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Abstract: Recently, a cellulose-based composite material with a thin ZnO nanolayer—namely, ZnO
nanocoated cellulose film (ZONCE)—was fabricated to increase its piezoelectric charge constant.
However, the fabrication method has limitations to its application in mass production. In this
paper, a hydrothermal synthesis method suitable for the mass production of ZONCE (HZONCE)
is proposed. A simple hydrothermal synthesis which includes a hydrothermal reaction is used for
the production, and the reaction time is controlled. To improve the piezoelectric charge constant,
the hydrothermal reaction is conducted twice. HZONCE fabricated by twice-hydrothermal reaction
shows approximately 1.6-times improved piezoelectric charge constant compared to HZONCE
fabricated by single hydrothermal reaction. Since the fabricated HZONCE has high transparency,
dielectric constant, and piezoelectric constant, the proposed method can be applied for continuous
mass production.

Keywords: cellulose; ZnO nanocoating; hydrothermal synthesis; piezoelectric charge constant;
continuous production

1. Introduction

Cellulose is one of the most abundant biopolymers in the world—more than 200 billion tons
of lignocellulosics are produced every year [1]. Because of its abundance, cellulose has been
traditionally used for resources of paper, paper board, and texture [2]. However, during the last
decade, its novel property of piezoelectricity has been paid attention. Although the piezoelectricity of
wood was discovered in the 1950s, cellulose has been rediscovered as a piezoelectric material after
reporting cellulose based electro-active paper (EAPap) [3,4]. Utilizing the piezoelectric property of
cellulose, its possibility of application has been investigated in fields such as actuators, temperature
sensors, strain sensors, and speakers, etc. [5–7]. Since cellulose-based composites with highly
functional nanomaterials are flexible and disposable, efforts have been made for the development
of cellulose-based multifunctional nanocomposites for biosensors, chemical sensors, and paper
transistors [8–11]. Especially, inorganic oxide nanomaterials such as tin dioxide (SnO2) and titanium
dioxide (TiO2) can be interacted with cellulose due to abundant hydroxyl (OH) groups of cellulose
chains [12]. Zinc oxide (ZnO) has been highly spotlighted due to its piezoelectricity and wide band
gap (3.37 eV) property, which is utilized for energy harvesters and semiconducting devices [13–15].

ZnO-coated cellulose and its application has been reported [16,17]. Researchers have normally
grown ZnO on fibrous paper or pulp. Recently, cellulose and ZnO hybrid composites have been
studied by nanocoating [18], blending [19], or nanorod growing of ZnO [20] on cellulose films and
have been applied in energy harvesters, glucose biosensors, and strain sensors [21,22]. Growing ZnO
on cellulose films is advantageous comparing with ZnO-grown fibrous paper or pulp in terms of
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the piezoelectric property, better mechanical property, and optical transparency of cellulose films.
In growing ZnO, ZnO nanoparticles are immobilized on the surface of regenerated cellulose film by
a hydrothermal synthesis in which the controlled hydrolysis of a Zn(II)-amine complex leads to the
formation of ZnO nanoparticles [23]. The uniform and strong formation of ZnO nanoparticles on the
surface of cellulose film is essential in ZnO growth, and a two-step process is adopted to achieve the
uniform and strong formation of ZnO—seeding and nanorod growth. The ZnO nanorod grown on the
cellulose film showed its improved piezoelectric property [19,22]. However, this ZnO nanorod growth
process consumes a large amount of chemicals and takes a long time. Furthermore, its transparency
is low because of the ZnO nanorod size and its layer thickness. Thus, an efficient and cheap process
for ZnO coating on the cellulose film is necessary for the mass production of cellulose ZnO hybrid
nanocomposite without significantly sacrificing its properties. An attempt was successfully made by
ZnO nanocoating on the cellulose film (ZONCE) with spin-coating [18]. Although their attempt gave
rise to a good piezoelectric property, it is still inappropriate for mass production because its size is
limited by the spin-coating. We have the intention to develop continuous ZnO coating on cellulose
film, possibly reducing the production cost.

Thus, a practical fabrication method for ZnO nanocoated cellulose film (ZONCE) is studied
in this paper, which is useful for continuous mass production. Figure 1a shows the concept of
continuous mass production of hydrothermally synthesized ZONCE (HZONCE). A wet cellulose film
is fed continuously by unwinding. Slowly moving wet film contacts with a ZnO reaction solution in
a heating bath. After that, the coated surface is washed with deionized (DI) water, followed by winding
and drying. This concept can be implemented by a pilot plant. To prove the concept, a laboratory-scale
fabrication setup was made as shown in Figure 1b. Detail of the laboratory setup is explained in
the fabrication process. Our aim was to fabricate a thin and uniform ZnO nanocoating layer on
the cellulose film less of than 250 nm by the continuous production method without significantly
sacrificing the piezoelectric property and optical transparency. A hydrothermal synthesis including
thermal hydrolysis reaction is adopted in this research, and the reaction effect is investigated.
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2. Materials and Methods

2.1. Materials

Cotton pulp with a degree of polymerization (DP) of 4580 was purchased from Buckeye
technologies Inc. in Memphis, TN, USA. Lithium chloride (LiCl) with extra pure degree (98.0%)
and potassium hydroxide (KOH) were purchased from Deajung Chemicals (Siheung-Si, Gyeonggi-Do,
South Korea). N,N-dimethylacetamide dehydrate (C4H9NO, DMAc) and Zinc acetate dihydrate
(Zn(CH3COO)2·2H2O, ZnAc) with ACS regent 98% were purchased from Sigma-Aldrich in St. Louis,
MO, USA.

2.2. Fabrication Process

The wet regenerated cellulose film for HZONCE was prepared by the previously reported
method [21]. In brief, cellulose/DMAc/LiCl solution was fabricated by dissolving cotton pulp in
DMAc/LiCl solvent system at 150 ◦C. The cellulose solution was cast on a glass plate and cured in DI
water /isopropyl alcohol (IPA) mixture and DI water. As shown in Figure 1b, the wet cellulose film
was fixed on a metal fixture to prevent permeation of the ZnO reaction solution on the back side of the
cellulose during ZnO coating. The fixture consists of a rectangular stainless steel plate, bezel, silicone
rubber, and polypropylene clips.

A ZnO layer was grown on the wet cellulose film by hydrothermal synthesis including thermal
hydrolysis reaction. For the process, two different nutrient solutions with precursors were prepared at
room temperature. ZnAc was the first precursor for the source of Zn2+ ions. For the ZnAc solution,
ZnAc was mixed into 100 mL DI water with 50 mM concentration. KOH as source of hydroxide (OH−)
ions was mixed into 400 mL DI water with 25 mM concentration. The nutrient solutions were mixed
to form a reaction solution and heated at 80 ◦C. The fixed wet cellulose was located to contact with
the surface of the ZnO reaction solution. After finishing the reaction, HZONCE was dried in room
conditions. Reaction time and number of reactions were varied to investigate resultant piezoelectric
properties. In the initial HZONCE fabrication process, the reaction time was varied from 2 to 6 h.
In the improved HZONCE fabrication process, the varied reaction time was divided into two steps.

2.3. Characterization

To investigate the morphology of HZONCE, an atomic force microscope (AFM, Dimension-3000,
Veeco, Plainview, NY, USA) was used. The transparency of HZONCE was investigated by using a diode
array UV visible spectrophotometer (UV-vis, 8452A, HP, Palo Alto, CA, USA). Dielectric property was
measured by using an inductance, capacitance and resistance (LCR) meter (4284A, Agilent, Santa Clara,
CA, USA). To measure the piezoelectric charge constant and Young’s modulus, the quasi-static pull
test was used [24]. Figure 2 shows the pull test system. The pull test system consists of a linear
motor (GB-BA/SR128-015, Sony, Minato, Tokyo, Japan) for longitudinal pulling, load cell (UU-K0101,
Dacell, Cheangiu-Si, Chungcheong buk-Do, South Korea) to measure pulling force, and picoammeter
(6487, Keithley, Solon, OH, USA) to measure induced piezoelectric charge. Samples were prepared to
6 × 1 cm2 size. To collect piezoelectric charge, 4 × 1 cm2 aluminum electrodes were deposited on both
sides of samples. Pulling speed was set to 0.0005 mm/s.
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Figure 2. Experimental setup for pull test.

3. Results

3.1. Initial HZONCE

HZONCE was prepared with various reaction times from 2 to 6 h. Figure 3 shows AFM images of
the cellulose film and HZONCEs depending on the reaction time. The cellulose film showed quite
a uniform surface (Figure 3a). AFM images of HZONCEs show nanosized ZnO grains (about 50 nm),
and its density increased as the reaction time increased. The existence of a ZnO nanolayer cannot be
seen by scanning electron microscope, and only AFM or transmission electron microscopes can see it.
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time: (a) cellulose; (b) 2 h; (c) 3 h; (d) 4 h; (e) 5 h; and (f) 6 h.
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Figure 4 shows UV-vis transmission spectra taken by UV-visible spectrometer. Transmittance
of the cellulose film was around 90% in the visible range. The UV-visible spectrum of 6 h HZONCE
shows an absorption peak at 364 nm wavelength, which confirms the ZnO nanolayer deposition on
the cellulose surface [25]. As the reaction time increased, the transmittance of HZONCE decreased,
but not below 80% in the visible range. This indicates that the amount of ZnO nanoparticles grown on
the surface of the cellulose film increased as the reaction time increased.
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Figure 4. Transparency of the initial HZONCEs depending on the reaction time.

Figure 5 illustrates dielectric constant and dielectric dissipation factor depending on the reaction
time at 60 Hz, 1 kHz, and 1 MHz. Dielectric constant was measured at room temperature conditions.
Figure 5a shows the dielectric constants of HZONCEs and the cellulose film. Dielectric constant
increased from 17.9 to 22.5 as the reaction time changed from 2 to 6 h at 60 Hz. Note that the dielectric
constant of the cellulose film was 15.3 at 60 Hz. The dielectric constant result indicates that ZnO
nanolayer improved the polarity of cellulose. Figure 5b shows the dielectric dissipation factors of
cellulose and HZONCEs. The dielectric dissipation factor of HZONCE increased from 0.28 to 0.38 as the
reaction time increased from 2 to 6 h at 60 Hz, which is larger than the cellulose film (0.07). This result
indicates that the interfacial polarity increases between the cellulose film and ZnO nanoparticles.
Dielectric dissipation factors of HZONCEs are shown to be 0.08−0.09 at 1 kHz. The reduction of
the dielectric dissipation factors implies the reduction of the interfacial polarity effect on the polarity
of materials. Dielectric dissipation factors of cellulose and HZONCEs at 1 MHz increased again to
0.11, which means that interfacial polarization effect was eliminated at 1 MHz. Although the effect
of interfacial polarity was eliminated, the dielectric constants of HZONCEs were higher than that
of the cellulose film in the entire frequency range. Regarding the reaction time effect, the dielectric
constants of HZONCEs increased with the reaction time. It is clear that as the reaction time increased,
the ZnO nanolayer thickness increased, resulting in dielectric constant enhancement. The reason why
the dielectric property of HZONCE is lower than that of ZNOCE might be mainly due to the thickness
of the ZnO nanolayer. According to a previous report [18], the improvement of the piezoelectric charge
constant of ZONCE was associated with three reasons: the dipolar orientation associated with the
crystal structures of ZnO and cellulose; the size effects in ZnO nanoseeds; and flexoelectricity of the
ZnO nanolayer associated with strain due to shrinkage of the cellulose film. After drying, the cellulose
film shrinks a little, but the ZnO layer does not. This results in a slight bend in ZONCE. This bending
introduces so-called flexoelectricity [26,27]. In other words, the ZnO nanolayer is under compression
stress when ZONCE is flat. Note that the thickness of the ZnO nanolayer in ZONCE was 70–85 nm and
was well deposited on the surface of cellulose. On the other hand, the thickness of the ZnO nanolayer
in HZONCE was about 5 nm, and many nanopores were shown (this thickness will be explained in
Figure 8). The size effect is associated with charge redistribution near the free surfaces leading to
changes in local polarization [28]. The thickness decrease of the ZnO nanolayer means electron donor
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decrease. Furthermore, the porous behavior of the ZnO layer in HZONCE might be associated with
the reduced dielectric and piezoelectric properties. Thus, the dielectric and piezoelectric properties of
ZONCE at low frequency are higher than those of the improved HZONCE. Although the dielectric
and piezoelectric properties of the improved HZONCE are less than those of ZONCE, the proposed
fabrication method for the improved HZONCE is worthy of mass production.
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Figure 5. (a) Dielectric constant and (b) dielectric tan δ of the initial HZONCEs depending on the
reaction time.

The Young’s moduli of cellulose and HZONCEs were analyzed by using the pull test system.
Figure 6a shows the Young’s modulus of HZONCEs depending on the reaction time. “0 h” indicates
the cellulose film without ZnO nanocoating. The Young’s modulus slowly decreased from 5.82 to
4.60 GPa as the reaction time increased from 2 h to 6 h. This might be due to stress concentration
between the different elastic properties of the ZnO layer and the cellulose film.
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To study the piezoelectric property, a quasi-static test was conducted by using the pull test system.
Figure 6b shows piezoelectric charge constant of HZONCEs with the reaction time. The piezoelectric
charge constants of cellulose and HZONCEs increased from 3.40 to 23.44 pC/N as the reaction time
increased from 2 h to 6 h. The 6 h-reacted sample showed a piezoelectric charge constant seven times
higher than the cellulose film (0 h). Note that the piezoelectric charge constant of the cellulose film is
very low because it was not mechanically stretched. The piezoelectric charge constant of the 6 h-reacted
HZONCE is similar to the mechanically stretched cellulose [18]. This result is due to increased dipole
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charge. Normally, increasing the dielectric constant leads to an improvement of the piezoelectric
charge constant. In summary, dielectric, electromechanical, and optical properties of HZONCE were
compared with those of ZONCE [18] as shown in Table 1. Young’s modulus was rather increased,
but dielectric constant and optical transparency of HZONCE were a bit lower than those of ZNONCE.
The piezoelectric charge constant of HZONCE was shown to be lower than that of ZONCE.

3.2. Improved HZONCE

To improve the properties of HZONCE, twice-hydrothermal synthesis was conducted.
Twice-hydrothermal synthesis means that the hydrothermal synthesis time was divided into two
steps and the reaction solution was entirely replaced with new reaction solution for the second step.
Reaction time was varied as twice of 1 h, 2 h, and 3 h, which are the same as 2 h, 4 h, and 6 h of the
initial HZONCE process. Figure 7 shows AFM images in terms of amplitude and phase of the cellulose
film and the improved HZONCEs with different reaction times. In the height image of the twice-1
hour reaction case, small ZnO nanoparticles were observed. However, its phase image is different
from the cellulose film. In the phase image of the cellulose, the phase is almost homogeneous on the
entire surface of the film. In the twice-1 hour reaction case, it is distinguished by two different phase
angles. As the reaction time increased to twice-3 h, ZnO nanoparticle size became small. Note that
brighter color indicates large phase change in the AFM phase images. This result shows that the stiff
ZnO effect on the mechanical property of HZONCE surface was increased by the increase of reaction
time. In summary, ZnO nanoparticle size reduction and the mechanical property improvement of
HZONCE were obtained by twice-hydrothermal synthesis. A line profile shown in Figure 8 indicates
that the thickness of the ZnO layer is 5 nm. It was estimated that ZnO on the initial HZONCE was
dissolved in highly basic reaction solution and re-deposited on ZnO. Because of ZnO dissolving, Zn2+

and OH- ions reached near the cellulose surface. So, small-size particles were formed [29].
Transparency of the improved HZONCE is almost 90%, which is similar to the cellulose film,

as shown in Figure 9. When comparing with the improved HZONCE of twice-3 h and the initial
HZONCE of 6 h shown in Figure 6, the transparency of twice-3 h case was higher than the 6 h case.
This is due to the smaller size of ZnO. The wavelength of the absorption peak for the improved
HZONCE was reduced to 352 nm. This is due to smaller size of ZnO [30]. The UV-vis result confirms
ZnO nanocoating on the cellulose surface by hydrothermal reaction.

Figure 10 shows the dielectric constant and tan δ of the improved HZONCEs. The dielectric
constant of the improved HZONCEs increased from 20.4 to 24.0 as the reaction time increased from
twice-1 hour to twice-3 h. These values are higher than those of the initial HZONCEs. The dielectric
dissipation factors of the improved HZONCEs showed lower values than the initial HZONCEs. Thus,
this result indicates that twice-hydrothermal synthesis improved the dielectric properties of HZONCE.

Figure 11a shows Young’s modulus of the improved HZONCE; its value decreased from
5.8 to 5.3 GPa as the reaction time increased. Note that the Young’s modulus of the twice-3 h
case in the improved HZONCE was higher than the 6 h case in the initial HZONCE. Figure 11b
shows the piezoelectric charge constant of the improved HZONCE. As the reaction time increased,
the piezoelectric charge constant of the improved HZONCE increased. When comparing the improved
HZONCE and the initial HZONCE, the piezoelectric charge constant of the twice-1 h and -2 h cases
of the improved HZONCE are smaller than the 2 h and 4 h reacted cases of the initial HZONCE.
This might be due to the fact that the ZnO nanolayer was not fully covering the cellulose surface.
However, the twice-3 h case of the improved HZONCE increased its piezoelectric charge constant
to 37.4 pC/N—almost 150% of the 6 h case of the initial HZONCE. This was due to size of ZnO.
Commonly, composite materials with small particles show high dielectric constant [31] because of
increased interaction area between particles and the base material. In the improved HZONCE case,
the gap between cellulose and ZnO nanoparticles could be very small due to the small size of the ZnO
nanoparticles and the larger interaction area compared to the initial HZONCE case. Thus, the dielectric
constant and piezoelectric constant were improved. Additionally, the transparency was increased due
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to the decreased band gap, which agrees with the UV absorption peak shift. The dielectric constant
of the improved HZONCE was almost 40% that of the ZONCE case [18]. This performance sacrifice
may be acceptable for feasibility of mass production. Table 1 shows the comparison with the initial
HZONCE for the 6 h case, the improved HZONCE for the twice-3 h case, and ZONCE. We did not try
a twice-4 h case. Based upon the observed tendency, the piezoelectric charge constant for the case is
expected to be slightly improved. However, increasing the reaction time consumes more chemicals
and increases production time, which hinders mass production.
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4. Conclusions

To achieve practical mass production, ZnO nanocoated cellulose films were fabricated by using
several hydrothermal synthesis methods (HZONCE). Reaction time and number of reactions were
varied, and the optical transparency, mechanical property, and piezoelectric property were investigated.
In the initial HZONCE fabrication process, the reaction time was varied from 2 to 6 h, and in
the improved HZONCE fabrication process, the varied reaction time was divided into two steps.
The tendency of dielectric constant, dielectric loss factor, and piezoelectric charge constant might be
associated with the interfacial polarization increase as the reaction time increased. The piezoelectric
charge constants of cellulose and the initial HZONCE increased from 3.40 to 23.4 pC/N, which is
smaller than the original ZONCE value. In the improved HZONCE fabrication process for the twice-3 h
case, the ZnO nanocoating covered the large surface of cellulose and the improved piezoelectric charge
constant was shown to be 37.4 pC/N. This result shows that ZnO coating on cellulose by hydrothermal
process is possible for continuous mass production.
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