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Abstract: The relationship between microstructure and corrosion behavior of martensitic high
nitrogen stainless steel 30Cr15Mo1N at different austenitizing temperatures was investigated by
microscopy observation, electrochemical measurement, X-ray photoelectron spectroscopy analysis
and immersion testing. The results indicated that finer Cr-rich M2N dispersed more homogeneously
than coarse M23C6, and the fractions of M23C6 and M2N both decreased with increasing austenitizing
temperature. The Cr-depleted zone around M23C6 was wider and its minimum Cr concentration was
lower than M2N. The metastable pits initiated preferentially around coarse M23C6 which induced
severer Cr-depletion, and the pit growth followed the power law. The increasing of austenitizing
temperature induced fewer metastable pit initiation sites, more uniform element distribution and
higher contents of Cr, Mo and N in the matrix. In addition, the passive film thickened and Cr2O3,
Cr3+ and CrN enriched with increasing austenitizing temperature, which enhanced the stability of
the passive film and repassivation ability of pits. Therefore, as austenitizing temperature increased,
the metastable and stable pitting potentials increased and pit growth rate decreased, revealing less
susceptible metastable pit initiation, larger repassivation tendency and higher corrosion resistance.
The determining factor of pitting potentials could be divided into three stages: dissolution of M23C6

(below 1000 ◦C), dissolution of M2N (from 1000 to 1050 ◦C) and existence of a few undissolved
precipitates and non-metallic inclusions (above 1050 ◦C).

Keywords: martensitic high nitrogen stainless steel; austenitizing temperature; microstructure;
pit initiation; passive film; pit growth

1. Introduction

Corrosion is diagnosed as one of the main factors for premature bearing failures in many
aviation applications, particularly in aircraft engines and helicopters [1,2]. The conventional high
carbon martensitic stainless steels, such as 440C and BG42, possess some corrosion resistance.
However, the existence of coarse Cr-rich eutectic carbides (M7C3) deteriorates their fatigue capabilities
and corrosion resistance [2]. As an important alloying element, nitrogen can significantly improve
the corrosion resistance and mechanical properties of stainless steels, and has been widely used in
austenitic and duplex stainless steels [3–6]. Various mechanisms, including theories of ammonia
production [7], surface enrichment [8], anodic segregation [9] and salt film formation [10], have
been proposed to explain the effect of nitrogen on corrosion resistance of nitrogen-containing steels.
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For martensitic stainless steels (MSSs), nitrogen in solid solution could also enhance their corrosion
resistance [11,12]. Besides, nitrogen is beneficial to improve the hardenability and avoid the segregation
of eutectic carbides in MSSs [2]. The partial substitution of nitrogen for carbon could also increase the
thermodynamic stability of solid solution, toughness and plasticity of MSSs [13].

However, due to the low nitrogen solubility (normally less than 0.08 wt %) in martensitic steels at
atmospheric pressure [11,14], it is difficult to obtain MSSs with high nitrogen content by traditional
methods, such as electric arc furnace (EAF) melting, vacuum induction melting (VIM) and argon
oxygen decarburization (AOD) refining. Therefore, few studies about martensitic high nitrogen
stainless steels were reported [12,15–17]. In recent years, with the development of pressure metallurgy,
series of MSSs with high nitrogen content (0.3–0.5 wt %), such as CRONIDUR steels, have been
invented using pressurized electroslag remelting (PESR) [11]. For example, CRONIDUR 30 has been
used successfully in demanding applications, such as bearings for aviation turbine and cryogenic
rocket turbopumps [18].

It is well known that austenitizing and tempering strongly influence the microstructure and
properties of MSSs [19]. In general, the austenitizing temperature determines the amount and
distribution of undissolved carbides and retained austenite [20], and has an important influence
on the mechanical properties and corrosion resistance [21]. Meanwhile, decarburization, grain
coarsening and the formation of δ-ferrite should be avoided in selecting a suitable austenitizing
temperature [19,22]. Several studies have been carried out about the effect of austenitizing treatment
on the microstructure and corrosion resistance of nitrogen-free or low nitrogen martensitic stainless
steels [20,21,23]. The results indicated that the reduction of undissolved Cr-rich carbides and the
improvement in homogeneity of Cr distribution with increasing austenitizing temperature improved
the corrosion resistance of steels. The existence of Cr-depleted zones in matrix adjacent to Cr-rich
precipitates acted as preferential sites for metastable pits. In addition, Lu et al. [20,23] pointed out that
the increased austenitizing temperature contributed to forming more protective and well-structural
passive films on 13 wt % Cr-type MSSs. However, few studies can be found about the influence of
austenitizing temperature on microstructure, composition of passive film, pit initiation and propagation
of martensitic high nitrogen stainless steels.

Martensitic high nitrogen stainless steel 30Cr15Mo1N with 0.44 wt % nitrogen has been developed
successfully in Northeastern University using pressure metallurgy method. The microstructure,
mechanical and corrosion properties of friction stir welding 30Cr15Mo1N were investigated in our
previous study, and the results revealed that the weldment exhibited lower hardness and better corrosion
resistance [24]. The present work aims to reveal the relationship between microstructure and corrosion
behavior of 30Cr15Mo1N at different austenitizing temperatures, and promote the development and
application of martensitic high nitrogen stainless steels. The investigation of characterization of passive
film, pitting initiation and propagation, etc. of such steel could afford a broad overall view on pitting
corrosion, and is beneficial for understanding the corrosion mechanism of martensitic high nitrogen
stainless steels.

2. Materials and Methods

2.1. Material and Heat Treatment

The experimental martensitic high nitrogen stainless steel 30Cr15Mo1N was melted in a 25 kg
pressurized induction furnace (Jinzhou Yuanteng Electric Furnace Technology Co., Ltd., Jinzhou,
China). During the smelting process, the vacuum carbon-deoxidization together with adding
nickel-magnesium (Ni-Mg) master alloy and metallic cerium was used for deoxidization and
desulfurization. Then, nitrogen was introduced to the steel via the reaction, N2 (g) → 2[N], at the
gas-melt interface under nitrogen pressure of 0.4 MPa. Finally, the molten steel was poured into the
ingot mold and solidified under nitrogen pressure of 1.5 MPa to avoid the formation of nitrogen bubbles
and porosity. The chemical composition of the present material is shown in Table 1. Firstly, the ingot was
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diffusion annealed at 1270 ◦C for 10 h, then hot forged into 110 mm × 30 mm plate in the temperature
range of 1050–1150 ◦C. Afterwards, the plate was annealed at 875 ◦C for 5 h, then furnace cooled to
700 ◦C and kept for another 3 h, followed by cooling to 600 ◦C in furnace at the speed of 1 ◦C/min,
finally air-cooled to room temperature (Figure 1). The plate was cut into several parts, then austenitized
at 900 ◦C, 950 ◦C, 1000 ◦C, 1020 ◦C, 1050 ◦C, 1100 ◦C and 1150 ◦C, respectively, for 1 h followed by
oil quenching.

Table 1. Chemical composition of martensitic high nitrogen stainless steel 30Cr15Mo1N (wt %).

C Cr Mo N Mn Si Ni S P O

0.31 15.17 1.03 0.44 0.44 0.52 0.07 0.002 0.011 0.0015
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Figure 1. Schematic of heat treatment procedure.

2.2. Thermodynamic Calculations

The variation of phase fractions and composition with temperature at equilibrium were generated
using Thermo-Calc with TCFE7 database (Thermo-Calc Software AB, Solna, Sweden).

2.3. Microstructure Characterizations

To reveal the phase constitution, the specimens for X-ray diffraction (XRD) analyses with the
dimensions of 12 mm × 10 mm × 6 mm were ground with SiC paper to 2000-grit and mechanically
polished with 2.5 µm diamond paste, then electropolished at 20 V in the electrolyte composed
of 25 vol % perchloric acid and 75 vol % ethanol. The XRD tests were carried out on an X-ray
diffractometer (D/Max-2400, Rigaku, Tokyo, Japan) with Cu Kα radiation under 50 kV, 180 mA and 2θ
ranging from 40◦ to 101◦ at a scanning speed of 2◦/min. The volume fraction of retained austenite was
determined by Equation (1) [25]:

VA =
1.4Iγ

Iα + 1.4Iγ
(1)

where Iγ and Iα are the integrated intensities of (111)γ and (110)α, respectively.
To observe the influence of austenitizing temperature on precipitation distribution, specimens

with dimensions of 12 mm× 10 mm× 6 mm were ground with SiC paper to 2000-grit and mechanically
polished with 2.5 µm diamond paste, then etched by Vilella’s reagent (consisting of 1 g picric acid, 10 mL
hydrochloric acid and 100 mL ethanol). Microstructure and element distribution were performed using
field emission scanning electron microscope (FE-SEM, Ultra Plus, Carl Zeiss, Oberkochen, Germany)
and electron probe microanalyzer (EPMA, JXA-8530F, JEOL, Tokyo, Japan) equipped with wavelength
dispersive spectrometer (WDS). The FE-SEM and EPMA were operated with an accelerating voltage
of 15.0 kV, and the probe current of EPMA was 5.0 × 10−8 A. The area percentage of precipitates
was quantified using Image-Pro Plus software Version 6.0 (Media Cybernetics Inc., Rockville, MD,
USA). The microstructure and lattice information of the precipitates were investigated by transmission
electron microscopy (TEM, JEM-2100F, JEOL, Tokyo, Japan) at 200 kV, and the Cr concentration at
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the precipitate–matrix interface was analyzed using energy dispersive spectrometer (EDS) attached
to TEM. For TEM foil preparation, thin disks with diameter of 3 mm were cut from the specimen
austenitized at 900 ◦C and twin-jet polished using the electrolyte composed of 8 vol % perchloric acid
and 92 vol % ethanol at −20 ◦C.

2.4. Electrochemical Measurement

The specimens for electrochemical measurements were mounted in epoxy resin with an exposed
area of 10 mm × 10 mm and abraded with SiC paper to 2000-grit. The test medium was 3.5 wt % NaCl
solution at 30 ± 0.5 ◦C prepared with analytically pure NaCl and deionized water. The potentiodynamic
polarization measurement was performed using a Gamry Reference 600 potentiostat (Gamry, Warminster,
PA, USA) with a three-electrode system, consisting of a platinum counter electrode, a saturated calomel
electrode (SCE) reference electrode and the specimen as the working electrode. Prior to the measurement,
the working electrode was polarized at−1.0 VSCE for 5 min to eliminate the surface oxide layer formed in
the air, then stabilized at open circuit potential (OCP) for 30 min. After that, potentiodynamic polarization
was performed from −0.3 V below OCP toward the positive direction at a scan rate of 0.333 mV/s,
and test was terminated when current density reached 1 mA/cm2.

2.5. Passive Film Analysis

The specimens for passive film growth were mechanically abraded and polished. After removing
the surface oxide layer by cathodic polarization, the passivation potential, which was chosen based on
the potentiodynamic polarization curves, was applied for 1 h to promote the growth of passive film.
The passive film analysis was then performed using X-ray photoelectron spectrometer (XPS, ESCALAB
250, Thermo Scientific, Waltham, MA, USA) with Al Kα (1486.6 eV) X-ray source. The binding
energies were calibrated relative to C 1s peak at 284.6 eV. The argon ions sputtering (base pressure:
1.33 × 10−5 Pa, energy: 2 kV, current: 2.0 µA/cm2) over an area of 2 mm × 2 mm were performed for
10 s to clear the contamination layer. The curve fitting was performed via XPSPEAK 4.1 software by
referencing to a database [26].

2.6. Immersion Tests

The pit growth kinetics was evaluated using immersion testing and metallographic examination.
After being abraded with 2000-grit SiC paper, the specimens austenitized at 900 ◦C, 1000 ◦C and 1100 ◦C
were immersed in 6 wt % FeCl3 solution at 50 ± 0.5 ◦C according to ASTM G48-11 (Method A) [27].
After being immersed for 3 h, 6 h, 12 h and 24 h, the specimens were taken out of the solution, cleaned
using deionized water and dried using cold air. Then the specimens were cleaned in accordance with
ISO 8407-2009 [28] to remove the corrosion products. Finally, the variation of pit depth was estimated
using laser scanning confocal microscope (LSCM, LEXT OLS4100, Olympus, Tokyo, Japan).

3. Results

3.1. Thermodynamic Calculations

The variation of phase fractions with temperature in martensitic high nitrogen stainless steel
30Cr15Mo1N using Thermo-Calc software is presented in Figure 2. There existed two kinds of
precipitates, i.e., M23C6 and hexagonal close-packed (hcp) phase. According to previous work by
Mehtedi et al. [13] and Kaluba et al. [15], the hcp phase was preliminarily inferred to be Cr-rich
M2N. The contents of M23C6 and M2N both decreased with the increasing of temperature, whereas
the dissolution of M23C6 occurred ahead of M2N due to the higher diffusivity of carbon respect to
nitrogen [13,15]. In contrast with traditional carbon alloyed MSSs, the existence of M2N with higher
thermal stability in 30Cr15Mo1N enhanced the required austenitizing temperature in order to obtain
uniform distribution of elements. In addition, Figure 3 shows the variation of phase composition with
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temperature. The Cr and Mo contents in M23C6 and M2N decreased, and the Cr, Mo, C and N contents
in matrix increased with increasing austenitizing temperature.Materials 2017, 10, 861  5 of 19 
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3.2. Microstructure Characterizations

3.2.1. X-ray Diffraction and Hardness Tests

Figure 4 plots the XRD patterns of 30Cr15Mo1N in annealing and austenitizing conditions.
The diffraction peaks of body-centered cubic (bcc) phase were observed in all specimens. However, it is
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impossible to separate the ferrite (α) and martensite (α’) phases owing to the identical lattice constants
and structure [20,22]. Thus, Rockwell hardness was measured using HRS-150D tester (Jvjing Precision
Instrument Manufacturing Co., Ltd., Shanghai, China) with Rockwell C scale to identify these two phases,
as shown in Figure 5. It is noted that the hardness value of annealed specimen was significantly lower
than those of the austenitized ones. Therefore, the bcc phases detected by XRD spectra were identified to
be ferrite in annealing condition and martensite in austenitizing condition [20]. With the increasing of
austenitizing temperature, the peaks for γ phase were enhanced, indicating increased content of retained
austenite. Due to the dissolution of M23C6 and M2N, the contents of carbon and nitrogen in matrix were
raised with increasing austenitizing temperature, thereby depressing the martensitic transformation.
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In addition, from the local amplification of XRD spectra from 47◦ to 58◦ in Figure 4, weak peaks
for M23C6 and M2N were found in annealed and austenitized at 900 ◦C specimens. With increasing
austenitizing temperature to 950 ◦C, the peaks for M23C6 and M2N weakened, and then disappeared
above 1000 ◦C. However, the non-appearance of peaks for austenite or precipitates in XRD profiles
meant the absence of these phases or the contents were lower than the detection limit [29].
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3.2.2. Microscopy Observation

The morphologies of 30Cr15Mo1N austenitized at 900 ◦C, 950 ◦C, 1000 ◦C, 1050 ◦C, 1100 ◦C and
1150 ◦C are illustrated in Figure 6. The microstructure consisted of scattered precipitate particles,
i.e., Cr-rich M23C6 and M2N, distributing in lath martensite and retained austenite. As shown in
Figure 6 and Table 2, the fraction of precipitates decreased significantly as the austenitizing temperature
increased to 1000 ◦C. When the austenitizing temperature was above 1050 ◦C, just a few undissolved
precipitates and non-metallic inclusions existed in the matrix. In addition, no δ-ferrite or coarse eutectic
carbides were observed among all the specimens austenitized in the range of 900–1150 ◦C, which is
consistent with the Thermo-Calc result (Figure 2).Materials 2017, 10, 861  7 of 19 
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Table 2. Area percentage of precipitates in 30Cr15Mo1N austenitized at different temperatures.

Temperature (◦C) 900 950 1000 1050 1100 1150

Area percentage of precipitates (%) 7.75 ± 0.71 6.07 ± 0.96 3.94 ± 0.99 1.59 ± 0.63 1.23 ± 0.48 0.63 ± 0.40

The distribution of Cr, C and N via EPMA in Figure 7 shows that the precipitates were rich in Cr,
C and N, and the quantity of N-rich particles was much lower than that of C-rich ones. The N-rich
particles were finer and distributed more homogeneously than the C-rich ones. With the increasing of
austenitizing temperature, the precipitates dissolved and the distribution of Cr, Mo, C and N became
more homogeneous. Besides, the C content in lath martensite at 1000 ◦C and 1100 ◦C (indicated by
arrows in Figure 7) was remarkably elevated. The extra dissolved C in the martensite would result in
the increased internal martensite lattice stress, furthermore increasing the hardness, strength [19] and
deteriorating the corrosion resistance [30].

Figure 8 shows the TEM results of 30Cr15Mo1N austenitized at 900 ◦C. Spherical precipitates in
the grain interior were observed, as shown in Figure 8a,b. Based on the selected area electron diffraction
(SAED) patterns, the precipitates were identified as Cr-rich M23C6 and M2N, respectively. The M2N
was finer than M23C6, which is consistent with the EPMA results (Figure 7). The high-magnification
images and Cr concentration at the precipitate–matrix interface are illustrated in Figure 8c–e. The Cr
content of M2N was obviously higher than that of M23C6, and the Cr-depleted zones were observed
in the interface between M23C6/M2N and matrix. It is noteworthy that the widths of Cr-depleted
zones around M23C6 and M2N were about 13.75 nm and 10.16 nm, respectively, and the minimum Cr
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contents were about 13.52 wt % and 15.78 wt %, respectively. Therefore, the Cr-depletion induced by
coarse M23C6 was severer than M2N.
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Figure 7. Element mapping of 30Cr15Mo1N austenitized at: (a) 900 ◦C; (b) 1000 ◦C; and (c) 1100 ◦C by EPMA.
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Figure 8. TEM results of 30Cr15Mo1N austenitized at 900 ◦C: (a,b) morphologies and SAED patterns;
(c,d) high-magnification of precipitates in (a,b); and (e) Cr content profiles at the precipitate–matrix
interface (The inset figure is the high magnification of Cr contents in Cr-depleted zones).

3.3. Electrochemical Measurement

The potentiodynamic polarization curves of 30Cr15Mo1N in annealing and austenitizing
conditions are presented in Figure 9a. There were obvious passive ranges where the current density
remained almost stable. However, several current transients relating to the initiation and repassivation
of metastable pits [20,31] can be observed in passive regions. The current density increased dramatically
above the pitting potential, indicating the stable pitting corrosion occurred. As shown in Figure 9b,
with the increasing of austenitizing temperature, both the metastable and stable pitting potentials
increased, indicating the pit initiation became more difficult and the corrosion resistance was enhanced.
In addition, the difference between metastable and stable pitting potentials also increased, which meant
the repassivation tendency of metastable pitting became larger [32].
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Figure 9. (a) Potentiodynamic polarization curves of 30Cr15Mo1N; and (b) change in metastable and
stable pitting potentials with austenitizing temperature.

The morphologies of the largest corrosion pits on 30Cr15Mo1N austenitized at 900 ◦C, 1000 ◦C
and 1100 ◦C after potentiodynamic polarization are shown in Figure 10. The size and depth of pits
decreased with the increasing of austenitizing temperature. As shown in Figure 10a,c, the pits in
specimens austenitized at 900 ◦C and 1000 ◦C were presented as holes with collapsed lacy cover. The
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existence of these pits was related to passivation and undercutting near the pit mouth [31]. In addition,
several micro-pits (indicated by arrows in Figure 10a) nucleated and grew at the bottom of primary
pit in specimen austenitized at 900 ◦C. From the high magnification micrograph (image inserted
into Figure 10a), there existed a mass of particles at the bottom of pit, which were confirmed to be
rich in Cr according to the EDS spectrum (Figure 10b). The combination of chemical composition
and high-magnification morphology indicated that these particles originated from the uncorroded
precipitates in the matrix. When the austenitizing temperature increased to 1000 ◦C, just several
particles existed at the pit bottom because of the dissolution of precipitates (Figure 10c). As to the
specimen austenitized at 1100 ◦C, almost no particles existed in shallow dish-typed pit (Figure 10d),
and the pit was significantly shallower than those austenitized at lower temperatures.

Materials 2017, 10, 861  10 of 19 

 

primary pit in specimen austenitized at 900 °C. From the high magnification micrograph (image 
inserted into Figure 10a), there existed a mass of particles at the bottom of pit, which were confirmed 
to be rich in Cr according to the EDS spectrum (Figure 10b). The combination of chemical composition 
and high-magnification morphology indicated that these particles originated from the uncorroded 
precipitates in the matrix. When the austenitizing temperature increased to 1000 °C, just several 
particles existed at the pit bottom because of the dissolution of precipitates (Figure 10c). As to the 
specimen austenitized at 1100 °C, almost no particles existed in shallow dish-typed pit (Figure 10d), 
and the pit was significantly shallower than those austenitized at lower temperatures. 

 

 
Figure 10. Morphologies of the largest corrosion pits in 30Cr15Mo1N austenitized at different 
temperatures after potentiodynamic polarization: (a) 900 °C; (b) EDS spectrum and high-magnification 
of particles in (a); (c) 1000 °C; and (d) 1100 °C. 

To clearly present the metastable pit initiation sites, a specimen austenitized at 900 °C was 
mechanically abraded and polished. Then, it was observed using FE-SEM after potentiodynamically 
polarized to the metastable pitting potential. As shown in Figure 11a, there existed obvious ditches 
around large-sized precipitates, whereas no obvious ditches around small-sized precipitates were 
found. EDS spectra in Figure 11b indicated the large and small precipitates were Cr-rich M23C6 and 
M2N, respectively. Therefore, the ditches around M23C6 were confirmed to be the preferential 
metastable pit initiation sites, which might propagate to form stable pits. 

(a) particles

4 μm

micro-pits 
lacy cover

 40 μm 

(b)

EDS

2 μm

(c) 

4 μm

lacy cover

 20 μm 

(d)

4 μm
dish-typed pit

20 μm 

Figure 10. Morphologies of the largest corrosion pits in 30Cr15Mo1N austenitized at different
temperatures after potentiodynamic polarization: (a) 900 ◦C; (b) EDS spectrum and high-magnification
of particles in (a); (c) 1000 ◦C; and (d) 1100 ◦C.

To clearly present the metastable pit initiation sites, a specimen austenitized at 900 ◦C was
mechanically abraded and polished. Then, it was observed using FE-SEM after potentiodynamically
polarized to the metastable pitting potential. As shown in Figure 11a, there existed obvious ditches
around large-sized precipitates, whereas no obvious ditches around small-sized precipitates were
found. EDS spectra in Figure 11b indicated the large and small precipitates were Cr-rich M23C6

and M2N, respectively. Therefore, the ditches around M23C6 were confirmed to be the preferential
metastable pit initiation sites, which might propagate to form stable pits.
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Figure 11. (a) Morphology of pit initiation sites; and (b) EDS spectra of precipitates in 30Cr15Mo1N
austenitized at 900 ◦C.

3.4. XPS Results

XPS analysis was performed to determine the effect of austenitizing temperature on the
composition of passive films. Prior to the tests, the specimens were polarized at 0 mVSCE (about
200 mV higher than OCP) for 1 h to promote the growth of passive films. Figure 12 shows Cr 2p3/2
and Fe 2p3/2 spectra of sputtering surface of passive film for 10 s. The Cr 2p3/2 spectra were split into
Cr(OH)3 (576.9 eV), Cr2O3 (575.6 eV) and Cr metal (573.7 eV), and the Fe 2p3/2 spectra were divided
into FeOOH (711.2 eV), Fe3O4 (708.6 eV) and Fe metal (706.5 eV). The binding energies of Cr metal
slightly decreased with the increasing of austenitizing temperature, which was consistent with the
dissolution of Cr-rich precipitates which had higher binding energies. With increasing austenitizing
temperature, the peaks for Cr metal weakened, demonstrating the thickening of the passive film [33].
The components of passive films on 30Cr15Mo1N based on the fitting data (Figure 12) are listed in
Table 3. The Cr2O3 content and ratio of Cr3+ to the sum of Fe2+ and Fe3+ increased with increasing
austenitizing temperature. The variation in content of Cr2O3 and Cr3+ in the passive films demonstrates
that Cr2O3 and Cr3+ were enriched by enhancing the austenitizing temperature.
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Figure 12. X-ray photoelectron spectra of Cr 2p3/2 and Fe 2p3/2 recorded from the passive films after
sputtering for 10 s on 30Cr15Mo1N austenitized at (a) 900 ◦C; (b) 1000 ◦C; and (c) 1100 ◦C.
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Table 3. Component of passive films on 30Cr15Mo1N austenitized at 900 ◦C, 1000 ◦C and 1100 ◦C.

Specimens Component of Passive Films (at %)
Cr3+/(Fe2+ + Fe3+)

Fe3O4 FeOOH Cr2O3 Cr(OH)3

900 ◦C 12.51 4.68 6.97 4.52 0.24
1000 ◦C 11.39 2.49 8.47 6.34 0.29
1100 ◦C 11.92 2.56 9.04 5.33 0.31

Figure 13 shows the X-ray photoelectron spectra of N 1s and Mo 3p3/2 recorded from the passive
films after sputtering for 0 s and 10 s. On the outmost surface of passive films, peaks representing NH3

(399.8 eV), Cr2N (397.2 eV), CrN (396.8 eV) for N 1s and MoO2 (396.1 eV) for Mo 3p3/2 were detected.
After sputtering for 10 s, the spectra exhibited peaks for Cr2N, CrN and MoO2, whereas peaks for
NH3 disappeared. As the austenitizing temperature increased, the intensity of Cr2N in the passive
films decreased while the intensity of CrN increased, which is associated with the dissolution of M2N
precipitates at higher austenitizing temperature.
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Figure 13. X-ray photoelectron spectra of N 1s and Mo 3p3/2 recorded from the outmost and sputtering
surfaces of the passive films for 10 s on 30Cr15Mo1N austenitized at: (a) 900 ◦C; (b) 1000 ◦C;
and (c) 1100 ◦C.

3.5. Immersion Tests

The pitting corrosion and general corrosion occurred during immersion tests in 6 wt % FeCl3 at
50 ± 0.5 ◦C, thus both of them should be considered. The general corrosion rates for 30Cr15Mo1N
austenitized at 900 ◦C, 1000 ◦C and 1100 ◦C are 23.53 mm/year, 4.10 mm/year and 1.33 mm/year,
respectively. The specimen austenitized at 900 ◦C contained massive Cr-rich precipitates and the lowest
chromium content in the matrix, thus having the highest general corrosion rate. With the increasing of
austenitizing temperature, the chromium content in matrix increased, inducing the enhanced general
corrosion resistance. The evolution of maximum pit depth considering general corrosion on specimens
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austenitized at 900 ◦C, 1000 ◦C and 1100 ◦C after being immersed for 3 h, 6 h, 12 h and 24 h is shown
in Figure 14. It has been reported that the pit growth follows Equation (2) [34,35]:

dmax = ktn (2)

where dmax (µm) is the maximum pit depth, k (µm/h−n) and n are constants, and t (h) is the
immersion time. It can be seen that the maximum pit depth increased with increasing immersion time,
which followed the power law. With the increasing of austenitizing temperature, the maximum pit
depth decreased significantly. The fitted parameters in Figure 14 showed that the values of n merely
varied (approximately 0.5) and the values of k decreased significantly with increasing austenitizing
temperature, revealing a lower pit growth rate for specimen austenitized at higher temperature.
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4. Discussion

Based on the above results, the reason for preferential metastable pit initiation around coarse
M23C6, and the relationship between microstructure and corrosion resistance of martensitic high
nitrogen stainless steel 30Cr15Mo1N at different austenitizing temperatures by analyzing pit initiation,
passive film and pit growth kinetics will be discussed in detail.

4.1. Explanation of Preferential Metastable Pit Initiation Sites

The martensitic high nitrogen stainless steel 30Cr15Mo1N contained Cr-rich M23C6 and M2N,
which were different in distribution, size, volume fraction, chemical composition and Cr-depleted
zone (Figures 2, 7 and 8). Initially, the M2N precipitated during annealing process was more coherent
than M23C6 in nitrogen alloyed MSSs [18,36], resulting in the smaller size and more homogeneous
distribution of M2N than M23C6. During the austenitization process, M2N and M23C6 partially
dissolved, and the nitrogen-induced short range atomic ordering and the strong Cr–N bond prevented
the chromium clustering in 30Cr15Mo1N [16,36]. Then in quenching process, the martensite inherited
from the austenite possessed a homogeneous element distribution. The content of M2N was lower
than M23C6 because the atomic fraction of N in M2N was higher than C in M23C6. Besides, the addition
of nitrogen suppressed the precipitation of coarse eutectic carbides, which was due to higher austenite
stability upon quenching [36] and higher binging energy of Cr–N than that of Cr–C [16]. Similar results
have been obtained in Cr15Mo1 [16] and SUS440A [17] with different nitrogen contents.

It is well accepted that pitting corrosion initiates from breakdown of passive film or
chemical/physical heterogeneity, such as inclusions and precipitates [37,38]. The detrimental effect of
Cr-rich precipitates [39–42], such as Cr23C6, Cr2N and σ, on corrosion resistance due to Cr-depletion
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has been widely reported. In the present study, Cr-rich M23C6 and M2N were generated in the
annealing process, resulting in the emerging of Cr-depleted zones in the vicinity of precipitate/matrix
interface simultaneously. During the austenitization process, M23C6 and M2N partially dissolved into
the matrix. As shown in Figure 8, coarse M23C6 induced wider and severer Cr-depleted zone than
M2N, which resulted in the preferential initiation of metastable pits around M23C6 (Figure 11). On the
one hand, the lower Cr content in Cr-depleted zone induced poorer stability of passive film, which was
vulnerable to become initiation sites for pitting corrosion. On the other hand, the chemical composition
diversity between matrix and Cr-depleted zone led to the formation of micro-cell with narrow anodic
zone [36], thus increasing the pitting corrosion sensitivity.

4.2. Influence of Austenitizing Temperature on Pit Initiation

As discussed in Section 4.1, metastable pits initiated around Cr-rich precipitates, preferentially
the coarse M23C6 with severer Cr-depletion. The content of precipitates decreased with increasing
austenitizing temperature (Figure 6), which meant the number of pit initiation sites was reduced.
Choi et al. [21] and Park et al. [22] reported that the pitting potential of MSSs was enhanced as
the austenitizing temperature increased, which was attributed to the decrease of carbides. In the
present research, the metastable and stable pitting potentials increased with increasing austenitizing
temperature, revealing less susceptible metastable pit initiation and higher corrosion resistance.
Moreover, the difference between metastable and stable pitting potentials at low austenitizing
temperature was small, which indicates that the transition of metastable pits to stable pits occurred
soon after the initiation of metastable pits and the repassivation ability was weak. With the increasing
of austenitizing temperature, the difference between metastable and stable pitting potentials increased
simultaneously, demonstrating that although the initiation of metastable pits occurred at relatively
low potential, but the metastable pits could be transformed into stable pits only at much higher
potential [32].

Additionally, it is generally believed that high temperature promotes the atomic diffusion.
As shown in Figure 3, with increasing austenitizing temperature, the decreased Cr and Mo contents in
M23C6 and M2N and the increased Cr, Mo, C and N contents in matrix resulted in higher degree of
composition homogeneity in 30Cr15Mo1N. The Cr atoms diffused from both precipitates and matrix to
the Cr-depleted zones where the Cr content was the lowest. The Cr content of Cr-depleted zones was
compensated to a higher extent when austenitized at higher temperature due to more rapid diffusion
of Cr atoms, thus also delaying the initiation of pitting corrosion.

The correlation between content of precipitates and pitting potentials of 30Cr15Mo1N austenitized
at different temperatures is shown in Figure 15. The variation of pitting potentials could be divided
into three stages. At the temperature below 1000 ◦C (Stage I), although M23C6 dissolved gradually,
the existence of massive M23C6 induced the relatively low and slow increase of the metastable
and stable pitting potentials with the increasing of temperature. The M23C6 dissolved completely
around 975 ◦C, and the content of M23C6 decreased obviously when the temperature reached
1000 ◦C (Figure 7). Accordingly, a sharp rise of metastable pitting potential (from 950 to 1000 ◦C)
was observed in Figure 15. Since then, the metastable pitting potential increased stably with the
increment of austenitizing temperature. When the temperature increased to 1000 ◦C, the content of
precipitates decreased obviously (Figure 6), and the precipitates almost disappeared at temperatures
higher than 1050 ◦C. The dissolution of M2N could be obtained from the Thermo-Calc results from
1000 to 1075 ◦C. In accordance with this, the increasing rate of stable pitting potential accelerated,
particularly in the range of 1000 ◦C to 1050 ◦C (Stage II). After that, only a few undissolved precipitates
existed, and the decrease rate of precipitate content reduced when the temperature was higher than
1050 ◦C (Stage III), which was consistent with the slow increasing rate of stable pitting potential.
Therefore, the determining factor of the three stages for pitting potential could be dissolution of M23C6

(below 1000 ◦C), dissolution of M2N (from 1000 to 1050 ◦C) and existence of a few undissolved
precipitates and non-metallic inclusions (above 1050 ◦C), respectively.
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4.3. Influence of Austenitizing Temperature on Passive Film

With increasing austenitizing temperature, the Cr-rich precipitates dissolved and the Cr
content in matrix was enhanced, promoting the thickening of the passive films and enrichment
of Cr2O3 and Cr3+ (Figure 12 and Table 3). Besides, the nitrogen content in matrix increased
as austenitizing temperature rose, which is beneficial to the enrichment of Cr2O3 in the passive
films [10,33]. Additionally, the interaction of nitrogen and molybdenum promoted the deprotonation
of Cr-hydroxide by inducing O–H bond stretching, which also promoted the enrichment of
Cr2O3 [33,43]. On the other hand, compared with Cr(OH)3, Cr2O3 had higher thermodynamic
stability [44] and lower point defect concentration [45], thus enhancing the stability of passive film and
hindering pit initiation [37].

Based on the deconvolution of N spectra (Figure 13), two kinds of nitrides, i.e., CrN and Cr2N, were
detected. The Cr2N corresponded to the undissolved Cr-rich M2N, which had high Volta potential [46]
and hardly corroded in the corrosion process, as shown in Figure 10. Therefore, it could not consume
protons in pits and had no positive effect on corrosion resistance of 30Cr15Mo1N. However, nitrogen
in solid solution was anodically segregated to be CrN in the passive film during pitting corrosion
process [7]. The CrN could consume protons to form ammonium ions by Equation (3) [47]:

2CrN + 3H2O→ Cr2O3 + 2NH3 (3)

consequently hindering the self-catalytic process and promoting the repassivation of pits [33,48].
With increasing austenitizing temperature, the dissolution of M2N induced the decrease of Cr2N
intensity in passive film. Thereafter, the enhanced content of nitrogen in solid solution promoted the
increasing of CrN content in the passive film, which could consume more protons and promote the
repassivation of incipient pits.

4.4. Effect of Austenitizing Temperature on Pit Growth Kinetics

After the initiation of metastable pit, it might propagate to form a stable pit and grow
self-catalytically. The pit growth followed the power law (Figure 14), and its rate was determined by
the values of n and k. In the present work, the values of n were approximately 0.5 independent of the
austenitizing temperature. Cavanaugh et al. [48] reported that the value of n equaled to 0.5 when the
pit growth was under ohmic or diffusion control. The values of k considerably decreased with the
increasing of austenitizing temperature, indicating lower pit growth rate, which was in agreement
with the pit morphologies after potentiodynamic polarization (Figure 10). Nitrogen in solid solution
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could be released to the pits in the form of NH3 and/or NH4
+ by Equations (4) and (5), respectively, in

the pitting corrosion process [33,43]:

[N] + 3H+ + 3e− → NH3 (4)

[N] + 4H+ + 3e− → NH4
+ (5)

and protons in pits were partially consumed. The higher austenitizing temperature enhanced the
content of nitrogen in solid solution, promoting the repassivation ability of pits [33], which contributed
to lower pit growth rate and shallower pits.

Based on the analysis of microstructure, electrochemical behavior, passive film, pit initiation and
propagation, the relationship between microstructure and corrosion resistance of 30Cr15Mo1N at
different austenitizing temperatures is schematically presented in Figure 16. When the specimens
were polarized to high potential in chloride solution, metastable pits initiated preferentially around
coarse M23C6 with severer Cr-depletion. With fewer pit initiation sites and more protective passive
film (thicker and enriched in Cr2O3, Cr3+ and CrN), the specimen austenitized at higher temperature
corroded less severely than that austenitized at lower temperature. With the proceeding of pitting
corrosion, pits grew by self-catalytic mechanism. The uncorroded Cr-rich M23C6 and M2N accumulated
at the bottom of pits in specimen austenitized at lower temperature. The higher austenitizing
temperature induced enhanced content of nitrogen in solid solution in the matrix, which promoted the
repassivation process and retarded the growth of pits, resulting in shallower pits.
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5. Conclusions

In the present work, the relationship between microstructure and corrosion behavior of martensitic
high nitrogen stainless steel 30Cr15Mo1N at different austenitizing temperatures was investigated
using microscopy observation, electrochemical measurement, passive film analysis and immersion
testing. The main conclusions could be obtained as follows:

(1) With increasing austenitizing temperature, the fraction of precipitates decreased and retained
austenite increased, resulting in more homogeneous distribution and higher contents of Cr, Mo,
C and N in the matrix. The precipitates were identified as Cr-rich M23C6 and M2N, and M2N was
finer and distributed more homogeneously than M23C6. The Cr-depleted zone around M23C6

was wider and its minimum Cr concentration was lower than M2N.



Materials 2017, 10, 861 17 of 19

(2) The metastable pits initiated preferentially around coarse M23C6 which induced severer
Cr-depletion, and the pit growth followed the power law. The dissolution of M23C6 and M2N at
higher austenitizing temperature reduced the pit initiation sites. As austenitizing temperature
increased, the metastable and stable pitting potentials increased and the pit growth rate decreased,
revealing less susceptible metastable pit initiation, larger repassivation tendency and higher
corrosion resistance. The determining factor of pitting potential could be divided into three
stages: dissolution of M23C6 (below 1000 ◦C), dissolution of M2N (from 1000 to 1050 ◦C) and
existence of a few undissolved precipitates and non-metallic inclusions (above 1050 ◦C).

(3) The increasing of austenitizing temperature promoted the thickening of passive film; enrichment
of Cr2O3, Cr3+ and CrN; and higher nitrogen content in solid solution, thereby enhancing the
stability of passive film and repassivation ability of pits.
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