does not change with temperature, and is
relatively high, and thus it is a good insulator. The mixture of PTFE with other materials like glass
fibers or carbon increases its thermal conductivity and its resistance to chemical agents. Regarding
resistance to atmospheric agents and light, it has been shown that PTFE specimens do not drastically
change their properties after being exposed to extreme environment conditions. This inert material
reacts only with fluorinated hydrocarbons and fluorinated oils at high temperatures (above 300 °C)
causing some swelling and dissolution, which may be reversible. The molecular configuration of
PTEFE gives the surface a high anti-adhesion. Hence, PTFE surfaces are unwettable and are deemed
as a super hydrophobic material [9-13]. PTFE withstands elevated temperatures, and unlike typical
thermoplastics, its viscosity above the melting point is so high that PTFE may not be processed by
traditional methods, such as extrusion or injection molding. For this reason, PIFE components are
manufactured by means of special compression molding and sintering techniques to create blocks,
sheets and rods. Recently though, some modified PTFE materials may already be processed as
thermoplastics by using traditional techniques as well as electrospinning, which is one of the simplest
ways to produce the polymer fibers with nano-sized porous media that has a high surface area per
unit volume [14-17].

The aim of this contribution was to make a comprehensive assessment of the effect of air plasma
treatment on PTFE commercial sheets by using 40 kHz (DC) and 13.56 MHz (RF) plasma discharges at
different plasma duration and power inputs. This outcome is supported by surface probe techniques,
such as Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), zeta potential analysis
and contact angle measurements. The extensive and indispensable use of PTFE in our daily life
underlies the motivation of choosing this material as the target of this work.

2. Materials and Methods

2.1. Materials

Poly(tetrafluoroethylene) (PTFE) was obtained from Dow Chemical Company, (Midland,
MI, USA). Distilled-deionized water was retreated in a Simplicity UV® unit, Milipore S.A.S, Molsheim,
France, equipped with dual wavelength 185/254 nm UV lamp. The ultra-pure water was used
for all experiments and solutions with a water resistivity of 18.2 M(Q) at 25 °C and total organic
carbon content lower than 5 ppb. Potassium chloride KCl 99%, sodium hydroxide NaOH 98%,
anhydrous ethylene glycol C;HgO;, 99.8% and diiodomethane CHjI; 99% were purchased from
Sigma-Aldrich, (Saint Louis, Missouri) USA. Hydrochloric acid HCl 35% was obtained from Penta,
Prague, Czech Republic. The reactants were used as received without any further purification.

Both sides of 5 x 5 x 0.1 cm PTFE foils were exposed to non-thermal air plasma by using the
following plasma reactors: Pico (Diener electronic, Ebhausen, Germany) with a cylindrical chamber of
150-mm inner diameter &J and 320 mm length operated at a frequency of 40 kHz, hereinafter (DC).
Pico (Diener electronic, Ebhausen, Germany) & 150 mm and 320 mm length operated at a frequency of
13.56 MHz, referred to as (RF). The power inputs were 10, 20 and 50 W. The treatment durations were 0,
1,2,5,10 and 20 min respectively, and the pressure in every experiment was 40 Pa. Once the treatment
was completed, the specimens were withdrawn from the plasma reactor and immediately used for the
next experiments. The foils were stored in a vacuum desiccator (MERCI S.R.O, Brno, Czech Republic)
with stopcock, porcelain plate and cobalt chloride (CoCl,) (MERCI S.R.O, Brno, Czech Republic)
indicating silica gel (MERCI S.R.O, Brno, Czech Republic).
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2.2. Surface Wettability Assessment

Wettability of the samples was evaluated by contact angle measurement before and immediately
after each modification. The sessile drop method was employed for this purpose on a Surface Energy
Evaluation (SEE) system equipped with a CCD camera (Advex Instruments, Brno, Czech Republic).
Deionized water, ethylene glycol and diiodomethane were used as testing liquids at 22 °C and 60%
relative humidity. The droplets volume was set to 5 pL for all experiments. Every representative
contact angle value was an average of 10 independent measurements. The substrate surface free energy
was evaluated by using the acid-basic model.

2.3. Electrokinetic Analysis

The C-potential of the sample surfaces was determined by using a SurPASS electrokinetic analyzer
(Anton Paar GmbH, Graz, Austria) with a clamping rectangular measuring cell as the one shown in
Figure 2. Streaming current and streaming potential measurement methods for flat solid surfaces were
used (Anton Paar GmbH, Graz, Austria). The measurements were performed with 0.001M KClI as
an electrolyte solution. The pH range was within 2-6 and adjusted by adding either NaOH 0.05M or
HC10.05M.
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Figure 2. Schematic representation of a clamping cell for the determination of (-potential.

2.4. Topographical Evaluation

The surface morphology was evaluated by using an Atomic Force Microscope (AFM) Solver
PRO (NT-MDT, Moscow, Russia). The surfaces were analyzed with standard Si cantilever with a
constant force of 10 N-m~! and at resonance frequency of 170 kHz. In order to obtain a reliable result,
the average surface roughness was obtained from different spots of the samples. The Scanning Electron
Microscope (SEM) was carried out by using a Nova NanoSEM 450 (FEI, Brno, Czech Republic) with
Schottky field emission electron source operated at acceleration voltage ranging from 200 V to 30 kV
and low-vacuum SED (LVD) detector. A coating with a thin layer of gold was performed by a sputter
coater SC 7640 (Quorum Technologies, Lewes, UK).
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3. Results

3.1. Surface Enerqy Evaluation

In order to estimate the extent of plasma treatment at different treatment times and powers, the
PTFE specimens were assessed by contact angle measurements. Figures 3 and 4 depict the surface
energy variation with respect to the plasma duration of either DC or RF plasma treatments.
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Figure 3. Surface energy of untreated and plasma-treated PTFE after using 40 kHz frequency (DC).
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Figure 4. Comparison of the PTFE surface energy after radiofrequency (RF) plasma treatment with
different plasma durations and power inputs.

With regard to the surface energy and surface wettability assessments, the contact angles of water,
ethylene glycol and diiodomethane are listed in Table 1.
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Table 1. Contact angles of PTFE samples after using DC and RF plasma treatments. The Lifshitz-Van
der Waals/acid-base (LW /AB) theory was employed to obtain the total surface energy.

Sample Contact Angle (°) After DC Contact Angle (°) After RF
Plasma Duration (min) Power Input (W) Ow Oe 04 Ow Oe 04

0 0 108.9 90.7 752 108.9 90.7 752
1 10 85.0 69.7 68.2 83.1 70.4 57.4
1 20 81.9 68.3 62.6 88.1 74.2 70.3
1 50 77.6 62.6 60.6 75.2 69.0 51.8
2 10 82.0 70.4 68.9 83.1 76.1 63.5
2 20 78.7 69.7 67.2 81.7 74.6 62.6
2 50 81.4 66.8 62.1 82.5 67.3 65.1
5 10 74.2 66.8 66.9 86.9 78.6 65.7
5 20 81.9 69.1 61.8 83.0 62.7 66.4
5 50 80.0 63.1 59.8 78.7 68.1 63.7
10 10 81.5 61.4 66.8 87.6 78.4 61.9
10 20 81.4 71.8 65.8 81.0 67.3 67.7
10 50 88.6 70.1 70.0 75.7 67.2 63.3
20 10 80.9 63.4 70.5 83.6 73.6 62.2
20 20 77.6 69.3 67.1 78.8 67.1 63.3
20 50 78.5 73.5 67.2 81.8 59.8 59.9

3.2. Surface Charge Appraisal

The surface charge with respect to the plasma duration was appraised by electrokinetic analysis,
where the (-potential is an indicator for charge formation at the solid-liquid interface and the surface
charge is generated by the interaction of the solid surface with the electrolyte solution. Likewise,
the isoelectric points (IEPs) are defined as the pH at which a substance has a net charge of zero, or at
which it is at its minimum ionization. Figure 5 shows the trend of (-potential versus the pH and the
isoelectric points of untreated PTFE as well as the treated sample after 20 min 50W DC and REF. For this
experiment, only the longest durations and the highest power input were compared to untreated PTFE.
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Figure 5. (-potential as a function of pH in aqueous solution of 0.001 M potassium chloride, and
Isoelectric points (IEPs) of untreated and treated PTFE films.
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3.3. Topographical Assessment

Concerning the topographical patterning, the scanning electron microscopy (SEM) images along

with the AFM ones of the examined specimens are presented in Figure 6. In addition, the connection
between exposure time, mass change and by extension surface roughness is shown in Figure 7.
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Figure 6. 2D SEM and 3D AFM images of: (A) Untreated, (B) RF plasma treated, and (C) DC plasma
treated PTFE samples.
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Figure 7. Effect of plasma treatment on the mass of the treated films.



Materials 2018, 11, 2013 7 of 10

4. Discussion

Solid surfaces may be classified into two basic groups, hydrophilic (wettable with water and
high surface energy) and hydrophobic (not wettable with water and low surface energy). The contact
angles of the employed liquids on the studied surfaces diminished. For instance, the contact angle
of deionized water decreased within the range 74-88°, which indeed indicates a surface wettability
change. The typical water contact angle value of poly(tetrafluoroethylene) (PTFE) is >105 and its
surface energy is typical 20 mJ /m?. The superhydrophobic character of PTFE plummeted after using air
plasma treatment, demonstrating the capability of plasma treatment for surface modification [18-20].
Oxygen-containing (as air) plasmas increase the surface energy and introduce polar (O-containing)
moieties. This phenomenon is a consequence of breaking bonds and free radicals formation that
once the samples are withdrawn from the plasma reactor trigger the reaction between atmospheric
oxygen and free radicals. The hydrophobic character of PTFE was altered making the specimens more
hydrophilic after each treatment [21,22].

PTFE has a relatively low surface energy and its total surface energy increased regardless of the
treatment. In the case of DC, the highest values correspond to the foils exposed to 20 min treatment
with a power input of 50 W; nevertheless, there is no drastic surface energy change if shorter plasma
durations are applied, and 1 min of treatment is enough for a cost-efficient surface modification [23-25].
This may be confirmed with the radiofrequency experiments, where it is evident that 1 min is sufficient
as the further treatment or power input merely had an effect on surface energy. This phenomenon
may be associated with chemical saturation after 1 min of plasma treatment. This is in agreement
with previous studies, where short plasma duration is a rather cost-effective treatment. It should
be noted that longer treatments might provoke thermal degradation that potentially damage the
previously obtained surface attributes [26-28]. The treatment efficiency is intrinsically connected with
experimental parameters of the plasma reactors; for example, pursuant to the plasma reactors’ supplier,
the kHz machines are more robust, provide more uniform treatments, and are more efficient than
any other commercial machines. The efficiency factor of 40-kHz frequency (DC) is 80%, whereas
13.56-MHz (RF) has the lowest efficiency factor of commercial plasma reactors, close to 50% [29,30].

As seen from the electrokinetic analysis, which was performed to evaluate the surface charge and
to determine the isoelectric points of the studied sample, all the plots have negative values, and these
negative charges increased after 20 min RF plasma treatment; conversely, the curve of 20 min RF shifted
towards higher pH values. PTFE treated under DC holds the most negative (-potential values, which
correspond to the highest surface charge. The untreated PTFE showed a value around pH 3.4, which
coincides with the IEP found in literature [31]. The studied samples had negative charges indicating
the presence of chemical groups which may be deprotonated. Poly(tetrafluoroethylene) is an inert
and stable polymer, and its backbone may not be deprotonated; therefore, it may be assumed that
new chemical groups were incorporated and strong monomer fragmentation occurred during the
plasma treatment. The new surface-functionalities may act as electron donors (Lewis-base), which may
explain why the curves drop to negative numbers [32].

With respect to the SEM images, both the untreated sample and the treated ones have wavy areas,
and all studied sheets possessed scratches. These anomalies may come from the processing line or
an inadequate storage. Nevertheless, the untreated film is relatively smoother and its morphology is
more uniform than the treated ones. These alterations may be observed in more detail with the Atomic
Force Microscopy (AFM) microphotographs, where the surface topography changes following the
PTEFE films” exposure to air plasma treatment are more visible. The treated samples depict relatively
rougher morphologies, with the sample treated under DC power being the roughest, with etched
features and irregularly shaped textures compared with the untreated film. This may be substantiated
in Figure 7, where the extent of plasma treatment was assessed with respect to the loss of weight.
It may be noticed that the increase of Am is proportional to the plasma duration and the power input.
Hence, higher power input leads to greater weight loss. The foils treated for a longer period have
rougher surfaces and underwent higher loss of mass. In fact, the generated pattern on the plasma
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treated samples stems from the competition between ablation and functionalization. It has been seen
throughout this study that 1min under 40 kHz frequency is the most efficient in terms of surface
modification, and this information is in agreement with previous studies, where, as it was mentioned
above, the kHz machines are more robust, providing more uniform treatment, and are more efficient
than other machines [33].

5. Conclusions

We conclude that the non-thermal plasma sources used in this work are suitable for the surface
modification of poly(tetrafluoroethylene). The superhydrophobic character of PTFE is transformed
after air plasma treatment. Different treatment times and powers were employed, and as far as this
contribution is concerned, plasma treatment at 40 kHz is the most efficacious system and it is in
agreement with previous studies. Short duration plasmas are cost-efficient methods to enhance surface
properties without causing any negative impact on the treated samples. Surface charge and surface
energy have been succinctly characterized by surface probe techniques. All the results demonstrate
how the surface charge is gradually changed, and provide the moment that chemical saturation and
thermal degradation begin. Surface energy increases with increasing treatment time. Physical and
chemical changes are clearly manifested by the rise of surface charge after RF plasma treatment;
likewise, the isoelectric point of treated PTFE after DC plasma treatment is lower than the untreated
one. The microphotographs illustrate the surface morphology and the etching effects of the treatment,
which are corroborated by the Amass of the treated specimens. This contribution underlines the use of
plasma treatment as a reliable tool for surface modification and functionalization.
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