

Article



## Properties of Novel Non-Silicon Materials for Photovoltaic Applications: A First-Principle Insight

Murugesan Rasukkannu <sup>1,\*</sup>, Dhayalan Velauthapillai <sup>1</sup>, Federico Bianchini <sup>2</sup> and Ponniah Vajeeston <sup>2</sup>

- <sup>1</sup> Department of Computing, Mathematics, and Physics, Western Norway University of Applied Sciences, Inndalsveien 28, 5063, Bergen, Norway; vdh@hvl.no
- <sup>2</sup> Department of Chemistry, Center for Materials Science and Nanotechnology, University of Oslo, Box 1033 Blindern N-0315, Oslo, Norway; federico.bianchini@smn.uio.no (F.B.); ponniah.vajeeston@kjemi.uio.no (P.V.)
- \* Correspondence: rmu@hvl.no Tel.: +47-5558-7786

Received: 18 September 2018; Accepted: 11 October 2018; Published: 17 October 2018

Table S1. Calculated GGA band gap values for 30 compounds with lattice parameters.

|      |                                               |                                            |                | Lattice Parameter(computed) |        |         | Energy  | Туре     |
|------|-----------------------------------------------|--------------------------------------------|----------------|-----------------------------|--------|---------|---------|----------|
| S.No | Chemical formula                              | Space group                                | Pearson symbol | 9                           | h      | C       | gap (in | of band  |
|      |                                               |                                            |                | a                           | U      | C       | eV)     | gap      |
| 1    | $TlBiS_2$                                     | R-3m(166)                                  | hR4            | 7.817                       |        |         | 0.5055  | Direct   |
| 2    | $BaGe_2$                                      | Pnma (62)                                  | oP24           | 6.860                       | 9.196  | 11.678  | 0.5235  | Indirect |
| 3    | $Gd_2S_3$                                     | <i>Pnma</i> (62)                           | oP20           | 3.930                       | 10.580 | 10.790  | 0.526   | Direct   |
| 4    | GaTlTe <sub>2</sub>                           | <i>I4/mcm</i> (140)                        | tI16           | 7.020                       |        |         | 0.5618  | Indirect |
| 5    | GeP                                           | <i>C</i> 2/ <i>m</i> (12)                  | mS24           | 7.990                       |        | 9.350   | 0.5719  | Direct   |
| 6    | Ca <sub>2</sub> CuFeO <sub>3</sub> S          | P4/nmm (129)                               | tP16           | 3.88                        |        | 14.94   | 0.6339  | Indirect |
| 7    | $Fe_2Ga_2S_5$                                 | <i>P</i> -3 <i>m</i> 1 (164)               | hP9            | 3.690                       |        | 15.570  | 0.6558  | Indirect |
| 8    | $Ca_2Fe_2O_5$                                 | Pnma (62)                                  | oP36           | 5.538                       | 5.6589 | 14.885  | 0.6614  | Direct   |
| 9    | Ba <sub>3</sub> BiN                           | <i>P</i> 6 <sub>3</sub> / <i>mmc(</i> 194) | hP10           | 7.770                       |        | 6.805   | 0.6705  | Direct   |
| 10   | Cu2GeZnS4                                     | I-42m (121)                                | tI16           | 6.552                       |        |         | 0.6729  | Direct   |
| 11   | CdCu2GeS4                                     | $Pmn2_1(31)$                               | oP16           | 6.359                       | 6.627  | 7.779   | 0.6863  | Direct   |
| 12   | CdGeP <sub>2</sub>                            | I-42d (122)                                | tI16           | 6.838                       |        |         | 0.6942  | Direct   |
| 13   | $ZnSnP_2$                                     | I-42d (122)                                | tI16           | 7.0146                      |        |         | 0.6984  | Direct   |
| 14   | CdMn <sub>2</sub> O <sub>4</sub>              | <i>I</i> 4 <sub>1</sub> / <i>amd</i> (141) | tI28           | 6.5092                      |        |         | 0.7017  | Indirect |
| 15   | $Ag_2BaS_2$                                   | P-3m1 (164)                                | hP9            | 4.4251                      |        | 7.2810  | 0.7161  | Direct   |
| 16   | CuKZrS <sub>3</sub>                           | <i>Cmcm</i> (63)                           | oS24           | 7.3557                      |        | 9.8515  | 0.7388  | Direct   |
| 17   | CuFeO <sub>3</sub> SSr <sub>2</sub>           | P4/nmm (129)                               | tP16           | 3.9557                      |        | 15.7502 | 0.7516  | Indirect |
| 18   | KMnNaO <sub>2</sub>                           | <i>Cccm</i> (66)                           | oS40           | 6.8241                      |        | 7.1011  | 0.7749  | Direct   |
| 19   | Cu <sub>2</sub> GeS <sub>4</sub> Zn           | $Pmn2_1(31)$                               | oP16           | 6.2223                      | 6.5706 | 7.4744  | 0.7798  | Direct   |
| 20   | Fe <sub>2</sub> MnO <sub>4</sub>              | Fd-3m (227)                                | cF56           | 6.1012                      |        |         | 0.7842  | Indirect |
| 21   | MnO <sub>3</sub> Sr                           | P63/mmc(194)                               | hP20           | 5.5350                      |        | 9.2802  | 0.8325  | Indirect |
| 22   | Cu <sub>2</sub> GeMnS <sub>4</sub>            | $Pmn2_1(31)$                               | oP16           | 6.2986                      | 6.5754 | 7.6952  | 0.886   | Indirect |
| 23   | ZrSO                                          | P4/nmm (129)                               | tP6            | 3.6280                      |        | 6.4154  | 0.8964  | Direct   |
| 24   | $Mn_2Na_{14}O_9$                              | P-3 (147)                                  | hP25           | 6.7098                      |        | 9.4004  | 0.9245  | Indirect |
| 25   | FeGeO <sub>3</sub>                            | <i>C</i> 2/ <i>c</i> (15)                  | mS40           | 6.7799                      |        | 5.2895  | 0.9459  | Indirect |
| 26   | K <sub>3</sub> Ni <sub>2</sub> O <sub>4</sub> | <i>Cmcm</i> (63)                           | oS36           | 5.5013                      |        | 10.6834 | 1.0845  | Indirect |
| 27   | MnNaO <sub>2</sub>                            | Pmmn (59)                                  | oP8            | 5.8575                      |        | 6.7005  | 1.1331  | Indirect |

The initial structural parameters of a thousand compounds were directly taken from the ICSD database[1], and then GGA band gap for thousand non-silicon compounds were calculated in our DFTB database[2]. These are multinary compounds including conductors, semiconductors, and insulators. Among these thousand non-silicon compounds we considered twenty-seven of them with GGA band gap values in the range of 0.5–1.1 eV (Table S1). Among these twenty-seven compounds, we identified fourteen compounds as direct band gap semiconductors and thirteen as indirect band gap semiconductors. We carried out a study on both electronic and optical properties of twenty-seven semiconductor (both direct and indirect). Our study on the optical properties of the semiconductor

materials showed that four direct band gaps among the twenty-seven materials had higher absorption coefficients in the visible region. Due to the space constraint, the optical properties of all the twenty-seven semiconductors are not presented in the supporting information part

| Phase                                                             | a                               | b | С                               | α(deg) | β(deg) | Y(deg) | Atomic positions                                                                                                                                                           |
|-------------------------------------------------------------------|---------------------------------|---|---------------------------------|--------|--------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TlBiS <sub>2</sub> -R-3m ;166                                     | 7.817(7.711ª)                   |   |                                 | 30.83  | 30.83  | 30.83  | $\begin{tabular}{lllllllllllllllllllllllllllllllllll$                                                                                                                      |
| Ba <sub>3</sub> BiN-<br>P6 <sub>3</sub> /mmc;194                  | 7.770<br>(7.6128 <sup>b</sup> ) |   | 6.805<br>(6.6805 <sup>b</sup> ) | 90     | 90     | 120    | <sup>b</sup> Ba(6h): 0.1605 -0.1605<br><sup>1</sup> / <sub>4</sub><br><sup>b</sup> Bi(2d): 1/3 2/3 <sup>3</sup> / <sub>4</sub><br><sup>b</sup> N(2a): 0.000 0.000<br>0.000 |
| Ag <sub>2</sub> BaS <sub>2</sub> - <i>P</i> -3 <i>m</i> 1<br>;164 | 4.4251(4.3861°)                 |   | 7.2810(7.1942°)                 | 90     | 90     | 120    | <sup>c</sup> S(2d) : 1/3 2/3 0.25296<br><sup>c</sup> Ba(1a) : 0.000 0.000<br>0.000<br><sup>c</sup> Ag(2d) : 1/3 2/3 0.62252                                                |
| ZrSO-P4/nmm; 129                                                  | 3.6280                          |   | 6.4154                          | 90     | 90     | 90     | <sup>d</sup> Zr(2c): 0, ½, 0.1950<br><sup>d</sup> S(2c): 0, ½, 0.6330<br><sup>d</sup> O(2a): 0, 0, 0                                                                       |
| ZrSO-P2 <sub>1</sub> 3; 198                                       | 5.6960                          |   |                                 |        |        |        | <sup>e</sup> Zr(4a): 0.071, 0.071, 0.071<br><sup>e</sup> S(4a): 0.3335, 0.3335,<br>0.3335<br><sup>e</sup> O(4a): 0.6535, 0.6535,<br>0.6535                                 |

 Table S2. Calculated structural parameters and atomic positions of TlBiS2, Ba3BiN, Ag2BaS2, and ZrSO.

<sup>a</sup>Reference [3]; <sup>b</sup>Reference [4]; <sup>c</sup>Reference [5]; <sup>d</sup>Reference [6]; <sup>e</sup>Reference [7].



Figure S1. Calculated total energy as a function of unit cell volume for cubic- and tetragonal-ZrSO.



**Figure S2.** Crystal structures for (**a**) cubic-ZrSO; (**b**) tetragonal-ZrSO. The legends for the different kinds of atoms shown in the illustration.



Figure S3. Total and site projected density of states of Ba<sub>3</sub>BiN. The Fermi level is set to zero and marked by a vertical dotted line.

The total and site projected density of states of Ba<sub>3</sub>BiN, Ag<sub>2</sub>BaS<sub>2</sub>, and ZrSO are presented in Figure S3, S4 and S5 respectively. From **Error! Reference source not found.**, we observe that the valence band derived from Bi-p and hybridized Ni-d states and conduction bands are mainly composed of Bi-*s* and Ba-*s* states. From Figure S4, we observe that the valence band maximum is derived from S-*p* states and the conduction band derived from Ag-*s* states. In the case of ZrSO, we observe that the valence bands derived from S-*p* states and conduction bands derived from O-*s* states as shown in Figure S5.



**Figure S4.** Total and site projected density of states of Ag<sub>2</sub>BaS<sub>2</sub>. The Fermi level is set to zero and marked by a vertical dotted line.



**Figure S5.** Total and site projected density of states of ZrSO. The Fermi level is set to zero and marked by a vertical dotted line.

## References

- 1. Hellenbrandt, M. The inorganic crystal structure database (ICSD)—present and future. *Crystallogr. Rev.* **2004**, *10*, 17–22.
- 2. Ponniah, V. Density Functional Theory Based Database (DFTBD). University of Oslo, Norway, 2013.
- 3. Özer, M.; Paraskevopoulos, K.; Anagnostopoulos, A.; Kokou, S.; Polychroniadis, E. Large single-crystal growth and characterization of the narrow-gap semiconductor. *Semicond. Sci. Technol.* **1996**, *11*, 1405.
- 4. Gäbler, F.; Kirchner, M.; Schnelle, W.; Schwarz, U.; Schmitt, M.; Rosner, H.; Niewa, R. (Sr3N) E and (Ba3N) E (E= Sb, Bi): synthesis, crystal structures, and physical properties. *Zeitschrift für anorganische und allgemeine Chemie* **2004**, 630, 2292–2298.
- 5. Bronger, W.; Lenders, B.; Huster, J. BaAg2S2, ein Thioargentat im CaAl2Si2-Strukturtyp. Zeitschrift für anorganische und allgemeine Chemie 1997, 623, 1357–1360.
- 6. Jellinek, F.; Songstad, J.; Viljanto, J.; Seppälä, P.; Theander, O.; Flood, H. A Tetragonal Form of Zirconium Oxide Sulfide, ZrOS. *Acta Chem. Scand.* **1962**, *16*, 791–792, doi:10.3891/acta.chem.scand.16-0791.
- 7. McCullough, J.D.; Brewer, L.; Bromley, L. The crystal structure of zirconium oxysulfide, ZrOS. *Acta Crystallogr.* **1948**, *1*, 287–289.



© 2018 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).