Next Article in Journal
Towards an Ultrasonic Guided Wave Procedure for Health Monitoring of Composite Vessels: Application to Hydrogen-Powered Aircraft
Previous Article in Journal
Carrier Multiplication Mechanisms and Competing Processes in Colloidal Semiconductor Nanostructures
Article Menu
Issue 9 (September) cover image

Export Article

Open AccessArticle
Materials 2017, 10(9), 1096; doi:10.3390/ma10091096

Can More Nanoparticles Induce Larger Viscosities of Nanoparticle-Enhanced Wormlike Micellar System (NEWMS)?

State Key Laboratory of Heavy Oil Processing, School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
*
Authors to whom correspondence should be addressed.
Received: 28 August 2017 / Revised: 15 September 2017 / Accepted: 15 September 2017 / Published: 18 September 2017
(This article belongs to the Section Structure Analysis and Characterization)
View Full-Text   |   Download PDF [3090 KB, uploaded 18 September 2017]   |  

Abstract

There have been many reports about the thickening ability of nanoparticles on the wormlike micelles in the recent years. Through the addition of nanoparticles, the viscosity of wormlike micelles can be increased. There still exists a doubt: can viscosity be increased further by adding more nanoparticles? To answer this issue, in this work, the effects of silica nanoparticles and temperature on the nanoparticles-enhanced wormlike micellar system (NEWMS) were studied. The typical wormlike micelles (wormlike micelles) are prepared by 50 mM cetyltrimethyl ammonium bromide (CTAB) and 60 mM sodium salicylate (NaSal). The rheological results show the increase of viscoelasticity in NEWMS by adding nanoparticles, with the increase of zero-shear viscosity and relaxation time. However, with the further increase of nanoparticles, an interesting phenomenon appears. The zero-shear viscosity and relaxation time reach the maximum and begin to decrease. The results show a slight increasing trend for the contour length of wormlike micelles by adding nanoparticles, while no obvious effect on the entanglement and mesh size. In addition, with the increase of temperature, remarkable reduction of contour length and relaxation time can be observed from the calculation. NEWMS constantly retain better viscoelasticity compared with conventional wormlike micelles without silica nanoparticles. According to the Arrhenius equation, the activation energy Ea shows the same increase trend of NEWMS. Finally, a mechanism is proposed to explain this interesting phenomenon. View Full-Text
Keywords: nanoparticle; viscosity; NEWMS; viscoelasticity; temperature nanoparticle; viscosity; NEWMS; viscoelasticity; temperature
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Zhao, M.; Zhang, Y.; Zou, C.; Dai, C.; Gao, M.; Li, Y.; Lv, W.; Jiang, J.; Wu, Y. Can More Nanoparticles Induce Larger Viscosities of Nanoparticle-Enhanced Wormlike Micellar System (NEWMS)? Materials 2017, 10, 1096.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Materials EISSN 1996-1944 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top