Materials 2017, 10(7), 837; doi:10.3390/ma10070837
Effects of Annealing Conditions on Mixed Lead Halide Perovskite Solar Cells and Their Thermal Stability Investigation
1
Wide Bandgap Semiconductor Technology Disciplines State Key Laboratory, School of Microelectronics, Xidian University, Xi’an 710071, China
2
College of Physics and Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji 721016, China
3
Shaanxi Joint Key Laboratory of Graphene, Xidian University, Xi’an 710071, China
*
Authors to whom correspondence should be addressed.
Received: 11 June 2017 / Revised: 9 July 2017 / Accepted: 14 July 2017 / Published: 21 July 2017
(This article belongs to the Section Energy Materials)
Abstract
In this work, efficient mixed organic cation and mixed halide (MA0.7FA0.3Pb(I0.9Br0.1)3) perovskite solar cells are demonstrated by optimizing annealing conditions. AFM, XRD and PL measurements show that there is a better perovskite film quality for the annealing condition at 100 °C for 30 min. The corresponding device exhibits an optimized PCE of 16.76% with VOC of 1.02 V, JSC of 21.55 mA/cm2 and FF of 76.27%. More importantly, the mixed lead halide perovskite MA0.7FA0.3Pb(I0.9Br0.1)3 can significantly increase the thermal stability of perovskite film. After being heated at 80 °C for 24 h, the PCE of the MA0.7FA0.3Pb(I0.9Br0.1)3 device still remains at 70.00% of its initial value, which is much better than the control MAPbI3 device, where only 46.50% of its initial value could be preserved. We also successfully fabricated high-performance flexible mixed lead halide perovskite solar cells based on PEN substrates. View Full-Text
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).
Share & Cite This Article
MDPI and ACS Style
Yang, H.; Zhang, J.; Zhang, C.; Chang, J.; Lin, Z.; Chen, D.; Xi, H.; Hao, Y. Effects of Annealing Conditions on Mixed Lead Halide Perovskite Solar Cells and Their Thermal Stability Investigation. Materials 2017, 10, 837.
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.
Related Articles
Article Metrics
Comments
[Return to top]
Materials
EISSN 1996-1944
Published by MDPI AG, Basel, Switzerland
RSS
E-Mail Table of Contents Alert