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Abstract: In this paper, a novel inverse computation approach is proposed to extract the anisotropic
plasticity parameters of metal materials by using inverse analysis and dual indentation tests. Based on
dimensional analysis and extensive finite element (FE) simulations, four independent dimensionless
functions are derived to correlate the anisotropic plasticity parameters with material responses in dual
indentation tests. Besides, an inverse calculation algorithm is suggested, to estimate the unknown
anisotropic parameters of the indented specimens using the information collected from indentation.
The proposed numerical approach is applied on a series of engineering materials. Results show that
the inverse analysis is ill-posed when only the load-displacement (P-h) curves in dual indentation
tests were used. This problem can be effectively alleviated by introducing the pile-up effect as the
additional information. The new method is proved to be very effective and reliable.

Keywords: anisotropic plasticity; parameters identification; dimensional analysis; finite element
analysis; indentation; inverse analysis

1. Introduction

In nature and synthetic material systems, anisotropic materials are often observed and widely
used in industrial products, such as rolled sheets, composites, thin films/coatings and so on [1–3].
Since the plastic anisotropy has very obvious influence on the formability and performance of metal
materials [4,5], e.g., the in-plane plastic anisotropy is closely related to the tendency of rolled sheets to
form ears during drawing [6,7], its mechanical testing is especially important, for the accurate plasticity
modeling [8,9]. Traditionally, the plastic anisotropy of metal materials is analyzed by conducting
several uniaxial tensile/compression tests along the orthogonal directions. However, this testing
method is destructive, and not applicable when the sample volume is exceedingly small [1,3].

In the past few years, with the rapid development of high resolution depth-sensing instrumented
equipment, indentation test has been widely used in the extraction of various mechanical properties
of materials, e.g., elastic modulus [10], uniaxial stress strain curves of the isotropic materials [11–15],
residual stresses [16,17] as well as the material anisotropy [18–22]. One advantage of indentation
test is that it is nondestructive [12,13]. Besides, it is well suitable for the extraction of the local
mechanical properties from the exceedingly small samples, for which the classical uniaxial tests are
not applicable [13–15].

Vlassak and Nix fully investigated the elastic anisotropy of single crystals, and revealed
that, the “averaged” elastic effects under indentation seems to reduce the sensitivity to measure
it [18,19]. To extract the anisotropic parameters of materials using instrumented indentation,
researchers resorted to finite element (FE) simulation and inverse analysis, of which some sophisticated
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optimization algorithms were used. Bocciarelli et al. [20] used conical indentation to calibrate the
anisotropic parameters of Hill’s plasticity model, by proper weighting the indentation P-h curve and
residual imprint mapping. Nakamura and Gu [21] established a method to estimate the anisotropic
elasto-plasticity parameters of the thermally sprayed coatings, of which two indenters with different
shapes were considered. It was found that, the P-h curves obtained from these two indenters exhibit
opposite behaviors as the modulus ratio changes. Besides, they observed the size and anisotropic
effects. Bolzon and Talassi [22] established a novel protocol to extract the elasto-plasticity parameters of
anisotropic materials using proper orthogonal decomposition and radial basis functions approximation,
of which the numerical computation burden was greatly reduced. However, in these methods [20–22],
iterative FE simulations are needed in the parameters identification processes, and thus making these
protocols not always readily applicable [3,23,24].

Dimensional analysis is a very useful mathematical protocol. It has been widely used to
deduce the closed form of universal functions, which are able to effectively capture the indentation
responses of materials [3,25]. Besides, it serves as a surrogate model for predicting the indentation
shape factors with satisfactory accuracy. Based on dimensional analysis and spherical indentation,
Yonezu et al. [3] established a simple framework to evaluate the material plastic anisotropy.
In Ref. [3], the concept of representative strain, originally proposed in conical indentation for isotropic
materials [11], was extended to spherical indentation on the anisotropic materials. Similarly, Bhat and
Venkatesh [25] investigated the computational modeling of the forward and inverse problems in
indentation of transversely isotropic power-law hardening materials using dimensional analysis and
FE simulation. Although their methods [3,25] are able to extract the anisotropic parameters of materials,
the uniqueness of the inverse identified set of anisotropic parameters and its relevant physics are not
revealed [12,13,26,27].

In this paper, we proposed a novel inverse computation approach to extract the anisotropic
plasticity parameters of metal materials using inverse analysis and dual indentation tests.
The advantage of this method is that, the unknown anisotropic parameters of the indented specimens
can be readily extracted when the indentation data were inputted into the well-established inverse
algorithm. Besides, uniqueness of the inverse identified set of parameters in the relevant questions are
carefully analyzed.

2. Numerical Approach

2.1. Material Model

To describe the deformation behaviors of anisotropic materials, Hill’s plasticity theory [28] is
used, for its relatively simple form and the anisotropic constants are easy to be defined through
experiments [28]. The general stress state of this yield criterion is expressed in Equation (1).

f (σ) =
√

F(σ22 − σ33)
2 + G(σ33 − σ11)

2 + H(σ11 − σ22)
2 + 2Lτ2

23 + 2Mτ2
31 + 2Nτ2

12 (1)

where, F, G, H, L, M and N are the anisotropic parameters, and they represent the current state
of anisotropy [3,28]. These six anisotropic parameters can be determined by using Equation (2).
The normal and shear yield stress along three orthogonal axes (e.g., 1, 2 and 3 in the material coordinate
defined in Figure 1) are defined as σ11, σ22, σ33 and τ12, τ31, τ23, respectively.
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The six yield stress ratios, R11, R22, R33, R12, R13 and R23 in respectively three normal (R11, R22

and R33) and three shear (R12, R13 and R23) directions are used to quantify the orthogonal anisotropic
plasticity, as shown in Figure 1. These six anisotropic constants are inputted by using the POTENTIAL
sub-option in ABAQUS software (version 6.14, Dassault, Paris, France) [29]. The R-values are defined
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by using the reference yield stress σY, and the reference shear yield stress τY is defined as τY = σY/
√

3
according to Von Misses criterion. For the anisotropic materials considered in the present study,
the other five R-values are maintained as identical at 1, and only R22 is varied to simulate the anisotropic
plasticity along y (2)-axis as shown by the material coordinate (right-hand) defined in Figure 1.
More details about the anisotropic material model studied here can be found in [3,29]. The longitudinal
direction (LD) is along y, (2)-axis, and the transverse direction (TD) is along x, (1)-axis. Stress strain
curve along transverse direction is defined as the reference input amount, and the longitudinal yield
stress is determined by varying R22 value using the relation σYL = R22σYT .{

σL = En
s σ1−n

YL εn
L; for σL > σYL

σT = En
s σ1−n

YT εn
T ; for σT > σYT

(3)

The Hollomon hardening model with linear elastic and power law strain hardening plasticity is
used to describe the stress strain curves of the anisotropic materials. The strain hardening behaviors
of materials is assumed as isotropic using a single strain hardening exponent of “n” for both the
longitudinal and transverse directions, as expressed in Equation (3). The Hollomon hardening law is
able to describe the stress strain behaviors of most engineering materials [30,31]. The elastic modulus
is usually isotropic, and it is denoted as Es. Figure 2 shows the stress strain curves used to fully
characterize the constitutive behaviors of the in-plane anisotropic materials in the present study.
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2.2. Finite Element Model, Meshes and Boundary Conditions

The ABAQUS commercial codes [29] were used to simulate the deformation behaviors of
anisotropic materials in dual conical indentation tests. The FE model was built in one-quarter to
take account of the symmetric structures for both the material and geometry properties in conical
indentation, as shown in Figure 1. Two indenters with different inner half angles, 60◦ and 70◦, were
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used separately. Indenter was assumed as rigid body using R3D4 element type. Specimen was modeled
using C3D8R element type. Here, very refined meshes were created in the main deformation region,
e.g., the local contact region between indenter and specimen, in order to obtain very accurate numerical
results. In this region, the minimum element size was 0.625 µm. The relatively coarse meshes were
created in the far away regions, so that the total computation burden can be reduced. The trapezoid
meshes were used in the transition area between the two adjacent regions with different element
sizes. The design of meshes in the FE model was accomplished with the assistance of Hypermesh
software [32], in order to obtain better numerical accuracy and efficiency. Contact friction between
surfaces of specimen and indenter was fixed at 0.1, because the contact friction between metals and
diamond is around this value [33,34]. Poisson’s ratio of specimen was fixed at 0.3, and it is a minor
factor in indentation studies [35]. Height and radius of specimen was 0.64 mm, and this value is large
enough to avoid the influence of outer boundary effects. Roller boundary conditions (BC) were applied
on the symmetric faces (denoted as A and B in Figure 1) of specimen, and displacement of bottom nodes
of specimen was fixed. Indenter was controlled by the displacement up to maximum depth 40 µm,
and then the withdrawal of indenter was simulated in one step. The FE model, meshes and boundary
conditions described above were the same for the two simulation models with different indenter apex
angles. Total number of meshes were 22,940 for specimen, and 1600 and 2000 for the indenters with
inner half angles, 60◦ and 70◦ respectively. Effectiveness and convergence of the FE model were verified
by comparing the computation results with those calculated by a complete model (full 360 degree
model). Figure 3 shows the comparison of load-displacement curves calculated from the one-quarter
model and the complete model, of which Es = 100 GPa, σYT = 200 MPa, n = 0.1, and R22 = 1.0. It shows
the P-h curves obtained from these two models are nearly the same. Result indicates the effectiveness
and convergence of the established one-quarter FE model in the study are good.
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2.3. Influence of Anisotropic Plasticity on the Material Response in Conical Indentation

Figures 4 and 5 show the influence of anisotropic parameter (yield stress ratio R22) on the material
responses in conical indentation, of which inner half angle of the selected indenter was 70.3◦. Es, σYT
and n were fixed, and only R22 value was varied from 1.0, 1.2, 1.5 to 2.0. Figure 4 shows the influence
of R22 on the P-h curve in conical indentation. In this figure, indentation force is monotonously raising
with the increase of R22 under the same penetration depth. However, the influence of R22 on the
unloading curve is negligible, because of the pure elastic unloading process.

Figure 5a shows the residual imprint mapping left on the surface of specimen after indenter
withdrawal. Es, σYT , n and R22 were fixed at 100 GPa, 200 MPa, 0.1 and 1.5, respectively. In Figure 5a,
the residual imprint mapping exhibits distinct anisotropy, e.g., the vertical displacement distribution
along longitudinal and transverse directions are different. To further reveal this phenomenon, Es, σYT ,
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n are fixed and R22 value is varied from 1.0, 1.2, 1.5 to 2.0. The influence of R22 value on the residual
imprints along longitudinal and transverse directions are plotted in Figure 5b. In this figure, it shows
clearly that, the pile-up values along these two orthogonal directions exhibit contrary trends with R22

increases. Besides, the direction with lower yield stress is able to exhibit a higher pile-up value.
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3. The Model

3.1. Dimensional Analysis in Indentation of Anisotropic Materials

In this section, dimensional analysis and extensive FE simulations are performed to deduce
the forward relationships between anisotropic parameters and material responses in dual conical
indentation tests. The loading part of indentation P-h curve can be well approximated by the famous
Kick’s law [36,37], as expressed in Equation (4).

P = Cθh2
m (4)

where, P is the indentation force, hm the maximum indentation depth. Cθ is the loading curvature and
θ represents the inner half angle of the selected indenters.

In the present study, the material can be fully characterized by five independent parameters: (Es,
ν, σYT , n, R22), where Es and ν are the elastic modulus and Poisson’s ratio, respectively. In indentation
P-h curve, only Cθ is relatively sensitive to the variation of anisotropic parameter R22, as it was shown
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in Figure 4. Therefore, value Cθ is used as the effective indentation shape factor, and it should be the
function of indenter geometry and material properties. This function is defined as fθ , as expressed in
Equation (5).

Pθ = fθ(Es, ν, Ei, νi, σYT , n, R22, hm) and θ = 60
◦
, 70.3

◦
(5)

where, Ei and νi represent the elastic modulus and Poisson’s ratio of indenter. In all the indentation
simulation works, the indenter was assumed as rigid body. So, the reduced modulus Er is used here,
and it is defined as Er = Es/

(
1− ν2

s
)

[38]. Using the Π theorem [39], Equation (5) can be converted
into the dimensionless form, as expressed in Equations (6) and (7).

P60

Erh2
m

=
C60

Er
= Π60

1

(
σYT
Er

, n, R22

)
(6)

and
P70.3

Erh2
m

=
C70.3

Er
= Π70.3

2

(
σYT
Er

, n, R22

)
(7)

where, Π60
1 and Π70.3

2 are the dimensionless functions in dual conical indentation tests, with 60
◦

and
70.3

◦
of the inner half angles of the selected indenters.

Surface deformation of materials has long been used as important experiment information
in indentation studies [13,40–43]. Figure 6 shows the schematic of the residual imprint in conical
indentation. In this figure, hc is the residual contact depth, and h f the residual indentation depth.
When hc/h f > 1, the material shows pile-up effect. While, the sinking-in effect happens if hc/h f < 1.
In the present study, the material exhibits different pile-up values along the two orthogonal directions,
because of plastic anisotropy. Therefore, the surface deformation parameters can be described by the
function of indenter geometry and material properties, as expressed in Equation (8).

hcx = fθ(Er, σYT , n, R22, hm) and hcy = fθ(Er, σYT , n, R22, hm) (8)

where, hcx and hcy represent the residual contact depths along transverse and longitudinal directions,
respectively. According to Π theorem [39], Equation (8) can be converted into the dimensionless
forms as

h60
cx

hm
= Π60

3

(
σYT
Er

, n, R22

)
(9)

and
h60

cy

hm
= Π60

4

(
σYT
Er

, n, R22

)
(10)

In the present study, the four dimensionless functions in Equations (6), (7), (9) and (10) were used to
correlate the anisotropic plasticity parameters with material responses in dual conical indentation tests.

Materials 2017, 10, x FOR PEER REVIEW  6 of 18 

 

= ( , , , , , , , ℎ ) and = 60 , 70.3  (5) 

where,  and  represent the elastic modulus and Poisson’s ratio of indenter. In all the indentation 
simulation works, the indenter was assumed as rigid body. So, the reduced modulus  is used here, 
and it is defined as = (1 − )⁄  [38]. Using the Π theorem [39], Equation (5) can be converted 
into the dimensionless form, as expressed in Equations (6) and (7).  

ℎ = = Π , ,  (6) 

and .ℎ = . = Π . , ,  (7) 

where, Π  and Π .  are the dimensionless functions in dual conical indentation tests, with 60  
and 70.3  of the inner half angles of the selected indenters.  

Surface deformation of materials has long been used as important experiment information in 
indentation studies [13,40–43]. Figure 6 shows the schematic of the residual imprint in conical 
indentation. In this figure, ℎ  is the residual contact depth, and ℎ  the residual indentation depth. 
When ℎ ℎ⁄ > 1, the material shows pile-up effect. While, the sinking-in effect happens if ℎ ℎ⁄ <1. In the present study, the material exhibits different pile-up values along the two orthogonal 
directions, because of plastic anisotropy. Therefore, the surface deformation parameters can be 
described by the function of indenter geometry and material properties, as expressed in Equation (8).  ℎ = ( , , , , ℎ ) and ℎ = ( , , , , ℎ ) (8) 

where, ℎ  and ℎ  represent the residual contact depths along transverse and longitudinal 
directions, respectively. According to Π  theorem [39], Equation (8) can be converted into the 
dimensionless forms as  ℎℎ = Π , ,  (9) 

and  ℎℎ = Π , ,  (10) 

In the present study, the four dimensionless functions in Equations (6), (7), (9) and (10) were 
used to correlate the anisotropic plasticity parameters with material responses in dual conical 
indentation tests.  

 

Figure 6. Schematic of the residual imprint in conical indentation. 

  

Figure 6. Schematic of the residual imprint in conical indentation.



Materials 2018, 11, 12 7 of 18

3.2. Finite Element Analysis and Numerical Regression

The extensive FE simulations were used to deduce the explicit forms of these four dimensionless
functions, using the numerical approach developed in Section 2. Total 128 different combinations
of material parameters were used in the FE simulations and regression analyses, and they are listed
in Table 1. Regression result shows that, the third polynomial basis functions can be used to well
approximate all of these four dimensionless functions, and they are expressed as the following

P60
Erh2

m
= C60

Er
= Π60

1

(
σYT
Er

, n, R22

)
= Π60

1 (ξ, δ, η)

= a1 + a2ξ + a3δ + a4η + a5ξδ + a6ξη + a7δη + a8ξ2 + a9δ2

+a10η2 + a11ξδη + a12ξδ2 + a13ξη2 + a14ξ2δ + a15δη2 + a16ξ2η

+a17δ2η + a18ξ3 + a19δ3 + a20η3

(11)

P70.3
Erh2

m
= C70.3

Er
= Π70.3

2

(
σYT
Er

, n, R22

)
= Π70.3

2 (ξ, δ, η)

= b1 + b2ξ + b3δ + b4η + b5ξδ + b6ξη + b7δη + b8ξ2 + b9δ2

+b10η2 + b11ξδη + b12ξδ2 + b13ξη2 + b14ξ2δ + b15δη2 + b16ξ2η

+b17δ2η + b18ξ3 + b19δ3 + b20η3

(12)

h60
cx

hm
= Π60

3

(
σYT
Er

, n, R22

)
= Π60

3 (ξ, δ, η)

= c1 + c2ξ + c3δ + c4η + c5ξδ + c6ξη + c7δη + c8ξ2 + c9δ2 + c10η2

+c11ξδη + c12ξδ2 + c13ξη2 + c14ξ2δ + c15δη2 + c16ξ2η + c17δ2η

+c18ξ3 + c19δ3 + c20η3

(13)

h60
cy

hm
= Π60

4

(
σYT
Er

, n, R22

)
= Π60

4 (ξ, δ, η)

= d1 + d2ξ + d3δ + d4η + d5ξδ + d6ξη + d7δη + d8ξ2 + d9δ2

+d10η2 + d11ξδη + d12ξδ2 + d13ξη2 + d14ξ2δ + d15δη2 + d16ξ2η

+d17δ2η + d18ξ3 + d19δ3 + d20η3

(14)

where, ξ = σYT/Er, δ = n and η = R22. The fitting parameters in Equations (11)–(14) are listed in
Table 2.

Table 1. Material parameters used in the 128 FE analyses.

Property Values

E (GPa) 50, 100, 200, 300
σYT (MPa) 100, 200, 400, 800

E/σYT 62.5, 125, 250, 500, 1000, 1500, 2000, 3000
n 0, 0.1, 0.3, 0.5

R22 1.0, 1.2, 1.5, 2.0

Figure 7 shows the representative fitting surfaces of Π60
1 and Π70.3

2 , as the functions of σYT/Er

and n for different R22 values, and their comparison with the FE data, respectively in Figure 7a for
R22 = 1.0, in Figure 7b for R22 = 1.2, in Figure 7c for R22 = 1.5, and in Figure 7d for R22 = 2.0.
In Figure 7, the dots (black color) are the data obtained from FE analyses. It shows in Figure 7, that
the data obtained from FE analyses can be well represented by the fitting functions of Equations (11)
and (12).
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Table 2. Fitting parameters of the four dimensionless functions, Π60
1 , Π70.3

2 , Π60
3 and Π60

4 in
Equations (11)–(14).

Number ai(Π60
1 ) bi(Π70.3

2 ) ci(Π60
3 ) di(Π60

4 )

1 −4.231 × 10−3 1.383 × 10−1 8.156 × 10−1 1.693
2 5.836 × 101 1.369 × 102 −1.037E × 101 −3.853 × 101

3 −3.104 × 10−3 3.667 × 10−2 −5.583 × 10−1 −1.642
4 −1.288 × 10−2 −3.294 × 10−1 5.732 × 10−1 −6.018 × 10−1

5 9.074 × 101 1.380 × 102 1.812 × 101 5.394 × 101

6 2.485 3.709 × 10−1 −1.793 × 101 8.383
7 3.909 × 10−2 5.938 × 10−2 −4.834 ×10−1 5.938 × 10−1

8 −5.039 × 103 −1.184 × 104 9.044 × 102 1.516 × 103

9 2.937 × 10−1 6.555 × 10−1 4.262 × 10−1 1.552
10 1.022 × 10−2 2.287 × 10−1 −1.510 × 10−1 1.888 × 10−1

11 −5.223 × 10−1 −4.911 −1.663 −8.119
12 −2.626 × 101 −5.974 × 101 6.249 −1.186 × 101

13 6.471 × 10−2 1.767 3.892 5.897 × 10−1

14 −4.077 × 103 −5.865 × 103 2.951 × 102 −9.830 × 102

15 −2.092 × 10−3 2.761 × 10−3 1.200 × 10−1 −5.669 × 10−2

16 −8.764E × 101 −1.938 × 102 1.851 × 102 −1.827 × 102

17 −4.543 × 10−3 −3.425 × 10−2 −6.207 × 10−2 −4.268 × 10−1

18 2.047 × 105 4.573 × 105 −3.351 × 104 −2.923 × 104

19 3.892 × 10−1 4.126 × 10−1 1.099 × 10−1 −8.115 × 10−1

20 −2.749 × 10−3 −5.150 × 10−2 8.181 × 10−3 −2.407 × 10−2

R2 0.999 0.998 0.998 0.997
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Similarly, Figure 8 shows the representative fitting surfaces of dimensionless functions Π60
3 and

Π60
4 , and their comparison with the FE data (the dots with different colors), respectively in Figure 8a

for Π60
3 and in Figure 8b for Π60

4 . For the comparison purpose, the dots with four different colors
are used in this Figure, respectively for R22 = 1.0 (Purple), R22 = 1.2 (Gray), R22 = 1.5 (Red) and
R22 = 2.0 (Black). As can be seen from Figure 8 that, all the dots are well approximated by the fitting
functions of Equations (13) and (14).Materials 2017, 10, x FOR PEER REVIEW  9 of 18 
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3.3. Inverse Analysis Algorithm for Predicting the Anisotropic Parameters

Figure 9 shows the flow diagram for predicting the unknown anisotropic parameters, σYT , n and
R22 of the indented specimens using the information collected from indentation. The proposed inverse
calculation algorithm is described as the following.
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After dual indentation tests, the load-displacement curve and residual imprint left on the surface
of specimen are recorded. Therefore, the experimental parameters, C60, C70.3, hm, h60

cx , h60
cy and S are

obtained. If the elastic modulus Es is known a prior, the reduced elastic modulus Er can be determined
by relation Er = Es/

(
1− ν2

s
)
. If Es is unknown, it can be determined by the famous Oliver-Pharr

method [10]. The three unknown anisotropic parameters (Er/σYT , n, R22) are varied in a wide range
with appropriate increments, and then the errors between “experiment measurements” with respect
to those predicted by the four dimensionless functions, Π60

1 , Π70.3
2 , Π60

3 and Π60
4 , are calculated for

each combination of the anisotropic plasticity parameters. The summation of the values of these four
relative errors from Π60

1 , Π70.3
2 , Π60

3 and Π60
4 are considered as the total error etol , and the roots of

(Er/σYT , n, R22) are determined by finding a best combination, which leads to the minimum value of
the total error. In Figure 9, two parameters, λ1 and λ2 are the weighting coefficients. When λ1 = 1 and
λ2 = 0, only the P-h curves in dual indentation tests were used in the inverse analysis. When λ1 = 1
and λ2 = 1, the pile-up value will be introduced as the additional information in the inverse analysis.
Table 3 listed the anisotropic parameters of four engineering materials.

Table 3. Four engineering materials and their anisotropic parameters [25,44].

Materials E0 (GPa) σYT (MPa) σYL/σYT n

Al Castings 242.0-T21 71.0 155.0 1.50 0.16
Malleable Iron 210.0 285.0 1.54 0.01

Ductile Iron ASTM A 476-70 210.0 483.0 1.33 0.10
Al 6092 17.5 SiC whiskers 121.0 452.5 1.15 0.10

4. Results and Discussion

4.1. Uniqueness of the Inverse Identified Set of Parameters Using Indentation and Inverse Analysis

In order to verify the effectiveness of the proposed inverse computation approach, and further
interrogate the uniqueness of the inverse problem, using different experiment information (e.g., only
the indentation P-h curves or both the indentation P-h curves and pile-up effect) in dual conical
indentation tests, we first applied our numerical approach on the Al Castings 242.0-T21. In all the
inverse parameters identification processes, the indentation shape factors are obtained by using the
“pseudo-experiment”. The indentation response parameters (C60, C70.3, h60

cx , h60
cy and hm) are obtained

from FE analysis. Effectiveness of the method is verified by the direct comparison between the FE
“Input” anisotropic parameters with those predicted by the proposed inverse computation approach.
The advantage of using the “pseudo-experiment” as a replacement of real indentation experiment is
that, it is able to circumvent the influence of some uncertain factors, e.g., experiment imprecision and
material heterogeneity [12,14,15]. Therefore, we are able to pay close attention to the nature of the
inverse problem, e.g., well-posedness or ill-posedness.

The anisotropic parameters of Al Castings 242.0-T21, identified by indentation test and inverse
analysis are listed in Tables 4 and 5, respectively. The increments of material parameters in the inverse
algorithm are defined as ∆σYT = 2.5 MPa, ∆n = 0.01 and ∆R22 = 0.001. In the study, two different
situations are considered. In situation one, only the P-h curves in dual conical indentation tests are
used, and λ1 = 1 and λ2 = 0. Result obtained from this situation is listed in Table 4. In situation two,
both the indentation P-h curve and pile-up effect are considered, and λ1 = 1 and λ2 = 1. Result obtained
from situation two is listed in Table 5.

In order to fully investigate the uniqueness of the inverse identified anisotropic parameters, the
set of (σYT , n, σYL) with four minimum etol values (in the ascent order) are recorded, as shown in
Table 4 (they are denoted as mat-1, mat-2, mat-3 and mat-4) for situation one and in Table 5 (they
are denoted as mat-5, mat-6, mat-7 and mat-8) for situation two, for the comparison purpose. It’s
noted that, only the parameter set (σYT , n, σYL) with the minimum etol value is regarded as the inverse
identified material parameters of the indented specimen.
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As can be seen from Table 4, that the inverse identified results are scattered in situation one.
Four materials with different anisotropic parameters, exhibit very close etol values, while their
anisotropic parameters are completely different. This phenomenon is especially obvious, when the
inverse identified parameters are compared with the results reported in Table 5. Results indicate the
inverse problem in situation one is ill-posed, although the average values of the inverse identified
anisotropic parameters in this situation are close to the FE “Input” amounts. Besides, the Standard
Deviation (Std. Dev.) values are relatively large. The Std. Dev. values are 6.61 for σYT , 0.014 for
n and 30.08 for σYL. While, in Table 5, it shows that, the four materials have very close etol values,
and they exhibit nearly the same inverse identified anisotropic parameters. So, results proved the
inverse problem in situation two is well-posed. In situation two, the average values of the inverse
identified anisotropic parameters are very close to the FE “Input” amounts, and the Std. Dev. values
are relatively small. The Std. Dev. values are 5.59 for σYT , 0.00939 for n and 5.07 for σYL.

Table 4. Material parameters identified from inverse analysis using only the P-h curves in dual
indentation tests.

Al Castings 242.0 T21 σYT (MPa) n σYL (MPa) etol

Input 155.0 0.160 232.5 -
P− h60 + P− h70.3

mat-1 160.00 0.141 243.20 0.0001920
mat-2 150.00 0.158 259.50 0.0002880
mat-3 167.50 0.129 227.80 0.0002900
mat-4 155.00 0.135 302.25 0.0005440

Average 158.13 0.141 258.2 -
Error (%) 2.02 −12.03 11.05 -
Std. Dev. 6.61 0.014 30.08 -

Table 5. Material parameters identified from inverse analysis using both the indentation P-h curves
and pile-up value.

Al Castings 242.0 T21 σYT (MPa) n σYL (MPa) etol

Input 155.0 0.160 232.5 -
P− hdual + Pile− up60

mat-5 142.50 0.181 221.16 0.013824
mat-6 142.50 0.181 221.16 0.013825
mat-7 142.50 0.181 221.30 0.013838
mat-8 142.50 0.181 221.02 0.013855

Average 142.50 0.181 221.16 -
Error (%) −8.06 13.13 −4.88 -
Std. Dev. 5.59 0.00939 5.07 -

We recall only the P-h curves in dual indentation tests were used in situation one, and the inverse
problem in this situation is ill-posed. While, the inverse problem in situation two becomes well-posed
when the pile-up effect was introduced as the additional information. In order to reveal the basic
physics involved in this phenomenon, the further exploration is made.

Figure 10 shows the dual conical indentation responses of four materials (e.g., mat-1, mat-2, mat-3
and mat-4), respectively in Figure 10a for the indentation P-h curves, and in Figure 10b for the residual
imprints along longitudinal and transverse directions. It shows clearly in Figure 10a, that the P-h
curves of these four anisotropic materials are nearly coincident, and they cannot be uniquely identified
by the dual indenters with different apex angles. This explains the reason why the inverse problem
in situation one is ill-posed. These four materials can be regarded as the “mystical materials” [27,45],
which exhibit different anisotropic parameters, while their P-h curves in dual conical indentation tests
are undistinguishable.

However, the pile-up effects of these four “mystical materials” exhibit very obvious differences,
as shown in Figure 10b. This explains again why the inverse problem in situation two becomes
well-posed when the pile-up effect was considered. Therefore, result in Figure 10 indicates the pile-up
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effect is very important factor for obtaining the well-posed solution of anisotropic parameters in dual
conical indentation tests.Materials 2017, 10, x FOR PEER REVIEW  12 of 18 
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4.2. Numerical Verification

The effectiveness of the proposed inverse computation approach is further checked.
The indentation response parameters (C60, C70.3, h60

cx , h60
cy and hm) obtained from FE analysis using a

wide range of material anisotropic parameters (E/σYT , n and R22), are used as the input data into the
inverse calculation algorithm. The inverse extracted anisotropic parameters are compared with those
“Inputted” into the FE simulations, and results are shown in Figures 11 and 12, respectively.
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Figure 11 shows the comparison between inverse identified anisotropic parameters with those FE
“Input” amounts, where R22 is fixed at 1.2, E/σYT is varied from 250 to 1550, and n is varied from 0.08 to
0.45. Similarly, Figure 12 presented the comparison between inverse identified anisotropic parameters
with those FE “Input” amounts, where n is fixed at 0.1, E/σYT is varied from 250 to 1550, and R22 is
varied from 1.10 to 1.85. It can be seen from Figures 11 and 12, that good agreement can be found
between the inverse identified anisotropic parameters and those FE “Input” values. The maximum
error values are 6.67% for E/σYT (No. 1, Figure 12b), −9.52% for n (No. 22, Figure 11b) and 5.9% for
R22 (No. 4, Figure 11a). Results indicate the proposed numerical approach is effective and reliable.

It is noted that, in the proposed numerical approach, both the P-h curves in dual conical
indentation tests were used. The possible reason is that, using the P-h curves of dual indenters
is able to give a unique solution of the plastic parameters (e.g., yield stress and strain hardening
exponent) of isotropic materials, as reported in the previous literatures [13,27,34,45]. While, in the
present study, it was demonstrated that, the inverse problem is still ill-posed when both the P-h curves
in dual indentation tests were considered, and this problem was successfully alleviated by introducing
the pile-up effect as the additional information. This can be considered as a special situation for
the anisotropic materials in the present study, and it is different from the case of isotropic materials
reported in the previous literatures [27,34]. Besides, only the pile-up effect in the single indentation
(in the study, the pile-up values were obtained using the conical indenter with inner half angle 60

◦
) is

considered as additional information. Results show the inverse problem becomes well-posed when the
pile-up effect is considered. The pile-up effect from a more sharp indentation (inner half angle is 60

◦
) is

used, because the pile-up effect induced by a sharper indenter is more obvious. Perhaps, the nature of
the inverse problem, e.g., well-posedness, may be better if both the pile-up effects in dual indentations
were considered [13,45]. However, this needs to formulate six independent dimensionless functions in
the inverse algorithm, and it seems not encouraging. Besides, measuring the pile-up values in dual
indentation experiments is more complex.

4.3. Application on the Engineering Materials

In this section, the proposed inverse computation approach is applied on four engineering
materials. The anisotropic parameters of these engineering materials are listed in Table 3. Both the
indentation P-h curves and pile-up effect are considered in the inverse algorithm, and λ1 = 1 and
λ2 = 1. The inverse identified parameters of Al Castings 242.0-T21 has been reported in Section 4.1,
so only the inverse identified set of anisotropic parameters of Malleable Iron, Ductile Iron ASTM A
476-70 and Al 6092 17.5 SiC whiskers are listed in Table 6.

Table 6. Comparison of the anisotropic parameters between FE “Input” amounts with those obtained
from inverse analysis and dual indentation tests.

Materials σYT (MPa) n σYL (MPa)

Malleable Iron
Input 285.0 0.010 438.9

Indentation 265.0 0.009 418.7
Error (%) −7.02 −10.00 −4.60

Ductile Iron ASTM A 476-70
Input 483.0 0.100 642.4

Indentation 445.0 0.110 605.2
Error (%) −7.87 +10.00 −5.79

Al 6092 17.5 SiC Whiskers
Input 452.5 0.100 520.4

Indentation 485.0 0.080 562.6
Error (%) +7.18 −20.00 +8.11
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In Table 6, the anisotropic parameters obtained from dual indentation tests show good agreement
with the FE “Input” amounts. The maximum error values are −7.87% for σYT (Ductile Iron ASTM
A 476-70), −20% for n (Al 6092 17.5 SiC whiskers) and +8.11% for σYL (Al 6092 17.5 SiC whiskers).
The stress strain curves obtained from indentation and inverse analysis are compared with those
obtained by the representation of Equation (1) using the FE “Input” anisotropic parameters, as shown
in Figure 13.
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Figure 13. Comparison of the stress strain curves of four anisotropic materials between the FE
“Input” values and these obtained from indentation and inverse analysis: (a) Al Castings 242.0-T21;
(b) Malleable Iron; (c) Ductile Iron ASTM 476-70; (d) Al 6092 17.5 SiC Whiskers.

It is noted that, the inverse identified σYT and σYL are very accurate, because their maximum error
value is less than 10%. While, the identified n shows relatively larger error values, which indicates n
is more sensitive to some numerical uncertainties, e.g., numerical oscillation and fitting imprecision.
In Table 6, the maximum error of n is about 20%, e.g., Al 6092 17.5 SiC Whiskers. Here, the FE “input”
n of Al 6092 17.5 SiC Whiskers is 0.1, while the inverse identified n is 0.08. The difference of these
two n values is 0.01, and it is twice bigger than the value of ∆n, 0.01 used in the inverse algorithm.
That’s to say, the accuracy of the inverse identified n value is also determined by the magnitude of the
prescribed increments, (∆σYT , ∆n, ∆R22) in the inverse algorithm. More accurate n can be obtained
when more refined increments (∆σYT , ∆n, ∆R22) are used, while this will increase the corresponding
computation costs greatly, e.g., computation time.

Another important reason for the relatively larger error value of n is that, the numerical magnitude
of n itself is very small, e.g., it is usually less than 0.5. So, its small disturbance will cause obvious
relative error, especially when n is less than 0.1. For example, the FE “input” n of Al 6092 17.5 SiC
Whiskers is 0.1, while the inverse identified n is 0.08. The difference between 0.08 and 0.1 is 0.02, which
is a very small value. While, the corresponding relative error is as large as 20%. Similar situations can
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also be found in the previous literatures [11,34]. The above two factors explain the reasons why the
error of n is always relatively larger. So, the established method in the present study still has very
good numerical accuracy, and the proposed inverse computation approach is effective and reliable.

In the established dimensionless functions, the Poisson’s ratio is assumed as a constant at 0.3.
The Poisson’s ratio of real materials in Table 6 may be larger or smaller than 0.3. While, Poisson’s
ratio of common metals is around this value, and it is a minor factor in indentation studies [11,34,35].
Its influence on the indentation responses is very slight, when its value is within 0.25–0.5 [11,27,35].
It is noted that, if the Poisson’s ratio of the indented specimen is extremely small, or even negative,
e.g., for some auxetic materials [46,47], the present method should be carefully used.

4.4. Discussion

In the present study, we mainly focus on the metal materials which exhibit obvious plastic
anisotropy along the longitudinal and transverse directions, while the anisotropy of elastic modulus
and strain hardening exponent are slight. In other words, the material studied here exhibits transverse
isotropic property [25]. These materials can be found, for the metals which have experienced
rolling/extrusion processing, e.g., extruded rod. The anisotropy of these metals arises from the
directions/textures of the crystal lattices of grains, and the orientations of the crystal slip systems.
More information of the physical origin of anisotropy in metallic materials can be found in Refs [48,49].
Besides, some SiC whisker-reinforced aluminum alloy also exhibit this sort of anisotropy, e.g.,
SiCw/A6061 [3].

In the study, we used a simplified Hill’s yield criterion, which involves several assumptions.
These assumptions help to reduce the complexity of the problem, so that our attention can be focused
on the principal characteristics of the studied anisotropic materials, e.g., the difference of yield stress
along transverse and longitudinal directions. So, only R22 is studied, and the other R-ratio values
are maintained as identical at 1. It’s noted that, the other R-ratio values of the real materials, e.g., the
materials in Table 6, may not be completely identical at 1. While their yield stress along transverse and
longitudinal directions exhibit major differences. That’s to say, the simplified constructive law in the
present study is still a reasonable approximation of the constitutive behaviors of these real materials.

Besides, the real plastic anisotropy of a material can be sometimes far more complex than
the simple transverse isotropic one [25]. However, in indentation studies, the uniqueness of the
inverse identified set of parameters still remains a scientific challenge, and it determines the practical
usefulness of these methods [13,40]. In the study, when only R22 is considered in the constitutive
model, the non-uniqueness problem also happens if the residual pile-up effect is not introduced.
From this point of view, if all these six R-ratios are considered, it will complicate the inverse analysis
greatly. Besides, the unique solution of the inverse identified parameters is very difficult to be achieved.
The elastic anisotropy is another consideration, which is usually physically unavoidable for the metallic
crystals, because of lattice orientation. While, in indentation studies, the deformation of materials
under indenter is plasticity dominated. That’s to say, the plastic anisotropy domains the elastic
anisotropy in conical indentation, and thus the latter is a minor factor. These problems are still open
questions, and will be further studied in our future work.

5. Conclusions

In this paper, we developed a novel inverse computation approach to extract the anisotropic
plasticity parameters of metal materials, based on dimensional analysis and dual conical indentation
tests. Dimensional analysis was used to correlate the anisotropic plasticity parameters with the material
responses in dual conical indentation tests, and their explicit function forms were established using
numerical regression and extensive FE simulations. An inverse calculation algorithm was suggested to
predict the unknown anisotropic parameters of the indented specimens using the information collected
from instrumented indentation. Effectiveness of the proposed inverse computation approach was
verified by its application on a series of engineering materials, and the uniqueness of the inverse
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identified set of anisotropic parameters was analyzed. Result shows the inverse problem may be
ill-posed when only the indentation P-h curves in dual conical indentation tests were used. While,
this problem can be effectively alleviated by introducing the pile-up effect as the additional information.
Besides, the proposed numerical approach is proved to be very effective and reliable. Lastly, it should
be emphasized that the present study mainly focuses on the mathematical development of the inverse
algorithm, and theoretical analysis of the nature of the inverse problem, e.g., well-posedness or
ill-posedness. Further experimental investigation is very necessary and will be reported in our
future work.
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Nomenclature

F, G, H, L, M and N Anisotropic constants
R11, R22, R33, R12, R13 and R23 Six anisotropic yield stress ratios
Es Specimen’s elastic modulus
σYL Longitudinal yield stress
σYT Transverse yield stress
n Strain hardening exponent
Ei Indenter’s elastic modulus
νi Indenter’s Poisson’s ratio
Er Reduced elastic modulus
hm Maximum indentation depth
h f Maximum residual depth
P Indentation load
hcx Residual contact depth along transverse direction
hcy Residual contact depth along longitudinal direction
θ Inner half angle of indenter
Cθ Loading curvature
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