
materials

Article

Investigation on Indentation Cracking-Based
Approaches for Residual Stress Evaluation

Felix Rickhey, Karuppasamy Pandian Marimuthu and Hyungyil Lee *

Department of Mechanical Engineering, Sogang University, Seoul 04107, Korea; felix@sogang.ac.kr (F.R.);
pandian@sogang.ac.kr (K.P.M.)
* Correspondence: hylee@sogang.ac.kr; Tel.: +82-2705-8636

Academic Editor: Ting Tsui
Received: 14 March 2017; Accepted: 6 April 2017; Published: 12 April 2017

Abstract: Vickers indentation fracture can be used to estimate equibiaxial residual stresses (RS)
in brittle materials. Previous, conceptually-equal, analytical models were established on the
assumptions that (i) the crack be of a semi-circular shape and (ii) that the shape not be affected
by RS. A generalized analytical model that accounts for the crack shape and its change is presented.
To assess these analytical models and to gain detailed insight into the crack evolution, an extended
finite element (XFE) model is established. XFE analysis results show that the crack shape is generally
not semi-circular and affected by RS and that tensile and compressive RS have different effects on
the crack evolution. Parameter studies are performed to calibrate the generalized analytical model.
Comparison of the results calculated by the analytical models with XFE results reveals the inaccuracy
inherent in the previous analytical models, namely the neglect of (the change of) the crack aspect-ratio,
in particular for tensile RS. Previous models should therefore be treated with caution and, if at all,
used only for compressive RS. The generalized model, on the other hand, gives a more accurate
description of the RS, but requires the crack depth.
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1. Introduction

Residual stresses (RS) exist in many structures. They may have been induced intentionally
(e.g., shot peening, chemical strengthening) or inevitably (e.g., cold working due to polishing, thermal
treatment accompanied by phase transformation) and significantly affect fatigue life, corrosion or
wear resistance, in a positive or negative way [1]. Tempering, for example, is a very effective means
to improve the strength and contact damage resistance in glass ceramics. Here, compressive RS
are introduced into the surface, thereby increasing the effective stress for damage initiation and
propagation. RS can also enhance the mobility of charge carriers in semiconductor devices [2]. Hence,
RS play a central role regarding the performance of brittle structures, and their determination has been
of considerable interest [3,4].

Techniques for RS determination can be categorized into destructive and non-destructive
techniques [5]. Destructive methods, such as hole-drilling, saw-cutting, curvature and layer removal [6],
rely on the deformation due to the (partial) relief of RS upon removal of material. When employing
non-destructive techniques (NDT), RS are usually inferred indirectly. NDT include ultra-sonic methods,
micromagnetic methods, Raman spectroscopy, neutron or X-ray diffraction [7–9]. Many of these
methods are however rather expensive or limited in their applicability.

A mechanical NDT, indentation, is a convenient, inexpensive and quick means for RS estimation
and can be applied to ductile [10,11], as well as brittle materials [12]. Generally, RS support
(tensile RS) or work against (compressive RS) the penetration of the material by the indenter, resulting
in a downward (tensile RS) or upward shift (compressive RS) of the characteristic indentation
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force-indentation depth curve. Further, RS influence the pile-up/sink-in at the impression border.
In the case of ductile materials, RS are determined directly from these RS-induced changes in resistance
to indentation and pile-up/sink-in behavior. However, in the case of brittle materials, cracks may
emanate from the corners of the impression or inside the material, depending on the indenter shape
and material [13], and grow into a half penny-shaped crack. This method has been frequently used
to measure the fracture toughness of ceramics and glasses. To evaluate RS, the sensitivity of the final
crack dimensions to in-plane RS is made use of. This method is particularly advantageous for local
subsurface RS determination and in cases where optical and other conventional methods such as
fracturing in flexure are not employable. So far, spherical [14–17], conical [18], cube-corner [19,20],
Vickers [15,21], Berkovich [22] and Knoop indenters [18] have been employed.

Tandon and Cook [23] and Koike et al. [24] investigated the differences in sharp indentation
crack initiation and propagation between annealed, tempered and ion-exchange-strengthened glasses
and noted that compressive RS yield a decrease in the propensity to initiation of radial and median
cracks. Zeng and Rowcliffe [25] presented a Vickers indentation method to analyze the RS field
around a highly-stressed region in a glass specimen (the RS field itself was generated by a Vickers
indenter). Later, Kese and Rowcliffe [19] did the same with cube-corner indenters, but they assumed
a semi-elliptical crack geometry, which is different from those assumed by Zeng and Rowcliffe [25]
and Zeng et al. [26]; a new crack geometry factor was proposed based on a cube-corner indenter.
However, the calculated RS were 2~4-times higher than those calculated by Zeng and Rowcliffe [25],
Zeng et al. [26] and Peitl et al. [27]. Roberts et al. [16] and Bisrat and Roberts [28] exploited the shift
in the threshold load for the propagation of a pre-existing surface crack to estimate RS. The Vickers
indentation study by Peitl et al. [27] revealed that the radial-median cracks in the glass ceramic they
employed are not of semi-circular, but of a semi-elliptical shape, which means that the appropriateness
of assuming a semi-circular crack, as was done before, is questionable. To account for the departure
from the semi-circular shape, they introduced a correction factor in the formulation of Zeng and
Rowcliffe [27,29]. Rodríguez-López et al. [30] applied the method of Peitl et al. to evaluate the RS in
laser-cladded glass-ceramic sealants on Crofer22APU steel. Therefore, the experimental part of this
approach was limited to one material, i.e., glass ceramics (glass matrix).

Today, indentation fracture is, for example, used for determining RS in dental ceramics [31–37]
or in shot-peened ceramics [38]. Thus far, indentation-based studies were limited to compressive RS
and only a few materials (mainly glass). Previous analytical models were established on assumptions
whose appropriateness has not been verified by experiments, which were qualitative rather than
quantitative or numerical techniques. The goal here is therefore (i) to provide better insight into the
influence of both compressive and tensile equibiaxial RS on subsurface crack evolution and final crack
shape and size; (ii) how crack evolution is affected by relevant material properties and (iii) to scrutinize
previous models and their underlying assumptions by comparison with a generalized analytical
model and numerical results obtained by the extended finite element method (XFEM). To the authors’
knowledge, this is the first XFEM-based study on indentation of pre-stressed specimens.

2. Analytical Models

The difference in size of indenter-induced cracks in a stressed structure as compared with
the RS-free equivalent can be explained by considering the RS field to be superimposing onto the
indentation stress field [14]. The RS-induced change in the stress field affects crack initiation and
propagation. Tensile RS increase the tensile wedging forces and thus cause earlier damage initiation
and a larger final crack. Conversely, compressive RS result in restrained (or even totally suppressed)
crack formation and thus a smaller final crack (or no crack) [15,39].



Materials 2017, 10, 404 3 of 16

2.1. Shape Factor for a Semi-Elliptical Surface Crack Subject to Remote Tension

Based on linear elastic fracture mechanics (LEFM), the mode I-stress intensity factor (SIF) for a
crack subject to remote tensile stress σ∞ (Figure 1) can be expressed as:

K = Yσ∞√πachar, (1)

where achar is a characteristic crack dimension. The shape factor Y accounts for the crack configuration
and the change of the SIF along the crack front. Here, we assume the crack to be semi-elliptical.
achar = cz (crack depth), and the aspect ratio of the ellipse is ρ ≡ cz/c, where c is the length of the crack
on the surface (Figures 1 and 2). Y for a semi-elliptical surface crack with ρ ≤ 1 (in this study, ρ was
always < 1) under mode I-loading conditions is [40]:

Y(ρ, ω) =
M fωg√

Q
, (2)

Q = 1 + 1.464ρ1.65 ; M = 1.13− 0.09ρ,

fω =
[
sin2 ω + ρ2 cos2 ω

]1/4
; g = 1 + 0.1

(
1− sin2 ω

)
,

(3)

where Q, M, fω and g are geometry factors and the parametric angle ω is 0◦ at the surface and 90◦ at
the apex of the crack. The variation of Y along the crack front is plotted in Figure 3 (left) for diverse ρ.
For ρ > ρeq = 0.826, crack growth takes place at the surface (Point B), and for ρ < ρeq, K becomes
maximum at the apex (A). Regarding the change of Y at B with ρ in the range [0.7, 1], the maximum
difference in Y is 2.5% (Figure 3, right).
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Figure 3. Change of shape factor Y with ω for (a) diverse ρ (Equation (2)) and (b) with ρ at Points A 
and B; for ρ = 0.826, Y has equal values at A and B. 
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2.2. Previous Approaches

Marshall and Lawn [42] and, shortly afterwards, Swain et al. [43] presented LEFM-based models,
which are conceptually equal. The equibiaxial RS field was superimposed on the indentation stress
field, as shown in Figure 2. Self-similarity requires that the indentation load P scale with the wedging
force acting normal to the crack surfaces, P⊥. Since loading modes are consistent (mode I), the
contributions to the total SIF Ktot are additive; thus:

Ktot = Kind + KR, (4)

where Kind and KR are the SIF due to the indentation stress field and the RS field, respectively. The crack
was assumed to be of a semi-circular shape, i.e., ρ = 1, independent of material or RS. The SIF solution
for a semi-circular surface crack in a semi-infinite medium subject to tensile stress σR has the form:

KR = Y(1, ω)σR
√

πc, (5)

which is maximum at the surface (ω = 0◦). For indentation on an RS-free specimen (e.g.,
Lawn et al. [44]):

Kind = χ
Pmax

c3/2 , (6)
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where χ is a material- and indenter-dependent constant. At the crack tip during crack propagation,
Ktot = Kc, where Kc is the critical SIF (=fracture toughness). Inserting Equations (5) and (6) into
Equation (4), Marshall and Lawn [42] arrived at the following expression for σR:

σR =

√
πχ

2m
√

c

[
Kc

χ
− Pmax

c3/2

]
, (7)

Correction m was set to unity, which means a neglect of free surface-effects and a homogeneous RS field.
Indentations to diverse Pmax were carried out on as-annealed soda-lime glass specimens (to obtain the
material’s reference Kc/χ) and tempered soda-lime glass specimens, and results gave an approximately
linear relation between P/c3/2 and c1/2. Zeng and Rowcliffe [25] also applied Equation (7), but with
m = π/2.

Swain et al. [43] suggested indenting RS-free and specimens subject to RS, so that equal final crack
lengths cn are obtained. The compressive RS, σR, was calculated from the load difference by:

σR =
χ

Y
√

πc2
n
[Po max − Pmax], (8)

where subscript ‘o’ denotes the (reference) RS-free case. χ is obtained from the indentation of the
annealed (i.e., RS-free) specimen, and Pmax is the maximum indentation load necessary to produce a
crack of nominal length cn in the stressed material. Experiments on tempered and annealed soda-lime
glass specimens verified the proportionality of cn

2 and the load difference. While Swain et al. assumed
Y = π–1/2, Chaudhri and Phillips [15] later accounted for the free surface and corrected the shape factor
to Y = 1.16π–1/2.

When modifying the model by Swain et al. [43] so that it can be used for indentations to a nominal
Pmax (instead of cn), we can write the above analytical models in the following standard form:

σR =
χ

Y
Pmax√

πc2

[(
c
co

)3/2
− 1

]
; Y =


0.56 Swain et al. [43]

0.64 Marshal and Lawn [42]
0.65 Chaudhri and Phillips [15]

1 Zeng and Rowcliffe [25]

, (9)

The analytical models thus differ only by Y, which however ranges, depending on the source,
between 0.56 and one. Two indentations, one on the RS-free and one on the specimen subject to
RS, to equal Pmax, are required to get c/co. For two indentations to equal hmax (as in our numerical
analyses), Equation (9) becomes:

σR =
Kc

Y
√

πc

[
1− C

Co

(
c
co

)3/2
]

, (10)

where C/Co denotes the relative change of Kick’s law coefficient. Kick’s law denotes the linear relation
between indentation load P and squared indentation depth h2, P = C h2, for indentation with symmetric
sharp indenters on elastic-perfectly plastic materials [39]. Kick’s law coefficient C is then a material
constant. Note that Kick’s law holds independent of RS or cracking. As stated before, Equation (9)
assumes that ρ = 1 holds independent of material properties and indenter shape. However, ρ is
expected to be material- and indenter-dependent (compare Rickhey et al. [45] for Knoop indentation
of the RS-free specimen) and may, moreover, change under the influence of RS, so that ρ/ρo 6= 1.
The consequences of these assumptions will be scrutinized in Section 4.

2.3. Generalized Analytical Model

To assess the appropriateness of these assumptions, a generalized analytical model, similar to
Peitl et al. [27], is suggested. The stresses in the elastic far-field are approximated by the Boussinesq
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solution for the stress distribution in an elastic half-space subject to a point load acting normal to the
surface. The crack-driving circumferential stresses σθ in a median plane (i.e., a plane normal to the
specimen surface) are:

σθ ∝
P⊥

πR2 gω(ω), (11)

where P⊥ is the force acting normal to the crack plane (Figure 2) and gω is an angular function of
ω, which is defined in Figure 1. At the surface (R = c, ω = 0◦; Point B in Figure 1), where the crack
propagates, the following relation exists for the SIF:

Kind ∝ Y
P⊥
πc2
√

πcz = Y
√

ρ
P⊥√
πc3/2 , (12)

and the shape factor becomes:

Y =
1.243− 0.1ρ√
1 + 1.464ρ1.65

√
ρ, (13)

In accordance with self-similarity, the crack-driving force scales with the indentation load Pmax, i.e.,

P⊥ = kPmax , (14)

where k is an indenter shape- and material-dependent scale factor. k is expected to be closely related to
the residual field intensity factor χ. Plugging Equation (14) into Equation (12), we get:

Kind = Y
√

ρ
kPmax√
πc3/2 , (15)

The SIF contribution from the in-plane RS, which act as remote tensile stresses, i.e., σ∞ = σR, is:

KR = Y
√

ρσR
√

πc, (16)

During crack propagation K = Kc must hold, that is:

σR = 0→ Ktot = Kind = Kc; σR 6= 0→ Ktot + KR = Kc, (17)

Comparison of the equibiaxial RS case with the RS-free case gives:

σR =
k√
πχ

Kc√
πc

[
Yo

Y

√
ρo

ρ
−
(

c
co

)3/2
]
=

kPmax

πc2

[
Yo

Y

√
ρo

ρ

(
c
co

)3/2
− 1

]
, (18)

(It was eventually found that the variation of Yo/Y is very small, so that the term Yo/Y might as well
be removed from Equations (18) and (19) without loss of accuracy. However, we do not remove it here
for consistency.) In the case of indentations, to equal hmax, Equation (18) changes to:

σR =
kKc

πχ
√

c

[
Yo

Y

√
ρo

ρ
− C

Co

(
c
co

)3/2
]

, (19)

Note that for ρ = 1 and ρ/ρo = 1, Equation (18) reduces to:

σR =
kKc

πχ
√

c

[
1−

( co

c

)3/2
]
=

kPmax

πc2

[(
c
co

)3/2
− 1

]
, (20)

which is equal to Equation (9) with k/χ = π1/2/Y.
In summary, the assumptions common to both models, henceforth termed ‘simple’ (Equation (9)

or (10)) and ‘generalized’ (Equation (18) or (19)), are that SIF are additive and that the crack shape
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can be sufficiently described by ρ. The ‘simple’ model further requires that the crack be semi-circular
(ρ = 1) and that RS do not affect ρ (ρ/ρo = 1). The ‘generalized’ model, on the other hand, accounts for
the material- and indenter-dependent crack aspect ratio and its possible change with RS.

The analytical models are not restricted to a particular sharp indenter. The non-interaction of
radial-median cracks argues for Knoop indentation. However, since for general in-plane biaxial RS,
the Vickers indenter will be advantageous (the non-equality of RS will be reflected by non-equal crack
lengths in the median planes through the indenter diagonals, and provided sufficient sensitivity, only
one indentation will be necessary), it is chosen here to make the study extendible to general biaxial RS.

3. FE Model and Imposition of Equibiaxial RS

Numerical analyses are performed with Abaqus/Standard. As the XFE model shown in Figure 4
is quite similar to the validated one in Rickhey et al. [45], this section is limited to essential information
and to highlight differences. Owing to symmetry, modeling of one quarter specimen is sufficient.
The model consists of≈105 eight-node brick elements [46]. All nodes on the outer surfaces of the model
are fixed, so that RS can be introduced through the “initial conditions” option in Abaqus. Bottom
nodes are fixed, as well. For simplicity, the indenter is restricted to movements in the z-direction and
assumed rigid. The latter assumption is, however, not expected to influence the accuracy of the results
to a degree that invalidates the approach, because the indenter’s elastic modulus is usually much
higher than that of the material to be indented.
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indentation cracking.

The material to be indented is assumed to exhibit elastic-perfectly plastic material behavior and to
yield according to the von Mises yield condition (yield strength σy). In fact, the compressive behavior
of many brittle materials can be accurately described by this material model [47]. Damage is assumed
to obey a bilinear continuum traction-separation law, governed by a damage-initiating stress threshold
σ̂ (=0.8 GPa) and the fracture energy Γ, which is tentatively set to 3.0 MPa µm. The dimensionless
viscosity parameter, introduced to mitigate convergence problems associated with material softening, is
set to ζ = 5 × 10 –5. The role and choice of damage model parameters was discussed in detail in [45,48].
Friction between the indenter and specimen is considered with µ = 0.2. If not stated otherwise, all
indentations were performed with a prescribed hmax = 1.5 µm.

4. FE Results and Observations for Equibiaxial RS

Parameter studies were carried out by varying material properties and equibiaxial RS to see
whether and how equibiaxial RS affect cracking in general and ρ/ρo in particular. Finally, the RS
calculated by the analytical models are compared with the RS input to the numerical analyses to
discuss the importance of ρ and ρ/ρo regarding the accuracy of the results. First, we analyze the
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influence of RS on crack evolution for a reference material with properties close to polycrystalline
silicon (E = 200 GPa, ν = 0.3, σy = 5 GPa).

4.1. Observations Made for Reference Material

XFE results for the reference material reveal the following: The impression half-diagonal remains
unaffected by RS, which agrees with Swain et al. [43]. Kick’s law (P ∝ h2) holds irrespective of RS
and cracking. The decrease of C caused by cracking is negligible; as expected, tensile RS support
the wedging process performed by the indenter so that C decreases with increasing RS (Figure 5).
Compressive RS impede both the crack propagation in the depth direction during loading and the
opening-up during unloading, whereas tensile RS have the opposite effect. The relative change in
c and cz (normalized by ‘RS-free’ values co and czo, respectively) is however more pronounced for
tensile RS than for compressive RS.
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1 
 

r (m)

0 5 10 15 20 25

z 
( 

m
)

-20

-15

-10

-5

0

5
E = 200 GPa,  = 0.3, y = 5 GPa
R [GPa] = 

hmax = 1.5 m

 

Figure 6. Influence of compressive and tensile RS on crack evolution at load reversal (semi-transparent
lines) and after unloading.



Materials 2017, 10, 404 9 of 16

From sharp indentation of the RS-free specimen, we know that upon sufficient loading, χ becomes
constant; the generated crack is then called well-developed. We now investigate the influence of RS on
the residual field intensity at diverse hmax. Let us for this purpose introduce an apparent residual field
intensity coefficient χapp as follows:

χapp ≡ Kc

Pmax/c3/2 , (21)

For the RS-free case, χapp = χ. Hence, with Equation (18), we get:

σR =
k√
πχ

Kc√
πc

[
Yo

Y

√
ρo

ρ
− χ

χapp

]
=

kPmax

πc2

[
Yo

Y

√
ρo

ρ

χapp

χ
− 1
]

, (22)

for load-controlled indentations and, with Equation (19),

σR =
kKc

πχ
√

c

[
Yo

Y

√
ρo

ρ
− C

Co

χ

χapp

]
, (23)

for depth-controlled indentations (note that Kc is a material property and as such independent of RS).
In a similar fashion, we introduce:

χ
app
z ≡ Kc

Pmax/c3/2
z

, (24)

When plotting χapp obtained from indentations to hmax = [0.75, 2.25] µm, Figure 7 further
demonstrates the different nature of compressive and tensile RS. (Note that some combinations
of hmax and σR could not be considered because of the limited size of the inner region (high hmax, high
σR) or because of suppressed radial-median crack formation (low hmax, low σR). The size of the inner
region is limited by computational costs, which are determined by h max, the chosen element size
and σ̂ [45].) χapp and χz

app remain constant for compressive RS (as known from the RS-free case), but
increase clearly with hmax for tensile RS; ρ [= (χapp/χz

app)2/3] is independent of RS for compressive RS,
but decreases with increasing RS for tensile RS.

The coefficient k in Equation (19) is found by calculating σR
FE/(σR

Eq/k), where σR
FE is the RS

imposed in the FE analysis and σR
Eq is the RS calculated by Equation (19). Plotting k from Equation

(19) against RS (Figure 8), we see that k is approximately constant for the reference material (≈0.24).
This will be discussed in more detail in the next section.

Materials 2017, 10, 404  9 of 16 

 

From sharp indentation of the RS-free specimen, we know that upon sufficient loading, χ becomes 
constant; the generated crack is then called well-developed. We now investigate the influence of RS 
on the residual field intensity at diverse hmax. Let us for this purpose introduce an apparent residual 
field intensity coefficient χapp as follows: ≡ max/ / , (21) 

For the RS-free case, χapp = χ. Hence, with Equation (18), we get: 

= √ √ − = max − 1 , (22) 

for load-controlled indentations and, with Equation (19), 

= √ − , (23) 

for depth-controlled indentations (note that Kc is a material property and as such independent of RS). 
In a similar fashion, we introduce: ≡ max/ / , (24) 

When plotting χapp obtained from indentations to hmax = [0.75, 2.25] µm, Figure 7 further 
demonstrates the different nature of compressive and tensile RS. (Note that some combinations of 
hmax and σR could not be considered because of the limited size of the inner region (high hmax, high σR) 
or because of suppressed radial-median crack formation (low hmax, low σR). The size of the inner 
region is limited by computational costs, which are determined by h max, the chosen element size and 

 [45].) χapp and χzapp remain constant for compressive RS (as known from the RS-free case), but 
increase clearly with hmax for tensile RS; ρ [= (χapp/χzapp)2/3] is independent of RS for compressive RS, 
but decreases with increasing RS for tensile RS. 

The coefficient k in Equation (19) is found by calculating σRFE/(σREq/k), where σRFE is the RS imposed 
in the FE analysis and σREq is the RS calculated by Equation (19). Plotting k from Equation (19) against 
RS (Figure 8), we see that k is approximately constant for the reference material (≈0.24). This will be 
discussed in more detail in the next section. 

hmax (m)

0.5 1.0 1.5 2.0 2.5

 a
pp

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.1

0.1

0

E= 200 GPa,  = 0.3, y = 5 GPa

R [GPa]

hmax (m)

0.5 1.0 1.5 2.0 2.5

 zap
p

0.00

0.05

0.10

0.15

0.20

0.25

0.30



0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.1

0.1

0

E= 200 GPa,  = 0.3, y = 5 GPa

0.1

0.1
0 

z
app

(a) (b) 

Figure 7. Change of χapp (a); χzapp and ρ (b) with hmax for σR = 0.1, 0 and −0.1 GPa. Figure 7. Change of χapp (a); χz
app and ρ (b) with hmax for σR = 0.1, 0 and −0.1 GPa.



Materials 2017, 10, 404 10 of 16Materials 2017, 10, 404  10 of 16 

 

R
FE (GPa)

-0.2 -0.1 0.0 0.1

k
0.0

0.1

0.2

0.3

0.4

average

E = 200 GPa,  = 0.3, y = 5 GPa

 
Figure 8. Coefficient k in Equation (19) vs. σR. 

4.2. Influence of Material Properties 

To determine how the relation between k and χ is influenced by material properties, we 
performed parameter studies varying E, ν and σy, so that a large range of brittle materials is covered 
(Table 1). It is to be noted that the pair (E, σy) represents the usually given pair (E, H); the conversion, 
which is necessary for application in numerical analysis, is described in [45]. Indentation cracking 
tests were simulated with σR = {–0.2, –0.1, 0, 0.05, 0.1, 0.15} GPa. Due to the high sensitivity to RS for 
low modulus materials (as we will see later), σR = 0.15 GPa was applied only to materials with  
E = 600 GPa. RS lower than –0.2 GPa were not considered because radial-median cracks could not be 
generated (not even when increasing hmax to 3.0 µm). Higher RS were not imposed because they 
would have required a very large inner region (Figure 4) and thus significantly higher  
computational effort. 

Figure 9 shows the change of ρ/ρo for four materials. ρ is found to be affected by compressive RS 
to a relatively low degree, which means that regarding ρ, a material-dependent, but RS independent 
constant may be acceptable. However, in the case of tensile RS, ρ becomes quite sensitive and 
decreases rapidly with increasing RS. The decrease of ρ/ρo is tantamount to a more pronounced 
opening-up of the crack at the surface (B). 

Further, independent of material, tensile RS cause the crack to grow in the depth direction 
during unloading. With increasing RS, the crack shape approaches that of the equilibrium ellipse 
(ρeq), whereupon the crack grows also in the depth direction during unloading because the SIF reaches 
Kc at both A and B. For sufficiently high tensile RS, ρ is expected to be that of the equilibrium ellipse. 
For low RS, on the other hand, cz remains constant (only influenced by elastic unloading), which is 
consistent with theory (because ρ < ρeq). 

Table 1. Range of material properties applied in the parametric numerical simulations. 

Material Properties Values
E (GPa) 100, 200, 300, 400, 600 

ν 0.1, 0.2, 0.3 
σy (GPa) 3, 5, 8 

Figure 8. Coefficient k in Equation (19) vs. σR.

4.2. Influence of Material Properties

To determine how the relation between k and χ is influenced by material properties, we performed
parameter studies varying E, ν and σy, so that a large range of brittle materials is covered (Table 1).
It is to be noted that the pair (E, σy) represents the usually given pair (E, H); the conversion, which is
necessary for application in numerical analysis, is described in [45]. Indentation cracking tests were
simulated with σR = {–0.2, –0.1, 0, 0.05, 0.1, 0.15} GPa. Due to the high sensitivity to RS for low modulus
materials (as we will see later), σR = 0.15 GPa was applied only to materials with E = 600 GPa. RS lower
than –0.2 GPa were not considered because radial-median cracks could not be generated (not even
when increasing hmax to 3.0 µm). Higher RS were not imposed because they would have required a
very large inner region (Figure 4) and thus significantly higher computational effort.

Figure 9 shows the change of ρ/ρo for four materials. ρ is found to be affected by compressive RS
to a relatively low degree, which means that regarding ρ, a material-dependent, but RS independent
constant may be acceptable. However, in the case of tensile RS, ρ becomes quite sensitive and decreases
rapidly with increasing RS. The decrease of ρ/ρo is tantamount to a more pronounced opening-up of
the crack at the surface (B).

Further, independent of material, tensile RS cause the crack to grow in the depth direction
during unloading. With increasing RS, the crack shape approaches that of the equilibrium ellipse (ρeq),
whereupon the crack grows also in the depth direction during unloading because the SIF reaches Kc

at both A and B. For sufficiently high tensile RS, ρ is expected to be that of the equilibrium ellipse.
For low RS, on the other hand, cz remains constant (only influenced by elastic unloading), which is
consistent with theory (because ρ < ρeq).

Table 1. Range of material properties applied in the parametric numerical simulations.

Material Properties Values

E (GPa) 100, 200, 300, 400, 600
ν 0.1, 0.2, 0.3

σy (GPa) 3, 5, 8
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performed again, but now with hmax = 2.0 µm (instead of 1.5 µm), which, according to Kick’s law, 
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Figure 9. Normalized crack ratio ρ/ρo for all combinations of E = {200, 600} GPa, ν = {0.1, 0.3} and
σy = {3, 5, 8} GPa (note that not for all materials have radial-median cracks formed).

As mentioned in Section 2, the coefficient k is expected to be closely related to χ. Plotting results
for k/χ, we find that, despite some scatter, k/χ shows no systematic dependence on σy and ν, yet a
low linear dependence on E (Figure 10). To show that results are independent of hmax, the procedure
is performed again, but now with hmax = 2.0 µm (instead of 1.5 µm), which, according to Kick’s law,
means a 1.8-times increase in Pmax. The results in Figure 10 clearly show that k/χ is not affected by
hmax (or Pmax). Based on the FE results for both hmax, k/χ can be related to E through:

k
χ
= a + bE, (25)

where a = 3.37 and b = −9.07 × 10−4 GPa−1. The corresponding curve is shown by the dashed lines in
Figure 10. The scatter may be explained, at least partly, by the inaccuracies associated with obtaining c
and cz through interpolation.
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4.3. Comparison of Analytical Models and Conclusion  

The RS calculated by the simple and generalized analytical models are compared with FE input 
values. As can be seen from Figure 12, the ‘simple’ model with Y = 0.65 underestimates RS 
systematically with errors close to 30%. The error is particularly large for tensile RS. When reducing 
the average deviation to zero by applying Y = 0.55, the error, albeit not anymore systematic, still 
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(a) and 2.0 µm (b); data points for ν = 0.1 and 0.3 are plotted slightly left and right, respectively, of their
real location for better visibility.

To show that the ‘generalized’ model is further independent of Γ, Γ is varied in the range [1.5, 5.0]
MPa µm (to reduce computational expense, not all combinations are analyzed). Two materials are
considered: the reference material (hmax = 1.5 and 2.0 µm) and the material with E = 600 GPa, ν = 0.1,
σy = 8 GPa (hmax = 1.5 µm). Plugging k/χ from Equation (25) into Equation (19), RS (σR

Eq) are
calculated and compared with the FE input values (σR

FE). The results plotted in Figure 11 reveal
that deviations of σR

Eq from σR
FE are not systematic and are in the range obtained for Γ = 3 MPa µm.

Equation (19) is thus independent of hmax and Γ.
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Figure 11. Comparison of RS calculated by Equation (19) (σR
Eq) with FE input values (σR

FE) for
materials with different Γ; E = 200 GPa, ν = 0.3, σy = 5 GPa; hmax = 1.5 (a) and 2.0 µm (b) and
E = 600 GPa, ν = 0.1, σy = 8 GPa, hmax = 1.5 µm (c).

4.3. Comparison of Analytical Models and Conclusion

The RS calculated by the simple and generalized analytical models are compared with FE
input values. As can be seen from Figure 12, the ‘simple’ model with Y = 0.65 underestimates RS
systematically with errors close to 30%. The error is particularly large for tensile RS. When reducing the
average deviation to zero by applying Y = 0.55, the error, albeit not anymore systematic, still amounts
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to up to 20%. Results obtained by the ‘generalized’ model are in a much better agreement with FE
results. Maximum and average errors are reduced from 20% and 5% to 8% and 2%, respectively.

The improved accuracy hints at the importance of the crack aspect-ratio ρ and its change with
RS, in particular for tensile RS. We conclude that for the case of compressive RS, ρ and its change
caused by RS may be disregarded at the expense of some loss of accuracy. The ‘simple’ model with a
corrected Y of 0.55 can thus be used in cases where (i) a quick evaluation of compressive equibiaxial
RS is needed and (ii) the crack depth is unknown or difficult to obtain. However, one should be careful
when applying it to the estimation of tensile RS because the results become inaccurate owing to the
significant deviation of ρ from ρo, as shown in Figure 9. The ‘generalized’ model, on the other hand, is
more accurate, but only applicable when the crack depth can be measured, e.g., by focused ion beam
(FIB) tomography [51].
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5. Conclusions

The high sensitivity of crack formation to RS makes indentation fracture a powerful
non-destructive tool for the evaluation of local subsurface RS. Previous analytical models presupposed
(i) a semi-circular crack shape, i.e., ρ = 1; and (ii) that the ratio ρ/ρo does not change in the presence of
RS, i.e., ρ/ρo = 1. However, results revealed that ρ (including ρo) is smaller than one and that ρ/ρo

clearly decreases with increasing tensile RS. Further, the influence of tensile RS on the crack evolution
is notably different from that of compressive RS. While for compressive RS, the change of ρ/ρo is rather
small and may be neglected, it should be considered in the case of tensile RS, which demonstrates the
weakness of the ‘simple’ model. The proposed ‘generalized’ model, which accounts for (the change of)
the crack aspect ratio ρ predicted RS much more accurately than the previous models, indicating the
importance of (the change of) ρ, in particular for the tensile RS case. It is, however, to be noted that
indentation cracking is not applicable in the case of very high compressive RS because the RS inhibit
the development of the median crack into a well-developed radial-median crack. Higher tensile RS
were not treated here because of the high sensitivity of the final crack size to even small increases in
RS. We intend to tackle this issue by experiment in the near future.

Despite the simplicity of the previous approach (especially the independence of cz), it contains
assumptions that lead to inaccuracies and should therefore be used, if at all, only for compressive RS.
In connection with the previous model, a shape factor of Y = 0.55 was found to give an acceptable
prediction of compressive RS. The model proposed here is recommended in the case of tensile RS and
where the crack depth can be measured.



Materials 2017, 10, 404 14 of 16

Acknowledgments: This research was supported by the Basic Science Research Program through the National
Research Foundation of Korea funded by the Ministry of Science, ICT & Future Planning (No. NRF-2015
R1A2A1A 15056163).

Author Contributions: Felix Rickhey outlined the theoretical model, established the FE model, performed FEA,
analyzed the data and wrote the paper. Karuppasamy Pandian Marimuthu established the FE model, analyzed
the data and co-wrote the paper Hyungyil Lee analyzed the data and co-wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Warren, A.W.; Guo, Y.B.; Weaver, M.L. The influence of machining induced residual stress and
phase transformation on the measurement of subsurface mechanical behavior using nanoindentation.
Surf. Coat. Technol. 2006, 200, 3459–3467. [CrossRef]

2. Golovin, Y.I. Nanoindentation and mechanical properties of solids in submicrovolumes, thin near-surface
layers, and films: A Review. Phys. Solid State 2008, 50, 2205–2236. [CrossRef]

3. Groth, B.P.; Langan, S.M.; Haber, R.A.; Mann, A.B. Relating residual stresses to machining and finishing in
silicon carbide. Ceram. Int. 2016, 42, 799–807. [CrossRef]

4. Wang, C.; Jiang, C.; Cai, F.; Zhao, Y.; Zhu, K.; Chai, Z. Effect of shot peening on the residual stresses and
microstructure of tungsten cemented carbide. Mater. Des. 2016, 95, 159–164. [CrossRef]

5. Rossini, N.S.; Dassisti, M.; Benyounis, K.Y.; Olabi, A.G. Methods of measuring residual stresses in
components. Mater. Des. 2012, 35, 572–588. [CrossRef]

6. Skouras, A.; Paradowska, A.; Peel, M.J.; Flewitt, P.E.J.; Pavier, M.J. Residual stress measurements in a ferritic
steel/In625 superalloy dissimilar metal weldment using neutron diffraction and deep-hole drilling. Int. J.
Press. Vessel. Pip. 2013, 101, 143–153. [CrossRef]

7. Hauk, V. Structural and Residual Stress Analysis by Nondestructive Methods: Evaluation-Application-Assessment;
Elsevier Science B.V.: Amsterdam, The Netherlands, 1997.

8. Kandill, F.A.; Lord, D.J.; Fry, A.T.; Grant, P.V. A Review of Residual Stress Measurement Methods: A Guide
to Technique Selection; NPL Report/MATC/A: NPL Report; National Physical Laboratory: Teddington,
UK, 2001.

9. Jannotti, P.; Subhash, G. Measurement of residual stresses in B4C-SiC-Si ceramics using Raman spectroscopy.
In Residual Stress, Thermomechanics & Infrared Imaging, Hybrid Techniques and Inverse Problems,
Volume 9. In Proceedings of the 2015 Annual Conference on Experimental and Applied Mechanics,
Costa Mesa, CA, USA, 8–11 June 2015; Bossuyt, S., Schajer, G., Carpinteri, A., Eds.; Springer International
Publishing: Cham, Switzerland, 2016; pp. 341–345.

10. Jang, J.I. Estimation of residual stress by instrumented indentation: A review. J. Ceram. Process. Res. 2009, 10,
391–400.

11. Rickhey, F.; Lee, J.H.; Lee, H. A contact size-independent approach to the estimation of biaxial residual
stresses by Knoop indentation. Mater. Des. 2015, 84, 300–312. [CrossRef]

12. Sebastiani, M.; Bemporad, E.; Carassiti, F.; Schwarzer, N. Residual stress measurement at the micrometer
scale: Focused ion beam (FIB) milling and nanoindentation testing. Philos. Mag. 2011, 91, 1121–1136.
[CrossRef]

13. Rickhey, F.; Kim, M.; Lee, H. XFEM simulation of radial-median crack formation in brittle medium
underneath sharp indenters. In Proceedings of the KSME 2014 Spring Annual Meeting, Ansan, Korea,
22–23 May 2014; The Korean Society of Mechanical Engineers: Seoul, Korea, 2014; pp. 2143–2148.

14. Lawn, B.; Wilshaw, R. Indentation fracture: Principles and applications. J. Mater. Sci. 1975, 10, 1049–1081.
[CrossRef]

15. Chaudhri, M.M.; Phillips, M.A. Quasi-static indentation cracking of thermally tempered soda lime glass
with spherical and Vickers indenters. Philos. Mag. A 1990, 62, 1–27. [CrossRef]

16. Roberts, S.G.; Lawrence, C.W.; Bisrat, Y.; Warren, P.D.; Hills, D.A. Determination of surface residual stresses
in brittle materials by Hertzian indentation: Theory and experiment. J. Am. Ceram. Soc. 1999, 82, 1809–1816.
[CrossRef]

17. Petit, F.; Sartieaux, A.C.; Gonon, M.; Cambier, F. Fracture toughness and residual stress measurements in
tempered glass by Hertzian indentation. Acta Mater. 2007, 55, 2765–2774. [CrossRef]

http://dx.doi.org/10.1016/j.surfcoat.2004.12.028
http://dx.doi.org/10.1134/S1063783408120019
http://dx.doi.org/10.1016/j.ceramint.2015.08.179
http://dx.doi.org/10.1016/j.matdes.2016.01.101
http://dx.doi.org/10.1016/j.matdes.2011.08.022
http://dx.doi.org/10.1016/j.ijpvp.2012.11.002
http://dx.doi.org/10.1016/j.matdes.2015.06.119
http://dx.doi.org/10.1080/14786431003800883
http://dx.doi.org/10.1007/BF00823224
http://dx.doi.org/10.1080/01418619008244333
http://dx.doi.org/10.1111/j.1151-2916.1999.tb02003.x
http://dx.doi.org/10.1016/j.actamat.2006.12.014


Materials 2017, 10, 404 15 of 16

18. Chandrasekar, S.; Chaudhri, M.M. Indentation cracking in soda-lime glass and Ni-Zn ferrite under Knoop
and conical indenters and residual stress measurements. Philos. Mag. A 1993, 67, 1187–1218. [CrossRef]

19. Kese, K.; Rowcliffe, D.J. Nanoindentation method for measuring residual stress in brittle materials. J. Am.
Ceram. Soc. 2003, 86, 811–816. [CrossRef]

20. Scares, P.C.; Lepienski, C.M. Residual stress determination on lithium disilicate glass-ceramic by
nanoindentation. J. Non. Cryst. Solids 2004, 348, 139–143.

21. Ahn, Y.; Chandrasekar, S.; Farris, T.N. Determination of surface residual stresses in machined ceramics using
indentation fracture. J. Manuf. Sci. Eng. 1996, 118, 483–489. [CrossRef]

22. Malzbender, J.; de With, G.; den Toonder, J.M. Elastic modulus, indentation pressure and fracture toughness
of hybrid coatings on glass. Thin Solid Films 2000, 366, 139–149. [CrossRef]

23. Tandon, R.; Cook, R.E. Indentation Crack Initiation and Propagation in Tempered Glass. J. Am. Ceram. Soc.
1993, 76, 885–889. [CrossRef]

24. Koike, A.; Akiba, S.; Sakagami, T.; Hayashi, K.; Ito, S. Difference of cracking behavior due to Vickers
indentation between physically and chemically tempered glasses. J. Non. Cryst. Solids 2012, 358, 3438–3444.
[CrossRef]

25. Zeng, K.; Rowcliffe, D. Experimental measurement of residual stress field around sharp indentation in glass.
J. Am. Ceram. Soc. 1994, 77, 524–530. [CrossRef]

26. Zeng, K.; Giannakopoulos, A.E.; Rowcliffe, D.J. Vickers indentations in glass-II. Comparison of finite element
analysis and experiments. Acta Metall. Mater. 1995, 43, 1945–1954. [CrossRef]

27. Peitl, O.; Serbena, F.C.; Mastelaro, V.R.; Zanotto, E.D. Internal residual stress measurements in a bioactive
glass–ceramic using Vickers indentation. J. Am. Ceram. Soc. 2010, 93, 2359–2368. [CrossRef]

28. Bisrat, Y.; Roberts, S.G. Residual stress measurement by Hertzian indentation. Mater. Sci. Eng. A 2000, 288,
148–153. [CrossRef]

29. Serbena, F.C.; Zanotto, E.D. Internal residual stresses in glass-ceramics: A review. J. Non. Cryst. Solids 2012,
358, 975–984. [CrossRef]

30. Rodríguez-López, S.; Comesaña, R.; del Val, J.; Durán, A.; Justo, V.M.; Serbena, F.C.; Pascual, M.J. Laser
cladding of glass-ceramic sealants for SOFC. J. Eur. Ceram. Soc. 2015, 35, 4475–4484. [CrossRef]

31. Taskonak, B.; Mecholsky, J.J.; Anusavice, K.J. Residual stresses in bilayer dental ceramics. Biomaterials 2005,
26, 3235–3241. [CrossRef] [PubMed]

32. Fischer, H.; Hemelik, M.; Telle, R.; Marx, R. Influence of annealing temperature on the strength of dental
glass ceramic materials. Dent. Mater. 2005, 21, 671–677. [CrossRef] [PubMed]

33. Anunmana, C.; Anusavice, K.J.; Mecholsky, J.J. Residual stress in glass: Indentation crack and fractography
approaches. Dent. Mater. 2009, 25, 1453–1458. [CrossRef] [PubMed]

34. Choi, J.E.; Waddell, J.N.; Swain, M.V. Pressed ceramics onto zirconia. Part 2: Indentation fracture and
influence of cooling rate on residual stresses. Dent. Mater. 2011, 27, 1111–1118. [CrossRef] [PubMed]

35. Baldassarri, M.; Stappert, C.F.J.; Wolff, M.S.; Thompson, V.P.; Zhang, Y. Residual stresses in
porcelain-veneered zirconia prostheses. Dent. Mater. 2012, 28, 873–879. [CrossRef] [PubMed]

36. Al-Amleh, B.; Neil Waddell, J.; Lyons, K.; Swain, M.V. Influence of veneering porcelain thickness and cooling
rate on residual stresses in zirconia molar crowns. Dent. Mater. 2014, 30, 271–280. [CrossRef] [PubMed]

37. Wendler, M.; Belli, R.; Petschelt, A.; Lohbauer, U. Characterization of residual stresses in zirconia veneered
bilayers assessed via sharp and blunt indentation. Dent. Mater. 2015, 31, 948–957. [CrossRef] [PubMed]

38. Pfeiffer, W.; Frey, T. Strengthening of ceramics by shot peening. J. Eur. Ceram. Soc. 2006, 26, 2639–2645.
[CrossRef]

39. Johnson, K.L. Contact Mechanics; Cambridge University Press: Cambridge, UK, 1985.
40. Newman, J.C.; Raju, I.S. An empirical stress-intensity factor equation for the surface crack. Eng. Fract. Mech.

1981, 15, 185–192. [CrossRef]
41. Anderson, T.L. Fracture Mechanics: Fundamentals and Applications; CRC Press: Boca Raton, FL, USA, 2005.
42. Marshall, D.B.; Lawn, B.R. An indentation technique for measuring stresses in tempered glass surfaces.

J. Am. Ceram. Soc. 1977, 60, 86–87. [CrossRef]
43. Swain, M.V.; Hagan, J.T.; Field, J.E. Determination of the surface residual stresses in tempered glasses by

indentation fracture mechanics. J. Mater. Sci. 1977, 12, 1914–1917. [CrossRef]
44. Lawn, B.R.; Evans, A.G.; Marshall, D.B. Elastic/plastic indentation damage in ceramics: The median/radial

crack system. J. Am. Ceram. Soc. 1980, 63, 574–581. [CrossRef]

http://dx.doi.org/10.1080/01418619308224767
http://dx.doi.org/10.1111/j.1151-2916.2003.tb03380.x
http://dx.doi.org/10.1115/1.2831057
http://dx.doi.org/10.1016/S0040-6090(00)00656-8
http://dx.doi.org/10.1111/j.1151-2916.1993.tb05311.x
http://dx.doi.org/10.1016/j.jnoncrysol.2012.02.020
http://dx.doi.org/10.1111/j.1151-2916.1994.tb07025.x
http://dx.doi.org/10.1016/0956-7151(94)00393-V
http://dx.doi.org/10.1111/j.1551-2916.2010.03717.x
http://dx.doi.org/10.1016/S0921-5093(00)00877-7
http://dx.doi.org/10.1016/j.jnoncrysol.2012.01.040
http://dx.doi.org/10.1016/j.jeurceramsoc.2015.08.009
http://dx.doi.org/10.1016/j.biomaterials.2004.08.025
http://www.ncbi.nlm.nih.gov/pubmed/15603818
http://dx.doi.org/10.1016/j.dental.2004.09.004
http://www.ncbi.nlm.nih.gov/pubmed/15978277
http://dx.doi.org/10.1016/j.dental.2009.07.001
http://www.ncbi.nlm.nih.gov/pubmed/19671475
http://dx.doi.org/10.1016/j.dental.2011.08.003
http://www.ncbi.nlm.nih.gov/pubmed/21908034
http://dx.doi.org/10.1016/j.dental.2012.04.019
http://www.ncbi.nlm.nih.gov/pubmed/22578663
http://dx.doi.org/10.1016/j.dental.2013.11.011
http://www.ncbi.nlm.nih.gov/pubmed/24361198
http://dx.doi.org/10.1016/j.dental.2015.05.001
http://www.ncbi.nlm.nih.gov/pubmed/26037789
http://dx.doi.org/10.1016/j.jeurceramsoc.2005.06.036
http://dx.doi.org/10.1016/0013-7944(81)90116-8
http://dx.doi.org/10.1111/j.1151-2916.1977.tb16106.x
http://dx.doi.org/10.1007/BF00566254
http://dx.doi.org/10.1111/j.1151-2916.1980.tb10768.x


Materials 2017, 10, 404 16 of 16

45. Rickhey, F.; Lee, J.H.; Lee, H. XFEM investigation on Knoop indentation cracking: Fracture toughness and
aspect-ratio of radial-median cracks. Mater. Des. 2016, 107, 393–405. [CrossRef]

46. Abaqus User’s Manual-Version 6.14, Dassault Systems Simulia Corp: Providence, RI, USA, 2014.
47. Francois, P.; Lefebvre, A.; Vanderschaeve, G. Low temperature plasticity of brittle materials. A new device

for compressive testing under confining pressure. Phys. Status Solidi 1988, 109, 187–192. [CrossRef]
48. Lee, J.H.; Gao, Y.F.; Johanns, K.E.; Pharr, G.M. Cohesive interface simulations of indentation cracking as a

fracture toughness measurement method for brittle materials. Acta Mater. 2012, 60, 5448–5467. [CrossRef]
49. Sines, G.; Carlson, R. Hardness measurements for determination of residual stresses. ASTM Bull. 1952, 180,

35–37.
50. Suresh, S.; Giannakopoulos, A.E. A new method for estimating residual stresses by instrumented sharp

indentation. Acta Mater. 1998, 46, 5755–5767. [CrossRef]
51. Cuadrado, N.; Seuba, J.; Casellas, D.; Anglada, M.; Jiménez-Piqué, E. Geometry of nanoindentation

cube-corner cracks observed by FIB tomography: Implication for fracture resistance estimation. J. Eur.
Ceram. Soc. 2015, 35, 2949–2955. [CrossRef]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.matdes.2016.06.074
http://dx.doi.org/10.1002/pssa.2211090118
http://dx.doi.org/10.1016/j.actamat.2012.07.011
http://dx.doi.org/10.1016/S1359-6454(98)00226-2
http://dx.doi.org/10.1016/j.jeurceramsoc.2015.03.031
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Analytical Models 
	Shape Factor for a Semi-Elliptical Surface Crack Subject to Remote Tension 
	Previous Approaches 
	Generalized Analytical Model 

	FE Model and Imposition of Equibiaxial RS 
	FE Results and Observations for Equibiaxial RS 
	Observations Made for Reference Material 
	Influence of Material Properties 
	Comparison of Analytical Models and Conclusion 

	Conclusions 

