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Abstract: Luminescence is one of the most important characterisation tools of semiconductor
materials and devices. Recently, a very efficient analytical set of equations has been applied to
explain optical properties of dilute semiconductor materials, with an emphasis on the evolution of
peak luminescence gain with temperature and its relation to sample quality. This paper summarizes
important steps of the derivation of these expressions that have not been presented before and
delivers a theoretical framework that can used to apply exactly solvable Hamiltonians for realistic
studies of luminescence in various systems.
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1. Introduction

Materials development requires characterization techniques. Among them, photoluminescence,
or in more general terms, radiation emission due to different excitation mechanisms [1], is a very
powerful tool to study semiconductor materials and map specific characteristics of new devices [2,3]
for applications from the THz-Mid Infrared (TERA-MIR) to ultraviolet ranges [4–6]. A one-to-one
correspondence between measured spectra and fundamental materials properties requires a clear
theoretical model, ideally easy to understand and to programme, but at the same time with microscopic
information for conclusive interpretation and as free as possible from phenomenological parameters.

A recent theoretical effort led to the development of analytical solutions for the interband
polarization, which plays the selfenergy role in the Dyson equation for the Photon Green’s functions [7],
which have been applied them to study photoluminescence of Coulomb-correlated semiconductor
materials. The accuracy of the resulting easily programmable solutions has been demonstrated by
consistently explaining the low temperature s-shape of the luminescence peak of dilute semiconductors,
such as ternary GaAsSb, InAsN, and quaternary InAs(N,Sb) [7–9]. The interplay of homogeneous
versus inhomogeneous broadening at low and high temperatures are described, together with
the relevance of many body effects, which are in very good agreement with experiments [10–13].
A similar set of equations was also used to study nonlinearities in GaAs–AlGasAs and GaAsN–AlGaAs
superlattices [14–16]. The superlattice case is particularly noteworthy for room temperature GHz
nonlinear multiplication into the THz range [17,18]. This paper has two objectives: to show hitherto
unpublished details of the mathematical steps that lead to the equations used in Refs. [7–9,14–16], and
to draw a bridge between the luminescence and nonlinear absorption calculations in superlattices.
It is organized as follows: the main steps involving manipulations of hypergeometric functions that
characterize the solution of the Hulthén potential problem are delivered. Next, a direct connection
between luminescence and absorption equations is given together with a connection with generalized
semiconductor Bloch equations, with potential for the study of polaritons in superlattices within a
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dielectric approach such as that used to investigate valence band THz polaritons and antipolaritons [6].
A brief conclusion follows.

2. Mathematical Model

In order to make this paper self-contained, some of the steps shown in Ref. [7] are followed to
guide the presentation towards the more complete derivation presented here.

2.1. Integro-Differential Equation for the Power Spectrum

Luminescence, or equivalently the optical power density spectrum I(ω), is described quantum
mechanically by the Poynting vector, which can be directly related to the transverse polarization
function P, which is the selfenergy in the Dyson equations for the transverse photon Green’s function
components in the Keldysh formalism [7,19,20]. All the quantities presented in this paper are
considered in frequency space, i.e., evaluated at steady state.

I(ω) = (}ω2/4π2c) iP<(ω) (1)

The free photon Green’s function represents the photons propagating without any interaction with
the medium. When carriers are injected the transverse polarization function P, which is the selfenergy
in photon Green’s function Dyson equation, determines how the excited medium modifies the
photon propagation. The lesser Keldysh component P< is proportional to the carriers recombination
rate and yields the number of emitted photons per unit area. It thus governs the power emission
spectrum, as seen in Equation (1). The imaginary and real parts of Pr are, respectively, proportional to
absorption and gain and refractive index changes, since the dielectric function of the medium reads
ε(ω) = 1− c2

ω2 Pr(ω) as shown in Ref. [19]. The starting points for the results derived here are the
equations in Refs. [7,19,20].

Pr/<(ω) =
4πe2|Π|2

c2Ω ∑
→
k

P r/<(
→
k ,ω). (2)

Here, e, c, Ω, and Π denote, respectively, the electron charge, the speed of light, the sample
volume and the velocity matrix element, which is the expectation value of the velocity operator, i.e.,
the momentum operator divided by the electron mass. It stems directly from the fact that current
is charge times velocity. The formal definition of the transverse polarization function selfenergy in
terms of functional derivatives is P = − 4π

c
δJ
δA , where J and A are, respectively, expectation values

of the induced current and vector potential operators. The full expression involves labels along the
Keldysh contour and is tensorial. A complete discussion is beyond the scope of this paper. For details
see Refs. [19,20].

The crystal momentum
→
k is a consequence of Fourier transforming from real space. Likewise, ω

and thus the photon energy }ω stem from a corresponding Fourier transformation from time to the
frequency domain. The matrix element satisfies the integro-differential equation [20],

P r(
→
k , ω) = P0

r(
→
k , ω)−∑

→
k

P0
r(
→
k , ω)W→

k−
→
k′
P r(

→
k′ , ω) (3)

whereW is the screened Hulthén potential [21–24]. Furthermore,

2Im{P0
r(
→
k , ω)} =

∫ dω′

2π
Ĝe(
→
k , ω′)Ĝh(

→
k , ω−ω′){1− fe(ω

′)− fh(ω−ω′)} (4)

Electrons or holes are labelled, respectively, by λ = {e, h}, the renormalized energies eλ(
→
k ), and

dephasing Γλ are calculated from the real and imaginary parts of the selfenergy in the Dyson equation
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for the retarded carriers Green’s functions. This paper focuses on quasi-equilibrium luminescence and
on three dimensional (bulk semiconductors) with one conduction and one valence band.

Under these conditions, fλ denotes a Fermi function characterized by a chemical potential µλ

and the spectral function in Equation (4) for each particle, derived from components of the carriers’
Green’s function in the Keldysh formalism, reads

Ĝλ(
→
k , ω) =

2Γλ

(}ω− eλ(
→
k ))

2
+ Γ2

λ

. (5)

The next step is to re-write the last term in Equation (4) by means of the identity

1− fe(ω′)− fh(ω−ω′) = {[1− fe(ω′)][1− fh(ω−ω′)] + fe(ω′) fh(ω−ω′)}tanh[(}ω− µ)/(2KBT)] (6)

and to approximate this factor by 1− fe(ω′) − fh(ω−ω′) ≈ tanh
[
(}ω−µ)

2KBT

]
, where µ = µe + µh

is the total chemical potential, where T is the temperature in Kelvins and KB is the Boltzmann
constant. Different versions of this approximation has been used before in phenomenological
approaches for absorption Refs. [21–23] and delivered good agreement with experiments (see details
and further references in Ref. [23]). Within the Keldysh Green’s functions, context, a detailed
derivation of its application is given in Ref. [20]. The fully numerical solutions of the equations
that use this version of the approximation have given very good agreement with both single beam
and pump-probe luminescence [20,25]. Its usefulness has been further confirmed recently by the good
agreement between the analytical solutions shown here and the experimental luminescence of dilute
semiconductors [7–9,14].

Figures 1 and 2 depict typical ranges of parameters, showing that FF(ω, ω′) =

{[1− fe(ω′)][1− fh(ω−ω′)] + fe(ω′) fh(ω−ω′)} ≈ 1 is an excellent approximation. Note that this
theory is applied for photon energies around the semiconductor bandgap and thus in Figures 1 and 2,
}ω = Eg.
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Figure 1. ܨܨ(߱,߱ᇱ) , the term in curly braces in Equation (6) which has been approximated by ܨܨ(߱,߱ᇱ) ≈ 1, evaluated at ℏ߱ = ௚ܧ  for bulk GaAs at low temperatures, where the dephasing is 
typically small Γఒ. In this case, only a small range of detunings ߱ − ߱′ contribute to the integral in 
Equation (4). Thus the range chosen in the x-axis, from zero to approximately twice the exciton 
binding energy (2݁଴), is even larger than necessary. (a) T = 10 K; (b) T = 20 K. 

Low temperature luminescence is typically performed with a small density of injected carriers. 
Very good agreement of this theory with results from different experimental teams for a variety of 
materials has been obtained with carrier densities around 1015 carriers/cm3 [7–9], further justifying 
the range of densities in the y-axis. The theory has also been used for high temperatures and high 
densities to investigate optical nonlinearites [14–16], and this range is illustrated in Figure 2. 

Figure 1. FF(ω, ω′), the term in curly braces in Equation (6) which has been approximated by
FF(ω, ω′) ≈ 1, evaluated at }ω = Eg for bulk GaAs at low temperatures, where the dephasing
is typically small Γλ. In this case, only a small range of detunings ω−ω′ contribute to the integral in
Equation (4). Thus the range chosen in the x-axis, from zero to approximately twice the exciton binding
energy (2e0), is even larger than necessary. (a) T = 10 K; (b) T = 20 K.

Low temperature luminescence is typically performed with a small density of injected carriers.
Very good agreement of this theory with results from different experimental teams for a variety of



Materials 2018, 11, 2 4 of 15

materials has been obtained with carrier densities around 1015 carriers/cm3 [7–9], further justifying
the range of densities in the y-axis. The theory has also been used for high temperatures and high
densities to investigate optical nonlinearites [14–16], and this range is illustrated in Figure 2.Materials 2017, 11, 2  4 of 14 
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the dephasing Γఒ is larger than in the low temperature case. In this case a wider range of detunings ߱ − ߱′ contribute to the integral in Equation (4). Thus, the range chosen in the x-axis is even larger 
than necessary. (a) T = 150 K, (b) T = 300 K. 
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Figure 2. FF(ω, ω′), the term in curly braces in Equation (6) which has been approximated by
FF(ω, ω′) ≈ 1, evaluated at }ω = Eg for bulk GaAs at higher temperatures and high densities,
where the dephasing Γλ is larger than in the low temperature case. In this case a wider range of
detunings ω−ω′ contribute to the integral in Equation (4). Thus, the range chosen in the x-axis is even
larger than necessary. (a) T = 150 K, (b) T = 300 K.

Relevant dephasing mechanisms such as electron-electron, electron-phonon and electron-impurity
scattering can be added to the selfenergy [17,18], and the resulting Γλ is frequency and momentum
dependent. However, in what follows, it is replaced by averaged values, leading to a simple
approximation for Im{P0

r(k, ω)} consistent with the Ansatz solution,

P0
r(
→
k , ω) ≡ ϑ

}ω− ∆e(
→
k ) + iΓ

(7)

where Γ = Γe + Γh and ϑ ≡ tanh[β(}ω− µ)/2]. In 3D, the material resonance energy is:

∆e(
→
k ) =

}2
∣∣∣∣→k ∣∣∣∣2

2mr
+ Eg, where 1

m∗ =
1

me
+ 1

mh
. The bandgap Eg is given by the sum of the fundamental

band gap E0
g, and a many body renormalisation term ∆Eg where me, mh denote, respectively the

electron and hole effective masses. The equation for P r(
→
k , ω) simplifies to:

(}ω− ∆e(
→
k ) + iΓ)P r(

→
k , ω) + ϑ ∑

→
k′

W→
k−
→
k′
P r(

→
k′ , ω) = ϑ (8)

The total dephasing Γ will determine the luminescence linewidth. Thus, it can be treated as
a phenomenological parameter used to interpret data, and at the same time estimate the strength
of the scattering and dephasing processes [7–9] by comparison of adjusted data with microscopic
calculations derived from the relevant selfenergies [17,18]. At this point, the Kubo–Martin–Schwinger
(KMS) relation under the form derived in Ref. [20] can be applied to Equation (8),

P<(ω) =
−2iIm{Pr(ω)}

1− exp[(}ω− µ)/(KBT)]
(9)
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together with the auxiliary variable: Λ(
→
k , ω) P r(

→
k ,ω)

1−exp[(}ω−µ)/(KBT)] , leading to the relation:

P<(
→
k , ω) = −2iIm{Λ(

→
k , ω)} (10)

Expressing P r(
→
k , ω) from Equation (8) in terms of Λ(

→
k , ω) the corresponding integro-differential

equation becomes

(}ω− ∆e(
→
k ) + iΓ)Λ(

→
k , ω) + ϑ ∑

→
k ′

W→
k−
→
k′

Λ(
→
k′ , ω) = −B (11)

where B = − tanh[(}ω−µ)/(2KBT)]
1−exp[(}ω−µ)/(KBT)] =

1
1+exp[(}ω−µ)/(KBT)] .

Before proceeding, the Hulthén potential [21–24] should be revised. The usual approximation for
a static 3D screened potential is the Yukawa potential, WY(

∣∣∣→r ∣∣∣) = −e2 exp (−κ
∣∣∣→r ∣∣∣)/(ε0r). However,

the corresponding Schrödinger equation does not have known analytical solutions. In contrast, the
Hulthén potential: W(

∣∣∣→r ∣∣∣) = −2e2κε−1
0 /((exp(2κ

∣∣∣→r ∣∣∣)− 1)), has known analytical solutions that
have proven to be very useful for the description of bulk absorption [22]. Recent applications have
confirmed its relevance to explain experimental luminescence studies [7–9]. Figure 3 shows that, in the
range of carrier densities and temperatures of interest, the Yukawa potential can be replaced by the
Hulthén potential with negligible differences in numerical values.
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Figure 3. Comparison of the Hulthén (dashed lines) and Yukawa (thin solid lines) potentials as a
function of distance. The black curves are for T = 10 K and N = 1010 carriers/cm3. The blue curves are
for T = 10 K and N = 1018 carriers/cm3 and the red curves are for T = 300 K and N = 1018 carriers/cm3.
Both cases depend on the temperature T and carrier density N through the inverse screening length
κ and the inset explains the results, because κ increases with increasing carrier density and with
decreasing temperature. The dot-dashed (cyan) curve is for T = 10 K, while the double-dot-dashed
(orange) curve is for T = 300 K.

The Fourier transform of the Hulthén potential has an analytical expression,

W→
q
= − 2πe2

Ωε′0κ
∣∣∣→q ∣∣∣ Im

ψ′(1 +
i
∣∣∣→q ∣∣∣
2κ

)

 (12)
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where Ω is the sample volume, ψ′ is the Trigamma function [26], κ is the screening wavenumber and
by including ϑ inW at Equation (11), ε′0 = ε0/ϑ. Analytical approximations for µ and κ are given
in Ref. [7]. Note that the bandgap renormalization including Coulomb hole and screened exchange
corrections reads

∆Eg = − e2κ

ε′0
−∑

→
q

W→
q
( fe(

→
q ) + fh(

→
q )). (13)

The Fermi functions fe, fh are evaluated at the peak of the spectral function for each particle,

i.e., in Equation (5), }ω = eλ(
→
k ). More details are given in Ref. [7]. Equation (13) goes beyond

phenomenological term for the bandgap shift [21–23], and also, in contrast to those, here we can in
principle take into account a reduction in the Coulomb interaction due to phase space filling through
the factor ϑ. Note however that in the range of carrier densities and temperatures of interest ϑ ≈ 1
i.e., ε′0 ≈ ε0, as shown in Figure 4.Materials 2017, 11, 2  6 of 14 
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absorption and gain, phase space filling (ߴ ≠ 1) is not taken into account. Since in the high density 
case where gain develops, the Hulthén potential decreases due to screening, which described by large ߢ in Equation (12), there is still good agreement with experiments. See e.g., Refs. [22,23]. 

Equation (11) can now be Fourier-transformed ݂(ݎԦ) = Ω(2ߨ)ଷ න݂௤ሬԦ݁ି௜௤ሬԦ∙௥Ԧ݀ଷݍ , ݂௤ሬԦ = 1Ωන݂(ݎԦ)݁௜௤ሬԦ∙௥Ԧ݀ଷ(14) ,ݎ 

ቈℏ߱ + ݅Γ − ௚ܧ + ℏଶ∇ଶ2݉∗ ቉(Ԧݎ)ࣱ+ Λ(ݎԦ, ߱) = −Ωℬߜ(ݎԦ). (15) 

Here Ω	 is the sample volume, ߜ(ݎԦ) denotes the Dirac delta function. Expanding Λ(ݎԦ, ߱) in the 
basis of eigenstates of the Hamiltonian: ℋ = −ℏమ∇మଶ௠ೝ  ,(Ԧݎ)ࣱ−

−ቈℏଶ∇ଶ2m୰ (Ԧݎ)቉߰஝(Ԧݎ)ࣱ+ = E஝߰஝(ݎԦ), Λ(ݎԦ, ω) =෍ܽఓ(ω)߰ஜ(ݎԦ).ஜ 	 (16) 

Thus, Equation (15) can be rewritten as ൣℏ߱ + ݅Γ − ௚ܧ −ℋ൧෍ܽఓ߰ఓ = −Ωℬߜ(ݎԦ).ఓ  (17) 

Projection onto state ߥ yields ܽఔ	൫ℏ߱ + ݅Γ − ௚ܧ − ఔ൯ܧ = −ℬ Ω ߰జ∗(0). (18) 

Substitution into Equation (16) 

Figure 4. Inversion factor, ϑ ≡ tanh[β(}ω− µ)/2] for GaAs as function of Detuning from
Bangdap = }ω− Eg and ranges of densities consistent with low temperature luminescence,
(a) T = 10 K [7–9] and (b) high temperature nonlinear absorption T = 300 K [14–16,22].

At quasi-equilibrium, used in Refs. [7–9,14–16,22], the total chemical potential µ is calculated
self-consistently with the many body renormalization of the bandgap Eg and can be written exactly as
µ = Eg + µ̃, where µ̃ is the total free carrier chemical potential calculated from the bottom of each band.
In other words, the inversion factor can be equivalently written as ϑ ≡ tanh

[
β(}ω− Eg − µ̃)/2

]
, and it

is now clear why Figure 4 has the detuning }ω− Eg in the x-axis. Furthermore, the 3D exciton binding
energy for GaAs is 4.2 meV and there is no luminescence of absorption for a detuning below 4.2 meV,
unless there are deep levels due to impurities and defects, which are not considered here. Thus the
approximation, ϑ ≈ 1 i.e., ε′0 ≈ ε0 for the dielectric constant used in the Hulthén potential is clearly
excellent in the low power luminescence case. Nonlinear absorption studies are only meaningful away
from population inversion leading to optical gain, i.e., the studies are in the range ϑ ≥ 1. Thus a
decreasing occupation reflects phase space feeling and even for ε′0 6= ε0 the approach is valid. In order
to study the gain regime, the approximation used in the literature is to make at the Hulthén potential
ε′0 = ε0 and consider the inversion factor only on the right hand side of Equation (8). In other words,
in the traditional “plasma theories” for bulk semiconductor absorption and gain, phase space filling
(ϑ 6= 1) is not taken into account. Since in the high density case where gain develops, the Hulthén
potential decreases due to screening, which described by large κ in Equation (12), there is still good
agreement with experiments. See e.g., Refs. [22,23].

Equation (11) can now be Fourier-transformed

f (
→
r ) =

Ω

(2π)3

∫
f→

q
e−i

→
q ·→r d3q, f→

q
=

1
Ω

∫
f (
→
r )ei

→
q ·→r d3r, (14)
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[
}ω + iΓ− Eg +

}2∇2

2m∗
+W(

→
r )
]

Λ(
→
r , ω) = −ΩBδ(

→
r ). (15)

Here Ω is the sample volume, δ(
→
r ) denotes the Dirac delta function. Expanding Λ(

→
r , ω) in the

basis of eigenstates of the Hamiltonian: H = − }2∇2

2mr
−W(

→
r ),

−
[
}2∇2

2mr
+W(

→
r )
]

ψν(
→
r ) = Eνψν(

→
r ), Λ(

→
r ,ω) = ∑

µ

aµ(ω)ψµ(
→
r ). (16)

Thus, Equation (15) can be rewritten as[
}ω + iΓ− Eg −H

]
∑
µ

aµψµ = −ΩBδ(
→
r ). (17)

Projection onto state ν yields

aν (}ω + iΓ− Eg − Eν) = −B Ω ψ∗υ(0). (18)

Substitution into Equation (16)

Λ(
→
r , ω) = ∑

ν

− ΩBψ∗ν(0)
}ω− Eg − Eν + iΓ

ψν(
→
r ). (19)

Fourier-transforming back to k-space

Λ(
→
k , ω) = ∑

ν

−Bψ∗ν(0)
}ω− Eg − Eν + iΓ

∫
d3r ψν(

→
r )ei

→
k ·→r . (20)

From Λ(ω) = ∑
→
k

Λ(
→
k , ω) and ∑

→
k

ei
→
k ·(→r −

→
r′ ) = Ω δ(

→
r −→r

′
), a closed expression can be obtained.

Λ(ω) = 2 ∑
ν

−ΩB|ψν(0)|2

}ω− Eg − Eν + iΓ
(21)

where a factor 2 for spin has been explicitly written out of the summation over all quantum numbers.
Introducing and combining Equations (1), (2), (10) and (21) leads to

P<(ω) = −i
8πe2

Ωc2 |Π|
2 Im{Λ(ω)} = 16π2e2

c2 B|Π|2 ∑
ν

δΓ(}ω− Eg − Eν) |ψν(0)|2, (22)

I(ω) =
4}ω2e2 |Π|2

c3(1 + exp[β(}ω− µ)]) ∑
ν

|ψν(0)|2δΓ(}ω− Eg − Eν), (23)

where δΓ = 1
π

Γ
(}ω−Eg−Eν)

2+Γ2 reduces to a Dirac delta function for Γ → 0. The velocity matrix

element is expressed in terms of the dipole moment matrix element and the fundamental bandgap as
|Π| = (E0

g/})|S|x|X|. Next, the Schrödinger Equation for the Hulthén potential must be solved, so
that ψν(0) can be inserted in Equation (23). The first step is to separate the wavefunction in radial and
angular parts. The label ν thus spans the set {n, l, m},

ψν(
→
r ) = fnl(r)Ylm(θ, ϕ) (24)
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The corresponding Schrödinger Equation, which is a generalized Wannier equation [23] can be
cast in the form:[

− }2

2µ

1
r2 (r

∂

∂r
)(r

∂

∂r
) +

1
r

∂

∂r
− L2

}2r2

]
ψν(
→
r )− e2κ

εoa2
0(exp(2κr)− 1)

ψν(
→
r ) = Eνψν(

→
r ) (25)

The energy eigenvalues depend only on the {n, l} quantum numbers, and thus we can replace
En by Enl . Introducing the 3D Rydberg e0 and Bohr Radius a0, as well λ = 2κ, g = 1/(κa0) and
εnl = Enl/(ε0a2

0), leads to

− d2 fnl
dr2 −

2
r

d fnl
dr

+

[
l(l + 1)

r2 − gλ2

eλr − 1

]
fnl = εnl fnl (26)

Note that the angular momentum operator has been applied to the wavefunction directly from
Equation (25) to Equation (26), i.e., L2ψν(

→
r ) = l(l + 1)}2ψν(

→
r ). Only solutions that do not vanish at

r = 0 contribute to the emitted power, so l = 0 is selected. The labels “nl” will be dropped at the
moment to simplify the notation,

− d2 f
dr2 −

2
r

d f
dr
− gλ2

eλr − 1
f = ε f . (27)

Introducing u = r f , and β =
√
− ε

λ2 , Equation (27) is transformed into

d2u
dr2 +

gλ2

eλr − 1
u = β2λ2u. (28)

The auxiliary variables, z = 1− e−λr and w = u
z(1−z)β , lead to the equation

z(z− 1)
d2w
dz2 + [2− z(2β + 3)]

dw
dz
− w[2β + 1− g] = 0 (29)

which reduces to the Hypergeometric Equation [26,27],

z(z− 1)
d2F
dz2 + [η − z(ξ + ζ + 1)]

dF
dz
− ξ ζ F = 0 (30)

ξ = β + 1 +
√

g + β2, ζ = β + 1−
√

g + β2, η = 2 (31)

F(ξ, ζ, η; z) = 1 +
ξζ

η

z
1!

+
ξ(ξ + 1)ζ(ζ + 1)

η(η + 1)
z2

2!
+ . . . (32)

The generalized Wannier Equation, Equation (25), has two types of solutions: bound states for
εν < 0 and unbound solutions for εν > 0. The wavefunctions and eigenvalues are thus different and it
makes sense to study each case separately and then add all contributions when a sum over all possible
ν as required from Equation (23).

2.2. Bound States

For bound states, εν < 0, and thus β is real. The function f must be normalized, so lim
r→∞

f (r) = 0.

This is achieved for either ξ or ζ a negative integer. Set e.g., ξ = 1− n, n = 1, 2, 3, . . ., in Equation (31),
leading to

β ≡ βn =
1

2n
(g− n2), εn = −λ2β2

n (33)
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Thus, this selected solution of the Hypergeometric equation that does not vanish at r = 0 is

u(r) = N z(1− z)βF(1− n, 1 + g/n, 2; z), (34)

where the normalization factor N is defined by the normalization condition:∫ ∞

0
r2| f (r)|2 =

∫ ∞

0
|u(r)|2 = 1, (35)

Since the wavefunction Ylm(θ, ϕ) is normalized to 1 over angular integration. Setting 1− n ≡ m or
equivalently n = m + 1, the other relations become: 2β = g/n− n or g/n + 1 = 2β + m + 1 + ν, ν = 1.
Equation (8.962.1) of Ref. [27] can be used leading to

F(−m, 2β + m + ν, ν + 1; z) = P(1,2β)
m (1− 2z)m!Γ(2)/Γ(m + 2) (36)

where the Legendre Polynomial P(α,β)
m and the Gamma function Γ have been used. Introducing

x = 1− 2z, the normalization constant thus reads

N−2 =
∫ ∞

0 z2(1− z)2β
(

m!
Γ(m+2)

)2[
P(1,2β)

m (1− 2z)
]2

dr

= 1
λ(m+1)2

∫ ∞
0 z2(1− z)2β

(
m!

Γ(m+2)

)2[
P(1,2β)

m (1− 2z)
]2

dz

= 1
2λ(m+1)2

∫ 1
−1

(
1−x

2

)2( 1+x
2

)2β−1[
P(1,2β)

m (x)
]2

dx.

(37)

However, P(1,2β)
m (−x) = P(2β,1)

m (x), see Equation (8.960) of Ref. [27] leading to

N−2 =
1

2λ(m + 1)2

∫ 1

−1

(
1 + x

2

)2(1− x
2

)2β−1[
P(2β,1)

m (x)
]2

dx, (38)

N−2 = 1
2λ(m+1)2

(
1
2

)2β
{∫ 1
−1 (1 + x)(1− x)2β−1

[
P(2β,1)

m (x)
]2
−
(

1
2

) ∫ 1
−1 (1 + x)(1− x)2β

[
P(2β,1)

m (x)
]2
}

(39)

N−2 ≡ 1

2λ(m + 1)2

(
1
2

)2β{
I1 −

1
2

I2

}
. (40)

The solutions for the integrals above are given by Equations (7.391.1) and (7.391.5) of Ref. [27],

I1 = 22β+1 Γ(2β + m + 1)Γ(2 + m)

m!(2β)Γ(2β + m + 2)
, I2 = 22β+2 Γ(2β + m + 1)Γ(2 + n)

m!(2β + 2m + 2)Γ(2β + m + 2)
(41)

Which combined with Equation (6.1.15) of Ref. [26], yields

N−2 =
2

4λβ(2β + n)(β + n)
(42)

However, 2β = g/n− n, n + 2β = g/n, 2n + 2β = g/n + n, β ≡ βn. Consequently,

N 2 =
λg3

2n

(
1
n2 −

n2

g2

)
(43)

The intensity spectrum requires |ψn(0)|2, where ψn(
→
r ) = NY00z(1− z)βn F(1− n, 1 + g, 2; z).

Note that Y00 = 1√
4π

,

lim
r→0

∣∣∣ψn(
→
r )
∣∣∣2 =

N 2

4π

(
λr
r

)2
(F(1− n, 1 + g, 2; 0))2 =

N 2λ2

4π
(44)
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Note that λ3 = 8κ3 and g3 = 1
a3

0κ3 . Furthermore, the bound state energies are En = e0a2
0ε = −e0a2

0λ2β2
n.

Thus, in summary

|ψn(0)|2 =
1

πa3
0

1
n

(
1
n2 −

n2

g2

)
, En = −e0

1
n2

(
1− n2

g

)2

. (45)

Note that |ψn(0)|2 ≥ 0 → 1/n2 − n2/g2 ≥ 0 → n ≤ √g → n ∈ {0, Int{√g }}. In other words,
the number of bound states that contribute to the power spectrum are determined by the size of the
inverse screening length. For zero screening, g→ ∞.

2.3. Continuum States

The unbound solutions that make a continuum have positive eigenvalues, εν > 0, and thus
imaginary βν = i

√
εν/λ. Dropping labels to simplify the development in the next equations yields

u = N z(1− z)iβF(1 + iβ +
√

g− β2, 1 + iβ−
√

g− β2, 2; z), (46)

which can be written for simplicity as

F(a, b, c; z), a = 1 + iβ +
√

g− β2, b = 1 + iβ−
√

g− β2, c = 2 (47)

Note that the transformation z = 1− e−λr is being used. The solution that will be later inserted in
Equation (23), will be normalized in a sphere of radius r = R and asymptotic solutions, obtained a
large radius R will be investigated. Next, Equation (15.3.6) from Ref. [26] is used, i.e., F(a, b, c; z) =
Γ(c)Γ(c−a−b)
Γ(c−a)Γ(c−b) F(a, b, a + b− c + 1, 1− z) + (1− z)c−a−b Γ(c)Γ(c−a−b)

Γ(a)Γ(b) F(c− a, c− b, c− a− 1 + 1, 1− z).
Furthermore, note that lim

R→∞
z = 1 and for all values of ξ, λ, δ, F(ξ, λ, δ; 0) = 1. Thus,

lim
R→∞

F(a, b, c; z) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

+ (1− z)c−a−b Γ(c)Γ(a + b− c)
Γ(a)Γ(b)

(48)

Γ(c) = Γ(2) = 1, c− a− b = −2i|β|, a + b− c = 2i|β|, c− a = 1− iβ−
√

g− β2 = b∗, c− b =

1− iβ +
√

g− β2 = a∗, which, combined with Γ(z∗) = [Γ(z)]∗ (Equation (6.1.2.3) of Ref. [26]), gives in
the asymptotic limit

F(a, b, c; z) =
Γ(c− a− b)
Γ(b∗)Γ(a∗)

+ (1− z)−2iβ Γ∗(c− a− b)
Γ(a)Γ(b)

(49)

Leading to asymptotic forms of u, |u|2

u = N (1− z)iλβR
{

Γ(c− a− b)
Γ(b∗)Γ(a∗)

+
Γ∗(c− a− b)

Γ(a)Γ(b)
e−2iλβR

}
(50)

|u|2 = N 2
∣∣∣ Γ(c−a−b)

Γ(b∗)Γ(a∗) e−iλβR + Γ∗(c−a−b)
Γ(a)Γ(b) eiλβR

∣∣∣2 = 4N2
∣∣∣ Γ(c−a−b)

Γ(c−a)Γ(c−b)

∣∣∣2(cos (λβR + ξ))2 (51)

where ξ = arg{ Γ(c−a−b)
Γ(c−a)Γ(c−b)}. The normalization constant is thus given by N−2 =

lim
R→∞

4
∣∣∣ Γ(c−a−b)

Γ(c−a)Γ(c−b)

∣∣∣2 ∫ R
0 (cos (λβr + ξ))2dr,

N =

√
1

2R

∣∣∣∣ Γ(c− a− b)
Γ(c− a)Γ(c− b)

∣∣∣∣2. (52)
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However, |Γ(−2i|β||2 = π
2|β|sinh(2π|β|) , see e.g., Equations (6.1.29) and (6.1.31) of Ref. [26], plus a

little algebra deliver the continuum normalization constant

N =

√√√√ 2
R

π|β|gsinh(2π|β|)

cosh (2π|β|)− cos (
√

g− |β|2)
. (53)

The required value of the wave function at the origin can thus be expressed as

ψ(0) = lim
r→0

N
1√
4π

z(1− z)i|β|

r
F(a, b, c; 0). (54)

Next, note that lim
r→0

z = 0, but lim
r→0

z
r = λ, leading to

|ψ(0)|2 =
λ2

4π

4π

R
|β|gsinh(2π|β|)

cosh (2π|β|)− cos (
√

g− |β|2)
. (55)

The sum of continuum states becomes an integral, ∑
ν

. . . = Rλ
π

∫ ∞
0 . . . Introducing 2 for spin and

changing variables, the continuum contribution becomes

∑
ν

2|ψν(0)|2 =
1

πa3
0

∫ ∞

0

sinh(πg
√

x)
cosh (πg

√
x)− cos (π

√
4g− g2x)

(56)

which combines with the bound states

∑
n

2|ψn(0)|2 ∑
n

2
πa3

0

1
n

(
1
n2 −

n2

g2

)
(57)

to deliver the power spectrum

I(ω) = I0
1+exp(β[}ω−µ])

×
{

∑
Int{√g}
n=1

4π
n ( 1

n2 − n2

g2 )δΓ(ζ − en) +
∫ ∞

0
2π sin h(πg

√
x)

cosh (πg
√

x)−cos (π
√

4g−g2x)
δΓ(ζ − x)dx

}
. (58)

Here, ζ =
}ω−Eg

e0
, en = − 1

n2 (1− n2

g )
2
, I0 = }e2ω2|Π|2

πe0c3a3
0

and the square of the velocity matrix element

is |Π|2 = (E0
g/})2|S|x|X|2 =

E0
g(E0

g+∆)
2mc(E0

g+2∆/3)
, where the spin orbit shift, the free-carrier bandgap, and

renormalized bandgap are given by ∆, E0
g, and Eg.

Note that this approach does not include cavity effects, which can be introduced in the Photon
Green’s functions solution following Ref. [19]. Quasi-periodic structures can also be addressed by a
Green’s functions formalism as shown in Ref. [28].

3. Numerical Application

The goal of this section is to illustrate the approach and the many quantities and parameters
used making reference to published material, where the equations are used delivering very good
agreement with experimental data. Photoluminescence is a very powerful tool to characterize
semiconductor materials and map specific characteristics of new devices. Equation (58) is the reference,
since it delivers the emission spectrum, which can be directly compared with experimental data.
The carriers generated by the photo excitation process modify the spectrum and these modifications
are described in Equation (58) approximately by the corrections induced by the (screened) potential,
bandgap renormalization, and changes in linewidth governed by the dephasing or scattering Γ.
The temperature T can be measured and used as an input parameter. The carrier density N can be
estimated by measuring the input power and its spot size when focused on the sample, but in our
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recent investigations, where this theory has been very successfully compared with experiments [7–9],
it has been treated as a free parameter, which has been globally adjusted. The other parameters that
characterize the material, i.e., the fundamental band gap E0

g, the electron and hole effective masses
me , mh, the static dielectric constant ε0, and the spin-orbit shift ∆, can either be found in the literature
or robust numerical methods such as simulated annealing can be used to determine these parameters
by direct comparison with experiments.

As a reference for the material parameters recently used for dilute nitrides and bismides and
the corresponding bandstructure calculations that lead to the material parameters, see: Ref. [7] for
GaAs1−xBix; Ref. [9] for InAs1−xNx and Ref. [8] for more complex quaternary materials, such as
InAs1−x−yNxSby. The “s-shape” in the luminescence profiles as a function of temperature for these
materials have been well explained in Refs. [7–9]. However, in the case of completely new materials,
expecting to have general characteristics as the ternary or quaternary above, the parameters leading
to the bandstructure may be unknown. This theory can be used as a numerical characterization tool
as follows.

The corresponding bandstructure can depend on a number of unknown parameters for new
compounds, but the approach used in Refs. [7–9] can be extended in the following way to extract
these parameters by a systematic comparison between theory and experiments. For fixed excitation
power, the luminescence can be measured for a number of different temperature points. The dephasing
corresponding to different excitation processes can be calculated or taken also as a parameters. Thus,
at each Temperature T, there is an ensemble of parameters, such as

E = {me, mh, Γ, N, E0
g}. (59)

Experiments provide a series of data points measured at T = (T1, . . . , TN). The calculated
luminescence spectrum will be a function of T and will depend on the ensemble of parameters, denoted
uC(Ti). The least squares method leads to estimates of the parameter ensemble E by minimizing the
residual between the theoretical function and the experiments. Therefore, the problem becomes

min
E

N

∑
i=1

(uC(Ti)− di)
2. (60)

Trust Region-Reflective (TRR) methods deliver an efficient solution for this numerical problem
and Ref. [8] gives further details of their application.

Figure 5 depicts a numerical example to further illustrate choices for the main input parameters.
Short period superlattices with strong delocalization of the electron and hole wavefunctions can be
described in many cases by anisotropic 3D media, characterized by in-plane and transverse (along
the growth direction) effective masses and dielectric constants. The anisotropy parameter γ is given
by the ratio between the in-plane µ‖ and perpendicular µ⊥ reduced effective masses, γ = µ‖/µ⊥,
with 1

µ‖
= 1

me‖
+ 1

mh‖
and 1

µ⊥
= 1

me⊥
+ 1

mh⊥
which are calculated from the non-interacting superlattice

HamiltonianH0, 1
mi‖

= }−2∂2/∂k2
i‖〈Ψ|H0|Ψ〉, 1

mi⊥
= }−2∂2/∂k2

i⊥〈Ψ|H0|Ψ〉, for i = e, h.
These can be calculated from the corresponding free carrier Hamiltonian, and full details of the

method, which has led to good agreement with experimental data, can be found in Refs. [15,16,21,29].
Figure 5 shows calculated luminescence using the modified parameters determined by anisotropic
medium theory for a short period GaAs–Al0.3Ga0.7As superlattice with repeated barrier and well
widths equal to 2 nm. The resulting effective masses are me‖ ≈ 0.08; mh‖ ≈ 0.12, me⊥ ≈ 0.08,
mh⊥ ≈ 0.53. These lead the anisotropy parameter γ = 0.67. The resulting exciton binding energy and
Bohr radius are given respectively by e0 = 5.37 meV and a0 = 11.04 nm.
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Figure 5. Luminescence for a GaAs–Al0.3Ga0.7As superlattice with repeated barrier and well widths 
equal to 2 nm. All curves have been calculated with the same broadening Γ = 5.4 meV and a carrier 
density N = 1014 cm−3 From left to right, the orange, black, blue, violet, green and turquoise curves 
have been calculated for temperatures given respectively by T = 150 K, 170 K, 200 K, 250 K, 270 K, and 
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Figure 5. Luminescence for a GaAs–Al0.3Ga0.7As superlattice with repeated barrier and well widths
equal to 2 nm. All curves have been calculated with the same broadening Γ = 5.4 meV and a carrier
density N = 1014 cm−3 From left to right, the orange, black, blue, violet, green and turquoise curves
have been calculated for temperatures given respectively by T = 150 K, 170 K, 200 K, 250 K, 270 K, and
300 K. The corresponding free carrier bandgaps needed for input are E0

g = 2.021 eV, 2.015 eV, 2.003 eV,
1.982 eV, 1.974 eV, and 1.960 eV.

Except of course for the actual value of the bandgap, which is larger due to quantum confinement,
the strong delocalization of electrons and holes in this short period superlattice make the evolution
of the luminescence with temperature look qualitatively similar to a three dimensional (bulk)
semiconductor, notably the evolution of the line-shape. This is quite similar to the calculations
presented in Ref. [9], which are in very good agreement with the experiments discussed in Ref. [13].

4. Conclusions

Photon Green’s function techniques have been used to study different types of luminescence over
the years, but the solutions are typically numerically intensive and not accessible for experimentalists
or non-specialists. To bridge this gap, a simple analytical solution of the relevant Green’s functions was
necessary and the approach described here meets those needs. Notably, the evolution of luminescence
with temperature has been successfully compared for GaAsBi [7] and InAs(N,Sb) [8] and InAsN [9]
dilute semiconductors. Furthermore, the approach has been used to predict nonlinearities in short
period superlattices treaded as anisotropic three-dimensional media [14–16]. However, details of
the mathematical steps needed to achieve the final formulas used in these publications have not
been previously presented and they are given in this review, complemented by numerical results
demonstrating the range of validity of the main approximations used in the development of the
approach. To complete the picture, an application section shows how to use the method as a numerical
characterization machine, and the main parameters needed in typical simulations are illustrated with
results for luminescence of short period superlattices. Screening of the Coulomb interaction between
electrons and holes is discussed by means of the Hulthén potential and the steps provided are suitable
as a guideline to the study of other interacting potentials of interest. They can be followed for further
development of a suite of algorithms for efficient and easily programmable numerical characterization
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tools for a host of new bulk materials or superlattices that can described be as effective 3D media using
anisotropic medium approximations.
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