Next Article in Journal
Evaluating the Tensile Properties of Aluminum Foundry Alloys through Reference Castings—A Review
Next Article in Special Issue
How Stress Treatments Influence the Performance of Biodegradable Poly(Butylene Succinate)-Based Copolymers with Thioether Linkages for Food Packaging Applications
Previous Article in Journal
Formation Mechanism of Spherical TiC in Ni-Ti-C System during Combustion Synthesis
Previous Article in Special Issue
Effect of Pullulan Coating on Postharvest Quality and Shelf-Life of Highbush Blueberry (Vaccinium corymbosum L.)
Article Menu
Issue 9 (September) cover image

Export Article

Open AccessFeature PaperReview
Materials 2017, 10(9), 1008; doi:10.3390/ma10091008

On the Use of PLA-PHB Blends for Sustainable Food Packaging Applications

1
Institute of Polymer Science and Technology (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
2
Instituto de Tecnología de Materiales, Universitat Politècnica de València, 03801 Alcoy-Alicante, Spain
3
Departamento de Ciencia de Alimentos y Biotecnología, Facultad de Ingeniería Química y Agroindustria, Escuela Politécnica Nacional, Quito 170517, Ecuador
*
Author to whom correspondence should be addressed.
Received: 28 July 2017 / Revised: 21 August 2017 / Accepted: 24 August 2017 / Published: 29 August 2017
(This article belongs to the Special Issue Biobased Polymers for Packaging Applications)
View Full-Text   |   Download PDF [1866 KB, uploaded 29 August 2017]   |  

Abstract

Poly(lactic acid) (PLA) is the most used biopolymer for food packaging applications. Several strategies have been made to improve PLA properties for extending its applications in the packaging field. Melt blending approaches are gaining considerable interest since they are easy, cost-effective and readily available processing technologies at the industrial level. With a similar melting temperature and high crystallinity, poly(hydroxybutyrate) (PHB) represents a good candidate to blend with PLA. The ability of PHB to act as a nucleating agent for PLA improves its mechanical resistance and barrier performance. With the dual objective to improve PLAPHB processing performance and to obtain stretchable materials, plasticizers are frequently added. Current trends to enhance PLA-PHB miscibility are focused on the development of composite and nanocomposites. PLA-PHB blends are also interesting for the controlled release of active compounds in the development of active packaging systems. This review explains the most relevant processing aspects of PLA-PHB based blends such as the influence of polymers molecular weight, the PLA-PHB composition as well as the thermal stability. It also summarizes the recent developments in PLA-PHB formulations with an emphasis on their performance with interest in the sustainable food packaging field. PLA-PHB blends shows highly promising perspectives for the replacement of traditional petrochemical based polymers currently used for food packaging. View Full-Text
Keywords: food packaging; biopolymers; biodegradable; poly(lactic acid); poly(hydroxybutyrate); blends food packaging; biopolymers; biodegradable; poly(lactic acid); poly(hydroxybutyrate); blends
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Arrieta, M.P.; Samper, M.D.; Aldas, M.; López, J. On the Use of PLA-PHB Blends for Sustainable Food Packaging Applications. Materials 2017, 10, 1008.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Materials EISSN 1996-1944 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top