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Abstract: Accurate estimation of fracture behavior of commercial LiMn2O4 particles is of great
importance to predict the performance and lifetime of a battery. The present study compares two
different microscale techniques to quantify the fracture toughness of LiMn2O4 particles embedded
in an epoxy matrix. The first technique uses focused ion beam (FIB) milled micro pillars that
are subsequently tested using the nanoindentation technique. The pillar geometry, critical load
at pillar failure, and cohesive FEM simulations are then used to compute the fracture toughness.
The second technique relies on the use of atomic force microscopy (AFM) to measure the crack opening
displacement (COD) and subsequent application of Irwin’s near field theory to measure the mode-I
crack tip toughness of the material. Results show pillar splitting method provides a fracture toughness
value of ~0.24 MPa.m1/2, while COD measurements give a crack tip toughness of ~0.81 MPa.m1/2.
The comparison of fracture toughness values with the estimated value on the reference LiMn2O4

wafer reveals that micro pillar technique provides measurements that are more reliable than the COD
method. The difference is associated with ease of experimental setup, calculation simplicity, and little
or no influence of external factors as associated with the COD measurements.

Keywords: fracture toughness; atomic force microscopy; pillar splitting; lithium-ion batteries;
nanoindentation; focused ion beam

1. Introduction

Low cost and low toxicity of spinel LiMn2O4 makes them a good cathode material for the
lithium-ion batteries. Unfortunately, its commercialization is limited by its short lifetime. The primary
reason for its short lifetime is extensively documented and related to the dissolution of manganese
atoms in the electrolyte, which is the main source for capacity fade [1,2]. Mechanical failure upon
cycling produces more surface area that could lead to the loss of material through dissolution. It can
also result in the loss of adhesion with the current collector [3]. Internal pressure associated with
the intercalation and deintercalation results in the fracture of the crystal. It was previously reported
for LiMn1.95Al0.05O4, also a spinel that two parallel phenomena occurs: (1) brittle cracking at the
first electrochemical cycle and (2) fatigue leading to fracture [4]. More recently, the same issues were
observed for commercial LiMn2O4, where oxygen deficiency is witnessed; a phenomenon which can
be reduced with stoichiometric spinel [5]. It has been shown that the favorite cracking plane is {111} [6].
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It is expected for LiMn2O4 as {111} planes have the lowest solid-to-vapor surface energy, but {101}
faceting occurs as well [6]. The main challenge associated with the fracture toughness measurement
of LiMn2O4 spinal materials is that a bulk single crystal of this type of spinel cannot be easily grown
above a few micrometers [7]. Therefore, it is difficult to measure the fracture properties of single grains
without the use of microscale techniques.

Fracture toughness measurement using the indentation testing has been widely used over the
past three decades for brittle materials such as glasses and ceramics [8–11]. Lawn et al. [8] (and then
Anstis et al. [9]) suggested the classic relationship of fracture toughness assessment using Vickers
indentation based on the half-penny crack configuration

Kc = α

(
E
H

)1/2 P
c3/2 (1)

where P is the indentation load, c is the radial crack length from indentation center to the crack tip, E is
the Young’s modulus, H is the hardness, and α is the constant that depends upon indenter geometry.
Anstis et al. empirically determined the value of α as 0.016± 0.004 for Vickers indentation [9]. With the
development of nanoindentation testing in the early 1990s [12], it was revealed that Equation (1)
also applies to the three sided Berkovich indenter commonly used in the nanoindentation testing.
Later Jang and Pharr [13] suggested that the indenter angle has an effect on the cracking behavior
and can influence the fracture toughness values. Their study using Si and Ge shows that by simply
changing the indenter shape from cube corner (35.3◦) to Berkovich (65.3◦) indenter, the coefficient
value decreases by ~50%.

In the present article, we compare two microscale techniques, namely pillar splitting method [14]
and crack opening displacement (COD) [15], to characterize the fracture toughness values of
micrometric particles of LiMn2O4. In the first technique, nanoindentation is used to split the focused
ion beam (FIB) milled micro pillars. Fracture is realized by splitting at reproducible loads that are
experimentally quantified from displacement bursts in the loading segment of the load-displacement
curve [14,16]. The fracture toughness (KC) can be evaluated by using the following simple equation [14]

Kc = γ
Pc

R3/2 (2)

where Kc is the fracture toughness (MPa.m1/2), Pc is the critical load at failure (mN) and R the pillar
radius (µm). γ is a dimensionless coefficient and has been calculated for a wide range of materials
properties in a recent paper [16]. It is worth noting that the γ coefficient contains the influences of
elastic and plastic properties and is consequently material specific. The usefulness of Equation (2) lies
in its simplicity, as both the critical load and pillar radius are easily measured quantities. Recent papers
have demonstrated the applicability of the pillar indentation splitting method for a wide range of
material properties, which includes most ceramic materials [17–19].

The second method uses atomic force microscopy (AFM) to measure the crack opening
displacements (COD) after nanoindentation. Irwin’s near field solution was then applied to evaluate
the mode I crack tip toughness as first introduced by Rödel et al. [15] by means of scanning electron
microscopy. Additionally, indentations are performed on a wafer of spinel LiMn2O4 with its top
surface parallel to the {111} plane. This highly-oriented crystal enabled reproducible crack patterns
around the indents and Anstis solution for half-penny cracks [9] was used to evaluate the fracture
toughness and is also used as a reference in this work. Crack evolution below the surface of the indent
was also observed for the wafer using the FIB cross sections.

Lastly, both microscale techniques are compared based on their merits and demerits and
recommendations are provided on the use of suitable technique for the fracture toughness assessment
of this challenging material.
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2. Materials and Methods

2.1. Sample Preparation

Active particles of LiMn2O4 based cathode material extracted from commercial cells and cycled
three times at one C-rate from 2.5 to 4.2 V. These cathode materials were prepared for nanoindentation
as described in the previous work [20]. A wafer of {111}-oriented lithium manganese (III, IV) oxide was
prepared using a wafer of {111}-oriented manganese (II) monoxide as precursor (SurfaceNet GmbH,
Rheine, Germany). The preparation method developed by Kitta et al. [21] was used.

2.2. Pillar Splitting Experiments

Fabrication of the micro-pillars were performed using the focused ion beam (FIB) procedure
based on the ring-core milling approach developed by some of the authors [22,23]. The milling was
performed in a single outer to inner pass using the FEI Helios NanoLab 600 at a current of 0.92 nA.
At least five pillars were milled to an aspect ratio (h/d) of >1.2, where h is the pillar height and d is
the top diameter. It has been shown previously [22] that this geometrical design provides complete
residual stress relaxation in the upper part of the pillar. It is worth highlighting that using the correct
combination of current and dwell time; a single pillar can be milled within 10 minutes. Pillars were only
milled on the particles that are wide and deep enough to accommodate a 5 µm pillar. Special care was
taken to avoid the porous particles. All pillars were tested using a Berkovich indenter on a Keysight
G200 nanoindenter at a constant strain rate of 0.05 s−1 and an indentation depth set to 400 nm into the
top surface. The instrument frame stiffness and indenter area function were calibrated before and after
testing on a certified fused silica reference sample. The continuous stiffness measurement (CSM) mode
was turned off during the tests.

2.3. Crack Opening Displacement Measurement

A thin layer (~1 nm) of Pt/Pd alloy was sputter coated on each sample for easy imaging by
scanning electron microscope (SEM). The samples were indented with cube corner tips down to
400 nm without continuous stiffness measurement and with a strain rate target of 0.05 s−1, leaving an
indentation print about 600 nm wide. The SEM was used to determine the suitability of the cracks for
COD measurements (see Figure 1a). The cracks were selected if they were long enough to be mapped
and did not grow too close to a particle edge or a defect. Tapping mode atomic force microscope
(Dimension 3100) using very sharp tips imaged each crack (TESP-SS, Bruker, 42 N/m, 320 kHz, 5 nm
max radius) (see Figure 1b). The challenge was not to smooth the tips while scanning as the stiff particle
edges can easily damage them. Approach and scan were done using a very small initial force set point
(2%) in order to find the cracks. Once a crack was found, the force was increased until trace and retrace
lines were similar. TGX1 test grating samples (NT-MDT) were used before and after measurements
to characterize the AFM tip sharpness using the same procedure. In order to minimize sub-critical
crack growth between crack formation and COD measurement, indentations were carried out in the
early morning and the rest of the procedure was carried out within one day, sometimes extending to
the next day. For a crack along the x-axis and its tip located at (x = 0, y = 0), Irwin describes the crack
displacement as follows [24]:

ux(X) =


(
1− v2)KIC

E
0, X < 0

√
8X
π

, X ≥ 0 (3)

where ux(X) represents the near-tip crack opening displacement at position (x = X, y = 0), E is the
elastic modulus, ν represents the Poisson’s ratio, and KIC is the mode I fracture toughness. For each
image, ux was measured on 12 cross-sections perpendicular to the crack for different distances X to the
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crack tip. Special care was taken to avoid reverse tip imaging at the crack walls. KIC was calculated by
measuring the slopes of X vs. ux and inputting the value into Equation (3). Measurement reliability is
assessed by the correlation coefficient R2 of the linear regression.
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Figure 1. (a) SEM micrograph of a cube-corner indent in a LiMn2O4 particle. The cracks do not
propagate straight from the corners of the indent. They are also not longer than the indent; the arrow
indicates the crack mapped by means of AFM and visible in (b,c) is the cross-section (indicated by
a white line in (b)) used to estimate ux for x = 721 nm.

3. Results

3.1. Crack Length Measurement

The fracture toughness measurement using the classical Anstis solution for half-penny cracks is
highlighted in Equation (1) and largely relies on the configuration of crack pattern. This is the most
widely used method for fracture toughness calculations. For the case of LiMn2O4 particles (Figure 1a),
the configuration of the crack pattern does not allow the application of the crack-length measurement
method traditionally used after indentation [25]. However, the cracking pattern of the reference
wafer sample (pictured in Figure 4a) seems to allow such measurements. Using Anstis solution for
half-penny crack [9] and E and H values of 95.70 GPa and 6.70 GPa respectively, a fracture toughness
of 0.33 ± 0.07 MPa.m1/2 was calculated for the wafer sample. It is worth mentioning that a α value of
0.0569 was used for the calculation of fracture toughness as proposed by Jang and Pharr [13] for the
cube corner indenters. One might wonder at this point that the coefficient value of 0.0569 was originally
proposed for Si and Ge material. The usability of this coefficient value is justified by comparing the
E/H ratio of Si and the wafer material used in this study. Both Si and wafer material have an E/H
ratio of 14.60 and 14.30, respectively. This value of fracture toughness (0.33 MPa.m1/2) will be used as
a reference and is not further detailed in this work.
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3.2. Pillar Compression

Figure 2a shows a SEM micrograph of a pillar after splitting along with the load displacement
curve on the reference wafer sample (Figure 2b). The fracture toughness was calculated using
Equation (2) and the γ value used for this LiMn2O4 sample is 0.25, obtained by finite element modeling
(FEM) as described in a previous study [14], assuming a value of 95.73 GPa for the elastic modulus
and 6.71 GPa for the hardness [26]. Regarding the tests on the real commercial cathode samples,
an example of a pillar before and after splitting (discharged fresh cell) is reported in Figure 2c,d.
Results from splitting experiments on a series of FIB-milled pillars are shown on Figure 2e. Using the
elastic modulus of 86.67 GPa and a hardness of 6.95 as reported in a previous paper [26], a γ coefficient
of 0.22 was calculated. Note that this value also includes the correction, obtained through CZ-FEM, for
the effects coming from the compliant polymer substrate. A critical failure load of 3.90± 0.22 mN gives
a toughness value of 0.24 ± 0.01 MPa.m1/2, which is in very good agreement with the estimations
obtained on the LiMn2O4 reference wafer. Table 1 summarizes the results for both samples.
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Figure 2. (a) SEM micrograph of a split pillars on the wafer and (b) a representative load-displacement
curve highlighting the critical splitting load by a pop-in event; (c) SEM micrograph of a pillar on
commercial LiMn2O4 particle before and (d) after splitting; (e) Representative pillar splitting data
obtained on the commercial LiMn2O4 particles.
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Table 1. Results summary for pillar compression tests on LiMn2O4 wafer and particles.

Parameter Wafer Particles

E-modulus, E (GPa), [26] 95.73 ± 3.93 86.67 ± 11.29
FE Poisson’s ratio, ν 0.25 0.25

Hardness, H (GPa), [26] 6.71 ± 0.44 6.95 ± 0.76
Substrate corrected finite element γ (Equation (1)) 0.25 0.22

Experimental pillar radius, R (µm) 2.36 ± 0.10 2.36 ± 0.10
Experimental instability load, Pc (mN) 3.88 ± 0.85 3.90 ± 0.22

Fracture toughness, Kc (MPa.m1/2) 0.27 ± 0.06 0.24 ± 0.01

3.3. Crack Opening Displacement

The COD and the height difference versus the distance to the crack tips of seven cracks are plotted
in Figure 3. It is evident that not all measurements present the same quality; some are relatively linear
while others are very irregular. This is due to the roughness of the particles, such as scratches from
polishing, leading to imprecisions. Experimental measurements were fitted with linear functions
forced to zero. The crack tips were previously positioned from the AFM error images. The slope
is inserted in Equation (3) to find KIC using an elastic modulus of 90 GPa [20] and a Poisson’s ratio
of 0.3. The quality of the measurements was determined from the coefficient of determination R2.
Weighted means were applied to obtain a quantitative value, the weights being the R2 of each fit.
Table 2 summarizes all the results. For reference, the same method was used for the cracks on wafer
(Figure 4a) and a crack-tip toughness of about 0.7 MPa.m1/2 was found.
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Table 2. Mode I fracture toughness values of seven different cracks on LiMn2O4 particles using crack
opening displacement technique.

Sample KIC (MPa.m1/2) R2

+ 1.00 0.84
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3.4. Crack Orientation

Figure 4a is an SEM image of the wafer after indentation. The 60◦ facet edges indicate the
highly-oriented crystal as previously obtained (see Reference [21]). It is not a single crystal as can
be seen from EBSD measurements (Figure 4b–e) but all the grains have their top surface parallel
to the {111} plane and have only a little misorientation. The edges of the triangular pattern are
perpendicular to the <121> direction. All the indents formed cracks growing along the <121> direction
(Figure 4a), hence forming {101} planes if perpendicular to the top surface. The cracks always grow
perpendicularly to the edges of the triangular pattern regardless of the orientation of the indenting
diamond tip. Figure 5 schematically depicts this phenomenon along with FIB cross-sections to see the
cracks development below the surface. They indicate that the cracks grew first perpendicularly to the
top surface, opening {101} plane within a depth of 100 nm. Then they deviate at an angle of 30◦ to 40◦.
There are two possible explanations for this deviation. Another material could be present below the
spinel material. In fact, X-ray diffraction measurements published in a previous work [26] showed that
Bixbyite Mn2O3 could be present and it is possible that there is a deficit of oxygen ions between the
cubic MnO substrate and the spinel LiMn2O4 top surface. Otherwise, only the spinel material could be
present and the propagation deviates because surface formation is easier in this new plane.
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image of the mapped area; (c) Z direction; (d) Y direction; and (e) X direction. Color-coding indicated
in the center.
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Figure 5. (a) Schematics of the wafer. Yellow areas correspond to the wafer materials where the
triangles represent the patterns observed on Figure 4a, the darker triangle represents an indent print
with a ‘random’ rotation and the red lines represent typical cracks, growing perpendicularly to the edge
of the pattern triangles. (b,d) SEM images of two 400 nm deep indents before and (c,e) after FIB milling.
The first indent (b,c), labeled #1 in Figure 4a, produced a reproducible crack pattern where three cracks
formed perpendicularly (or 30◦) to the edges of the triangular pattern during crystal growth, regardless
of the indenting tip rotation. The second indent (d,e), labeled #2 in Figure 4a, produced two cracks at
its corner, one similar to the previous one and another one which is much longer and certainly due to
defects. Under the surface (c–e), the cracks grew perpendicularly to the top surface for about 100 nm
before deviating of an angle of 30–40◦.
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4. Discussion

4.1. Reliability of the Methods

4.1.1. Pillar Splitting Method

A critical analysis of reliability of the pillar splitting method along with its applicability for a series
of reference coating and bulk materials is presented in previous papers [14,16]. The main advantage of
this technique is that the effect of FIB damage on the measurements is almost negligible. This is because
the crack nucleation and growth usually happens within the core volume of the pillars, whilst the FIB
damage is only present in the very 10–100 nm at the pillars edges. In comparison with the COD method,
the pillar splitting method seems more reliable as it is easier to set-up experimentally and provides
highly reproducible pillar splitting loads. Another advantage of this technique over the conventional
methods which used the nanoindentation technique for fracture toughness assessment is that there
is no need to measure the crack length, hence not only significantly enhancing the test time but also
favoring less experimental hazard. One particular challenge regarding the lithium-based composite
electrodes is the influence of the surrounding compliant substrate. This issue is addressed in a recent
paper [16], which shows that the effect of complaint matrix on the critical splitting load is ~11% in the
worst case scenario and can be corrected by evaluating specific values of γ coefficient. The calculated
value of fracture toughness (0.27 ± 0.06 MPa.m1/2 for wafer and 0.24 ± 0.01 MPa.m1/2 for particles)
using pillar splitting method already include the substrate corrected coefficient values. These values
of fracture toughness are in very good agreement with the Anstis half-penny crack method, which
gives a value of 0.33 ± 0.08 MPa.m1/2. There is no quantitative report of fracture toughness on
these challenging materials in literature with the exception of one paper recently published by the
authors [17]. In that article, authors studied the change in fracture toughness vs. the state of charge
and observed a decrease in fracture toughness (0.49 to 0.26 MPa.m1/2) as the state of charge increases.
Finally, these values of fracture toughness are in very good agreement with the reported values of
similar cathode materials, e.g., Wolfenstein et al. reported the fracture toughness of Li-olivine cathodes
(LiCoPO4) between 0.4–0.5 MPa.m1/2 [27]. This further confirms that the pillar splitting technique is a
more reliable method for measuring the fracture toughness of LiMn2O4 particles.

4.1.2. Crack Opening Displacement

For COD measurements, it is difficult to apply higher loads without destroying the particles,
rendering measurements impossible. Inevitably, the crack lengths come close to the typical size of an
indent as shown in Figure 1a. It is important to highlight that the strong hypothesis of Irwin’s near-field
solution is that the crack walls are traction free [24]. This could be the main reason for the systematic
error in COD measurements, because some residual stress may be present in the particles due to
their processing. On the contrary, residual stresses are fully relieved in the case of pillar geometry
as demonstrated in previous papers [22,23]. A second issue is the measurement uncertainty coupled
with user’s interpretation of AFM measurements. It is difficult to decipher inverse AFM tip imaging
from crack wall imaging as the measured vertical displacements uz have the same order of magnitude
as the surface roughness. This can be observed from real measurements in Figure 1c. This behavior
was simulated using Equation (3), tip radius effects and artificial images were generated which are
then interpreted by the group of scientists. Figure 6a highlights the mode I fracture toughness values
obtained from the group experiment. It can be noticed how close the computed values are to the
input values in the case of the simulated cracks. Yet a user’s interpretation can drastically change the
measurement from simple to double, as is the case for sample 1. Overall, the averaged values from
the group approach the author’s measurements, which shows that most users interpreted the COD
the same way. These results show that the COD measurements using Irwin’s near field theory are not
the reliable method to quantify fracture properties of micrometric particles particularly because of the
systematic error associated with the plastic zone.
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5. Conclusions

Fracture toughness of commercial LiMn2O4 particles embedded in a polymer matrix are evaluated
using two micro-scale techniques. Pillar splitting method gives a fracture toughness value of about
0.24 MPa.m1/2, while crack-opening displacement gives a value of ~0.85 MPa.m1/2. The first method
appeared to be more reliable for determining the fracture toughness properties of these materials
because of the ease of experimental setup, well-defined pillar geometry, simplicity, and reproducibility
of results. In the case of the second method, the size of the particles does not allow crack growth to
a size where stress-free crack walls and elastic–brittle theory can be considered for COD measurement.
Concerning materials properties, this ceramic seems very brittle as its toughness lies in the lower range
of ceramics toughness (below 1 MPa.m1/2). Additional tests on an oriented LiMn2O4 wafer showed
that fracturing is also very dependent on the crystal orientation of the indented grains as the cracks
always grow in the <121> direction on {111}-oriented surfaces, with a possible favorite cleavage plane
being {101}. This further point to the possibility of producing engineered structure and/or the particle
shapes to reduce brittleness.
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