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Abstract: A series of Er3+/Tm3+ co-doped fluoride (ZBLAN) glasses and fibers was prepared and
their fluorescence spectra was measured under excitation at 793 nm and 980 nm. Correlation between
the self-absorption effect of rare-earth ions and the shift of the emission peak was investigated. With
the increasing length of fiber, the emission peaks red-shift when self-absorption occurs at the upper
level of emission transition or blue-shift when that occurs at the lower level. As a result of the strong
self-absorption effect, Er3+/Tm3+ co-doped fibers mainly yield 1390–1470, 1850–1980, and 2625–2750 nm
emissions when excited at 793 nm, and 1480–1580, 1800–1980, and 2625–2750 nm emissions when
excited at 980 nm. Further, a broadband emission in the range of 1410–1580 nm covering the S + C
communication band was obtained by the dual-pumping scheme of 793 nm and 980 nm. Results
suggest that the dual-pumping scheme would be more effective and important for an Er3+/Tm3+

co-doped fiber amplifier working in the S + C communication band.
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1. Introduction

In recent decades, Er3+/Tm3+ co-doped glasses such as tellurite [1], germanate [2], and bismuthate
glasses [3] have been extensively investigated. Er3+/Tm3+ co-doped glasses have the potential to
be drawn into fibers as amplifiers for wavelength division multiplexing (WDM) systems [4–7]. For
multi-channel WDM transmission, it is essential to have a flat-gain broadband spectrum to minimize
channel-to-channel crosstalk and gain excursion [8–10]. However, the bandwidths of the conventional
erbium-doped fiber amplifier (EDFA) for the C-band (1530–1565 nm) and the thulium-doped fiber
amplifier (TDFA) for the S-band (1460–1530 nm) are limited [11,12]. A logical approach to achieving
broadband gain covering the S + C band is to dope with both Er3+ and Tm3+ [13–16]. Additionally,
Er3+/Tm3+ co-doped glass is regarded as one of the approaches to quench the lower level and enhance
MIR emission due to the Er3+:4I13/2→Tm3+:3F4 energy transfer process [17,18].

However, because of the long-range interaction between light and materials in fibers, emission
characteristics may be very different to those in bulk glasses. So far, only silicate and phosphor glasses
have been used as laser glass [19]. Other rare-earth doped glasses are yet to be drawn into fiber. Research
on the emission characters of rare-earth ions in fibers would be more important than those in glasses.

In this paper, fluoride glass (ZBLAN [20]) was chosen as the host material because of its low max
phonon energy (~500 cm−1) to achieve population inversion between the Tm3+:3H4 and 3F4 levels as
well as the Er3+:4I11/2 and 4I13/2 levels [21]. Consequently, a series of Er3+/Tm3+-doped ZBLAN glasses
with different concentrations and 0.2 mol % Er3+–1.2 mol % Tm3+ co-doped ZBLAN fibers of different
lengths were prepared. Their fluorescence spectra were measured under excitation at 793 nm and 980 nm.
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Spectral differences between glasses and fibers, as well as the energy transfer mechanisms between Er3+

and Tm3+, have been discussed. Broadband emission in the range 1410–1580 nm covering the S + C
communication band is obtained by the dual-pump scheme of 793 nm and 980 nm.

2. Experimental

The investigated ZBLAN glasses had the following molar composition: 53ZrF4–20BaF2–(3.8 − x)
LaF3–3AlF3–20NaF–0.2ErF3–xTmF3 (x = 0, 1.2 designated E0.2, E0.2T1.2, respectively). A 0.4 mol %
TmF3 single-doped glass was also prepared for comparison and designated T0.4. Well-mixed 15 g
batches of the initial metal fluoride powders (purity > 99%) were melted in a platinum crucible at
900 ◦C for 30 min, quenched onto a preheated copper mold and annealed at 230 ◦C. Finally, the
obtained glasses were processed and polished to 15 × 15 × 2 mm3 for optical measurements. The
fiber preform doped with 0.2 mol % ErF3 and 1.2 mol % TmF3, was fabricated by quenching molten
glass into a polyfluoroalkoxy (PFA) tube in a cold water bath. After annealing at 230 ◦C, composite
of glass rod and PFA tube was drawn together into 300 µm in a fiber drawing tower at 270 ◦C in the
atmosphere of nitrogen.

Refractive index of plain glass was recorded 1.49 at 1552 nm by the prism minimum deviation
method. The characteristic temperature of plain glass was measured by a NetzschSTA449/C differential
scanning calorimeter (Selb, Germany) at a heating rate of 10 K/min. Absorption spectra of the glasses
were measured with a Perkin-Elmer Lambda 900 UV/VIS/NIR spectrophotometer (Llantrisant, UK)
in the range 400–2000 nm. The emission spectra were measured with an Edinburgh Instruments FLSP
920 spectrometer (Livingston, UK). Emission spectra of fluoride fibers were measured with a Flight
Technology FLA4000 miniature fiber optic spectrometer (Hangzhou, China) in the visible region and
a Zolix Instruments Omni-λ 300 spectrometer (Beijing, China) attached with a Scitec Instruments
420 dual phase lock-in amplifier (Trowbridge, UK). Considering the limitations of detectors, the spectra
were recorded with an InGaAs detector in the range 1300–1650 nm, a StellarNet RED-Wave NIRx
spectrometer (Tampa, FL, USA) in the range 1650–2200 nm and a liquid nitrogen cooling InSb detector
in the range of 2580–2800 nm. All measurements were carried out at room temperature.

3. Results and Discussion

3.1. Thermal Stability

Differential scanning calorimeter (DSC) result is shown in Figure 1a. Characteristic temperatures of
Tg (temperature of glass transition), Tx (temperature of onset of crystallization), and Tp (temperature of
peak of crystallization) are 264, 342, and 388 ◦C. According to these characteristic temperatures, the fiber
preform is drawn at 270 ◦C in the atmosphere of nitrogen and the cross-sectional view of fiber without
PFA coating is obtained by electron probe micro-analyzer (EPMA) as shown in Figure 1b.
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3.2. Absorption Spectra

Absorption spectra of Er3+-, Tm3+-, and Er3+/Tm3+-doped ZBLAN glasses in the wavelength
region 400–2000 nm are presented in Figure 2. Absorption bands corresponding to the transitions from
the ground states to specified levels are labeled in the figure. The overlap band centered at ~800 nm
is attributed to absorptions from the ground state 4I15/2 to 4I9/2 of Er3+ and 3H6 to 3H4 of Tm3+.
Other absorption bands are individually related to the Er3+ or Tm3+. The absorption coefficients are
proportional to the concentrations of Er3+ and Tm3+.
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3.3. Emission Spectra and Energy Transfer Mechanism

Figure 3 illustrates the near-infrared (NIR) emission spectra of the three glass samples and the
co-doped fibers excited at (a) 793 nm and (b) 980 nm in the range of 1300–2100 nm. It shows that the
emission spectra of the co-doped fibers are different from those of the glass samples. In co-doped
glass the energy transfer processes Tm3+:3H4 → Er3+:4I9/2 and Er3+:4I13/2 → Tm3+:3F4 attenuate the
emissions at 1464 nm and 1536 nm and increase the emission at 1808 nm, as reported previously [22].
In fibers (Figure 3a) excited at 793 nm, the emission intensity of Er3+:4I13/2 → 4I15/2 decreases rapidly
and peak position shifts to longer wavelengths with increasing length of fiber. Emissions of Tm3+ are
also decreased and accompanied by a blue-shift (for 3H4→ 3F4) or a red-shift (for 3F4→ 3H6). In fibers
excited at 980 nm (Figure 3b), the population of the Tm3+:3H4 level most likely originates from the
up-conversion of Er3+ and energy transfer between Er3+ and Tm3+. The emissions are observed to
change with increasing length of fiber in a manner similar to that when excited at 793 nm due to the
high background loss of fiber (around 5 dB/m) and significant self-absorption effect of rare-earth ions.
To determine which factor is more prominent, intensity ratios of I1464 nm/I1536 nm and I1464 nm/I1808 nm

following excitation at 793 nm were computed, as shown in Figure 4a. Because the emission at 1808 nm
is recorded on another detector and is normalized individually, the ratio of I1464 nm/I1808 nm should
be multiplied by an uncertain factor k1. Both ratios increase with increasing length of fiber, which
indicates that self-absorption effects of Er3+:4I15/2 → 4I13/2 and Tm3+:3H6 → 3F4 are prominent and
cause differences in fluorescence between glasses and fibers. Thus, it would not be proper to infer the
emission performance of fibers only from the spectra of glasses.
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Figure 4. Emission intensity ratios of (a) I1464 nm/I1536 nm and I1464 nm/I1808 nm under 793 nm excitation;
and (b) I2708 nm/I1536 nm when excited at 793 nm and 980 nm.

Mid-infrared (MIR) spectra of glasses and fibers in the range 2580–2800 nm were also obtained as
shown in Figure 5 excited at 793 nm ((a), or 808 nm LD for glass samples) and (b) excited at 980 nm.
The ascendant long-wavelength tails of the spectra in Figure 5a can be attributed to secondary diffraction
of the Tm3+:3H4 → 3F4 emission. Doping with Tm3+ increases the emission intensity at 2708 nm in
glasses excited at 808 nm due to the Tm3+:3H4→ Er3+:4I9/2 and Er3+:4I13/2→ Tm3+:3F4 energy transfer
processes. Conversely, it decreases the emission intensity when excited at 980 nm. MIR spectra of the
co-doped fibers are coincident with the glass samples excited at 793 nm or 980 nm. I2708 nm/I1536 nm

ratios after excitation at 793 nm and 980 nm were also calculated (Figure 4b). In fact, the values should
be multiplied by uncertain factors k2 and k3 since they used different detectors. Although the emission
intensity at 2708 nm decreases with increasing length of fiber due to the background loss of fiber and
absorption by hydroxyl, the ratio of I2708 nm/I1536 nm rises, which indicates that the self-absorption effect
Er3+:4I15/2→ 4I13/2 is significant under both excitations. The results of Figure 4 imply that self-absorption
from ground state is more prominent than background loss and the emissions with self-absorption will
drastically attenuate with increasing fiber length.
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Figure 5. Mid-infrared emission spectra of glasses and fibers excited at (a) 793 nm (or 808 nm for
glasses) and (b) 980 nm.

To further understand the energy transfer mechanisms, up-conversion (UC) spectra of all samples
were measured with excitation at 793 nm (or 808 nm for glass samples) and 980 nm, as shown in Figure 6.
For glasses, excitation at 808 nm generate observable red emissions attributed to Tm3+:3F2,3→ 3H6 and
Er3+:4F9/2 → 4I15/2 when the concentration of Tm3+ is 1.2 mol %. However, exciting at 980 nm can
generate the green emission related to Er3+:2H11/2, 4S3/2 → 4I15/2 and the red emission related to the
Er3+:4F9/2→ 4I15/2 and Tm3+:3F2, 3→ 3H6 transitions. For co-doped fibers excited at 793 nm, the green
emission at 550 nm and the red emission at 660 nm can be obtained due to the higher optical power
density of the LD pump light. With 980 nm excitation, the green emission is much stronger than the
red emission, contrary to that found in glass samples. Red emissions at both excitation wavelengths
are significantly decreased and shift to shorter wavelengths with increasing length of fiber due to the
self-absorption effect of Tm3+:3H6→ 3F2, 3.
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To demonstrate the energy transfer mechanisms between Er3+ and Tm3+, the energy level diagrams
of Er3+ and Tm3+ are given in Figure 7, for excitation at (a) 793 nm and (b) 980 nm. With excitation at
793 nm, ground state absorption (GSA) occurs for Er3+:4I15/2→ 4I9/2 and Tm3+:3H6→ 3H4. The 4I9/2
level relaxes to the 4I11/2 level by multi-phonon relaxation and further relaxes to the 4I13/2 level by
radiative or non-radiative relaxation. Part of the population of the 4I13/2 level de-excites to the 4I15/2
level, causing a 1536 nm emission. Another part may be excited to the 2H11/2 level by excited state
absorption (ESA), resulting in 525, 550, and 660 nm emissions due to de-excitations of the 2H11/2, 4S3/2,
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and 4F9/2 levels, respectively. For Tm3+, the 3H4 level relaxes to the 3F4 level, resulting in 1464 nm
emission and further relaxes to the ground state 3H6 level, resulting in 1808 nm emission. There are
several possible energy transfer processes between Er3+ and Tm3+ following 793 nm excitation:

ET1: Er3+:4F9/2 → 4I15/2, Tm3+:3H6 → 2F2, 3, 222 cm−1

ET2: Er3+:4I15/2 → 4F9/2, Tm3+:3H4 → 3H6, 249 cm−1

ET3: Er3+:4I11/2 → 4I15/2, Tm3+:3H6 → 3H5, 1922 cm−1
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The ET1 process, which is a quasi-resonant energy transfer process with an energy mismatch
of 222 cm−1 populates the Tm3+:3F2, 3 levels resulting in enhancement of the 660 nm emission with
increasing concentration of Tm3+. The ET2 process is a quasi-resonant energy transfer process with an
energy mismatch of 249 cm−1, which depopulates the Tm3+:3H4 level and results in a reduction of the
emission intensity at 1464 nm. ET3 and ET4 are non-resonant processes that depopulate the Er3+:4I11/2
and Er3+:4I13/2 levels resulting in reduced emission at 1536 nm. ET3 and ET4 populate the Tm3+:3H5

(which decays non-radiatively to the 3F4 level) and Tm3+:3F4 levels and consequently enhance the
emission at 1808 nm. By cross-relaxation process CR1, the Tm3+:3H4 level relaxes to 3F4 and transfers
energy to the Er3+:4I13/2 level. CR1 decreases the emission intensity at 1464 nm and enhances the
emission at 1536 nm. By the CR2 process, the Tm3+:3F4 level relaxes to 3H6 and transfers energy to
Er3+ exciting the 4I11/2 level to the 4F9/2 level, resulting in enhancement of the red emission. The CR1
and CR2 processes possibly involve participation of one or two phonons at room temperature due to
small energy mismatches of 408 cm−1 and 583 cm−1, respectively. The self-absorption processes SA1,
SA2, and SA3 drastically decrease the emission intensities of 660, 1536, and 1808 nm respectively, and
shift the peak positions.

With 980 nm excitation, the Er3+:4I11/2 level is populated by GSA and then relaxes to 4I13/2 with
emission at 2708 nm. ESA produces transitions of Er3+:4I11/2 → 4F7/2 and 4I13/2 → 4F9/2 resulting



Materials 2017, 10, 486 7 of 9

in up-conversion emissions. Energy transfers from Er3+ to Tm3+ would be more active due to the
stronger absorption by Er3+ at 980 nm than at 793 nm.

3.4. Dual-Pump for Broadband

As illustrated in Figure 3, a single-pump at 793 nm or 980 nm does not generate broadband
emission that covers the S + C communication band due to the significant self-absorption effect of
Er3+. Hence, a dual-pumping scheme with excitation at both 793 nm and 980 nm was adopted and
the experimental schematic diagram is shown in Figure 8. Fixed 980 nm pump light was launched
into the trailing end of the Er3+/Tm3+ co-doped fiber to compensate for the loss of emission at
1530 nm. Meanwhile, a dichroic mirror was used to reflect the light produced from 1400–1650 nm
(reflection > 99%). The NIR spectra obtained are shown in Figure 9. Figure 9a demonstrates that the
broadband obtained by dual-pumping is the combination of emissions by single-pumping of 793 nm
and 980 nm. While the pump power is fixed, the emission intensity of 1447 nm rises with increasing
length of fiber, as shown in Figure 9b. Additionally, for a selected 20 cm long fiber, emission at 1447 nm
is enhanced by increasing the driving voltage of the 793 nm LD, as shown in the inner figure. As a
result, compensation of the 1530 nm emission by launching into the trailing end of the fiber with
980 nm LD is effective in producing a broadband emission. This also shows a convenient way to
modify the shape of the fluorescence spectrum by changing the pump power and length of fiber.
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4. Conclusions

A series of Er3+/Tm3+ co-doped fluoride (ZBLAN) glasses and fibers was prepared and their
fluorescence spectra were measured under excitation at 793 nm and 980 nm. Correlation between the
self-absorption effect of rare-earth ions and emission peak shift was investigated. With increasing
length of fiber, the emission peaks red-shift when self-absorption occurs at the upper level of
emission transition or blue-shift when it occurs at the lower level. This suggests that it would
not be proper to infer the emission performance of fibers only from the spectra of glasses due to the
strong self-absorption effect of rare-earth ions. Er3+/Tm3+ co-doped fibers—due to the significant
self-absorption effect of rare-earth ions—mainly yield 1390–1470, 1850–1980, and 2625–2750 nm
emissions with excitation at 793 nm, and 1480–1580, 1800–1980, and 2625–2750 nm emissions with
excitation at 980 nm. Compensating for the loss of Er3+:4I13/2→ 4I15/2 due to the self-absorption effect,
broadband emission in the range 1410–1580 nm was obtained by dual-pumping at 793 nm and 980 nm.
Therefore, a dual-pumping scheme would be more effective and important for an Er3+/Tm3+ co-doped
fiber amplifier working in the S + C communication band.
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