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Abstract: Energy piles—A fairly new renewable energy concept—Use a ground heat exchanger
(GHE) in the foundation piles to supply heating and cooling loads to the supported building.
Applying phase change materials (PCMs) to piles can help in maintaining a stable temperature
within the piles and can then influence the axial load acting on the piles. In this study, two kinds
of carbon-based composite PCMs (expanded graphite-based PCM and graphite nanoplatelet-based
PCM) were prepared by vacuum impregnation for potential application in energy piles. Thereafter,
a systematic study was performed and different characterization tests were carried out on two
composite PCMs. The composite PCMs retained up to 93.1% of paraffin and were chemically
compatible, thermally stable and reliable. The latent heat of the composite PCM was up to 152.8 J/g
while the compressive strength of cement paste containing 10 wt % GNP-PCM was found to be
37 MPa. Hence, the developed composite PCM has potential for thermal energy storage applications.

Keywords: composite phase change materials; expanded graphite; graphite nanoplatelet; energy
storage; energy piles

1. Introduction

The rapid increase in global energy consumption has led to serious issues such as depletion of
fossil fuels and degradation of the environment [1,2]. According to statistics, the world’s energy
consumption will grow by 48% between 2012 and 2040 [3]. Hence, energy policy makers and
researchers are paying a lot of attention to the building sector as it is responsible for around 30% of the
total global energy consumption [4,5]. Energy piles—A fairly new renewable energy technique—use
a ground heat exchanger (GHE) in the foundation piles to supply heating and cooling loads to the
supported building. Figure 1 is a schematic drawing of energy piles application in building energy
efficiency. Geothermal energy can sustainably be utilized with a ground-source heat pump, which
takes advantage of the ground as an energy storage system [6,7]. In the energy piles system, the piles
are used to absorb and transport thermal energy from the surrounding ground to buildings via fluid
circulating in pipes placed within the piles. In fact, the thermal cycle can influence the loading of
energy piles. Figure 2 displays the effect of thermal cycles of the energy piles system on pile stresses.
Many studies have been carried out to investigate the geotechnical performance of piled foundations
for ground-source heat-pump systems [8,9]. The main effects of temperature changes on pile behavior
were assessed by the geotechnical numerical analysis method [10]. Applying thermal loads could
induce a significant change in the stress–strain state of piles and the temperature change over the cross
section of the piles should be designed to avoid high stress accumulated in piles [11,12]. Phase change
materials are promising thermal energy shortage candidates that can be used to reduce the possible
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mismatch between thermal energy supply and demand. Applying phase change materials (PCMs) to
piles can help in maintaining a stable temperature within the piles and can then influence the axial
load acting on the piles. Among PCMs, paraffin is usually preferred as it is generally believed to
be chemically inert, non-corrosive, show small volume changes during phase transition, innocuous,
inexpensive, and recyclable. However, it has low thermal conductivity, which in turn, limits its
application in thermal energy storage [13].
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Figure 2. Effect of thermal cycles of the energy piles system on pile stresses [6]. (a) Ground cooling
reduces stresses along the cross section of the piles which can cause tensile stresses in the piles;
(b) Heating can cause increased stresses along the cross section of the piles.

Expanded graphite (EG) and graphene nanoplatelets (GNPs) are safe, environmentally friendly,
have low density and superior thermal conductivity. These are preferred over metal macro-scaled
promoters, which have been used to increase PCMs thermal conductivity [14]. Sari and Karaipekli [15]
prepared paraffin/expanded graphite composite PCM and found that composite PCM with 10 wt %
of EG is a suitable thermal energy storage candidate. With this mass fraction of EG in composite, the
thermal conductivity improved by approximately 273% in comparison to pure paraffin. Wang et al. [16]
incorporated 90 wt % of polyethylene glycol into expanded graphite and found that the thermal
conductivity of polyethylene glycol (0.2985 W·m−1·K−1) improved to 1.324 W·m−1·K−1. It was
shown that the composite PCM is a promising candidate for latent heat storage applications.
Xia et al. [17] showed that by incorporating 10 wt % of EG into paraffin, the composite PCM showed
a 10-fold increase in thermal conductivity over pure paraffin. Mill et al. [18] improved the thermal
conductivity of paraffin by two orders of magnitude using porous graphite matrices with paraffin.
Zeng et al. [19] prepared Tetradecanol/EG composite PCM and showed that in comparison to pure
tetradeconal (0.433 W·m−1·K−1), the thermal conductivity of the sample with 7 wt % of EG increased
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to 2.76 W·m−1·K−1. The optimum weight percentage of EG in Tetradecanol/EG composite PCM was
suggested as 20 wt %.

In the recent past, graphene nanoplatelets (GNPs), which have high thermal conductivity and
specific surface area, have been used and found to be suitable for PCM applications [20]. In order
to enhance the composite PCM’s thermal conductivity, Mehrali et al. [21] used GNPs with different
surface areas in palmitic acid (PA). The maximum percentage of PA absorbed by GNPs without any
sign of leakage was found as 91.94 wt %. Moreover, GNPs with a surface area of 750 m2/g improved
composite PCM’s thermal conductivity 10-fold with respect to pure palmitic acid. GNPs were used
by Tang et al. [22] to improve the thermal conductivity of palmitic acid/high density polyethylene
composite PCM. With 4 wt % of GNPs, the thermal conductivity was nearly 2.5 times higher than
pure form-stable composite PCM. Silakhori et al. [20] showed that GNPs with 1.6 wt % improved the
thermal conductivity of palmitic acid/polypyrole with an increase of 34.3%.

In this research, two kinds of carbon-based composite PCMs (expanded graphite-based PCM and
graphite nanoplatelet-based PCM) were prepared for potential application in energy piles. Thereafter,
a systematic study was performed and different characterization tests were carried out on two
composite PCMs.

2. Materials and Methods

2.1. Materials

A technical grade paraffin, which is generally believed to be chemically inert, non-corrosive,
show small volume changes during phase transition, innocuous and inexpensive, was used for this
research [23]. As far as a carrier for PCM is concerned, expanded graphite (supplied by Qingdao
Teng Sheng Da Carbon Machinery Co., Ltd., Qingdao, China) with an expansion ratio of 300 and
technical-grade graphene nanoplatelets (supplied by Chinese Academy of Sciences Chengdu Organic
Chemical Co., Ltd., Chengdu, China) were used. The properties of EG and GNPs are enlisted in Table 1.

Table 1. Properties of expanded graphite (EG) and graphene nanoplatelets (GNPs).

Type Particle Size Diameter Expanded Time Nanosheet Number

Expanded graphite ~0.5 mm / 300 /
Graphene / 5–7 µm / <20

2.2. Preparation of CPCMs

In this research, vacuum impregnation was used to prepare two kinds of composite phase change
materials (CPCMs), i.e., expanded graphite-based PCM (EG–paraffin) and graphite nanoplatelet-based
PCM (GNP–paraffin). The procedure adopted is as follows. At first, 100 g of supporting material
(EG or GNPs) and 300 g paraffin were mixed together and put into a vacuum chamber for about 2 h to
evacuate the air from the composite PCM. Thereafter, the vacuumed composite PCM was kept on the
filter paper to remove the redundant paraffin. Finally, the percentage of PCM retained by GNPs was
determined after removing the redundant PCM from the composite and keeping the PCM in an oven
at 80 ◦C for three days. Moreover, during this period, the high absorption cushion paper was changed
eight times on average to remove the extra PCM until the composite PCM mass became constant.
The maximum amount of paraffin retained by EG and GNPs was 92.3% and 31.5% respectively.

2.3. Characterization Tests for CPCMs

2.3.1. Micromorphology of CPCMs

The micromorphology of EG, GNPs and the CPCMs was examined using ESEM (Quanta 250 FEG,
FEI Company, Hillsboro, OR, USA). The machine was operated under low vacuum in secondary-
electron detection mode at an accelerating voltage of 15 kV. In order to obtain representative images,
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several regions of the powdered samples were observed. The SEM micrographs (Quanta 250 FEG,
FEI Company, Hillsboro, OR, USA) were also captured for thermal energy storage cement paste while
the energy dispersive spectrometer (EDS) was used to evaluate CPCMs dispersion in the cement paste.

2.3.2. Chemical Compatibility of CPCMs

A FT-IR spectrometer was used to evaluate the chemical compatibility between the components
of the CPCMs (Nicolet 6700; Thermo Electron Scientific Instruments Corp., Waltham, MA, USA).
After mixing CPCM and KBr in a 1:30 (powder: KBr) ratio, the sample was pressed in “Manual
Hydraulic Presess” at 10 ton for 1 min. Finally, the infrared spectrum was obtained by keeping the KBr
pellets in the sample compartment. The scanning parameters were frequency ranging from 4000 to
400 cm−1 with a resolution of 4 cm−1.

2.3.3. Thermal Capacity of the CPCMs

Thermal capacity of the CPCMs (DSC-Q200, TA Instruments Corp., Newcastle, PA, USA) was
determined by using DSC. The sample was tested under nitrogen atmosphere in a temperature range
of 0–60 ◦C at 2 ◦C/min heating/cooling rate at a flow rate of 40 mL/min. The results were extracted
by using TA Instruments Universal Analysis software.

2.3.4. Thermal Stability of CPCMs

The thermal stability of the CPCMs was evaluated by using TGA Q50 (TA Instruments Corp.,
Newcastle, PA, USA). The sample was tested under nitrogen atmosphere from room temperature to
600 ◦C with a heating rate of 20 ◦C/min and flow rate of 20 mL/min.

2.3.5. Thermal Reliability of CPCMs

The thermal reliability of the CPCMs was determined with respect to change in thermal properties
after 100 heating/cooling cycles. For this purpose, the sample was placed in the Temperature and
Humidity programmable chamber manufactured by Dongguang Bell. The sample was subjected to
a heating/cooling rate of 4 ◦C/min from 10 ◦C to 50 ◦C. Moreover, the temperature was maintained
for 30 min at 50 ◦C and 10 ◦C, respectively. After thermal cycling, the FT-IR and DSC analyses
were performed.

2.3.6. Compressive Strength of Cement Paste Composite Containing CPCMs

The compressive strength of paste (20 × 20 × 20 mm3) incorporated with 0% and 10% CPCMs
(EG- and GNP-based PCM) by weight of cement was evaluated at 28 days by applying a loading rate
of 50 ± 10 N/s. The experimental matrix is given in Table 2. As far as the mixing of the ingredients
is concerned, initially, the cement and CPCM were dry mixed and then a mixture of water and
superplasticizer was added to the dry mixture.

Table 2. Mix proportion (mass ratio) of composite phase change materials (CPCM) in cement paste.

Cement Paste Cement Water CPCMs Superplasticizer (wt %)

Control specimen (OPC) 1 0.35 0 0.15
EG–paraffin-10 1 0.35 0.1 0.3

GNP–paraffin-10 1 0.35 0.1 0.3

3. Results and Discussions

3.1. Macro- and Micro-Morphology of Composite PCM

The morphologies (at macro- and micro-scale) of EG, GNPs, EG–paraffin and GNP–paraffin are
shown in Figure 3. In comparison to the light grey colour of EG powder (Figure 3a), the EG–paraffin
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sample showed a dark grey colour, which was due to the penetration of PCM in the liquid state.
The micrograph of EG is shown in Figure 4. It is known from literature [24] that at micro-scale,
EG shows a flattened irregular honeycomb network. The micrograph of EG–paraffin was similar
to EG except that PCM showed the honeycomb structure due to the effect of capillary and surface
tension forces. At macro level, the GNP powder showed black colour, which became darker due to
the penetration of paraffin in the liquid state (Figure 3c,d). At micro-scale (Figure 4c), GNP particles
(flaky in nature) showed smooth planer structure with a large surface area, which led to mechanically
interconnected composites [20]. When the PCM was composed with GNP particles (Figure 4d),
they have the tendency to absorb organic materials on their surface [20].
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3.2. Chemical Compatibility of the CPCMs

The FT-IR spectra of paraffin, expanded graphite, GNPs and composite PCMs are shown in
Figure 5. The paraffin spectrum shows peaks at 2917 cm−1, 2851 cm−1, 1459 cm−1, 1371 cm−1 and
720 cm−1. The peaks at 2927 cm−1 and 2851 cm−1 are related to C–H stretching vibration of the
methylene group [25–27], while the peak at 720 cm−1 is associated to the rocking vibration of the
methylene group [25,28,29]. A strong peak (1597 cm−1) related to the C–H bending vibration of
the methylene/methyl group [25] and a weak peak (1378 cm−1) corresponding to the C–H bending
vibration of the methyl group can also be observed [25,28,29]. Finally, the shoulder in the region near
3430 cm−1 is linked to the OH stretching of the hydroxyl group [30].

The spectrum of EG shows a wider band at 3421 cm−1, which is linked to the stretching vibration
of the OH group [31]. It also shows bands at 2923 cm−1 and 2858 cm−1 (symmetric and asymmetric
stretching vibration of –CH2), 1653 cm−1 (–C=C– stretch structural vibration), and 1466 cm−1 (–C–C–
stretch) respectively.
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For GNPs, the wider peak at 3417 cm−1 is linked to the stretching vibration of the OH group [21]
while the bands at 2925 cm−1, 2855 cm−1, and 1463 cm−1 are related to the symmetric and asymmetric
stretching vibration of –CH2 and –C–C– stretch respectively.

The FT-IR spectra of EG–paraffin and GNP–paraffin CPCMs clearly depict that interactions are
physical in nature. Therefore, the developed CPCMs are chemically compatible.

3.3. Thermal Properties of CPCMs

DSC was used to determine the thermal properties of paraffin, EG–paraffin and GNP–paraffin
composites. The DSC curves are shown in Figure 6. The samples show two characteristic transition
peaks, in which the minor peak represents the solid–solid phase change of paraffin while the major
peak represents the solid–liquid phase change of paraffin [32]. The melting and freezing temperatures
for paraffin were 23.77 ◦C and 26.24 ◦C while these temperatures were 22.88 ◦C and 26.21 ◦C for
EG–paraffin and 22.68 ◦C and 26.88 ◦C for GNP–paraffin respectively. This shows that with the
incorporation of EG and GNPs, the melting point of PCM decreased. The decrease in the melting
temperature is believed to be due to the increase in heat transfer caused by the addition of EG and
GNPs, which have higher thermal conductivities. It can also be observed that the difference in the
peak melting and freezing temperatures is reduced by the incorporation of EG and GNPs in paraffin.
For example, the peak temperature difference between the melting and freezing temperature of paraffin
is 3.73 ◦C, while these values are 3.16 ◦C and 1.9 ◦C for EG–paraffin and GNP–paraffin composites
respectively. For the PCM composites, the decrease in the peak temperature difference is believed to
be due to the improved thermal conductivity of EG and GNPs. Moreover, GNP–paraffin composite
has a greater capacity in reducing the temperature gap between the melting and freezing stage.
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In order to evaluate the better performance of GNP–paraffin composite, the morphology
characteristics of GNPs, which can obviously influence the thermal conductivity were determined.
Moreover, it is known that uniform thickness can help to ensure even distribution of the thermal
conductivity for GNP–paraffin composite. Hence, atomic force microscopy (AFM) was employed to
map the topographical and structural properties of graphene by investigating how well an AFM probe
tip sticks to or is repelled by a surface, or how easy it is to press the probe tip into the surface. The AFM
images of GNPs are shown in Figure 7. From Figure 7a,b, it can be seen that the thickness of most parts
of GNPs along two sections with different directions (red line and blue line) ranges from 5 nm to 8 nm
(Figure 7b). The surface morphology of GNPs in 3D (Figure 7c) shows that GNPs used in this research
have an even surface, which means that in terms of thermal conductivity, the quality of GNPs is good.
Hence, for this reason, the efficiency of GNP–paraffin (in terms of thermal conductivity) is superior in
cement-based materials than in EG–paraffin. Although there are some defects in the GNPs, proper
defects in GNPs can contribute to providing good composition between GNPs and PCMs.

As far as the latent heats of fusion and solidification are concerned, they were found to be 163.6 J/g
and 166.5 J/g for paraffin, 152.8 J/g and 155.9 J/g for EG–paraffin and 51.84 J/g and 47.22 J/g for
GNP–paraffin. The encapsulation efficiency determined by Equation 1 was found to be 93.51% for
EG–paraffin and 30.02% for GNP–paraffin respectively.

η(%) = (∆Hm,EG-PCM/GNP-PCM + ∆Hf,EG-PCM/GNP-PCM)/(∆Hm,PCM + ∆Hf,PCM) × 100% (1)

In research conducted by Mehrali et al. [21], in which they used GNPs with surface areas of 300,
500 and 750 m2/g, the maximum percentage of palmitic acid retained by GNPs was found to be 77.99%,
83.1% and 91.94% respectively. In comparison, for the GNPs used in this research (surface area of
100 m2/g) 30 wt % retained PCM is acceptable. When the cost of GNPs with different surface areas is
compared, GNPs with 750 m2/g cost 150 USD/g while 100 m2/g cost only 0.2 USD/g. This shows
that the GNPs used in this research with a surface area of 100 m2/g are 750 times cheaper than GNPs
with a surface area of 750 m2/g. Some other reasons for the difference in the thermal energy storage
capacity of GNP composites are as follows. In research conducted by Mehrali et al. [21], they used
palmitic acid, which has lower viscosity than paraffin. It is believed that PCM with lower viscosity
was retained well by the GNPs. Secondly, the researchers used a hydraulic press to compact the PCM
composite, which might have allowed the extra PCM to stay with the GNPs. However, in our case, the
percentage of PCM retained by the GNPs was determined after removing the redundant PCM from
the composite, by keeping the PCM in an oven at 80 ◦C for three days. Moreover, during this period,
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the high absorption cushion paper was changed eight times on average to remove the extra PCM until
the composite PCM mass became constant.Materials 2017, 10, 391  9 of 15 

 

(a)

 
(b)

(c)

Figure 7. Tapping mode image of atomic force microscopy (AFM). (a) AFM Image of graphene  
(scan size: 5 × 5 μm); (b) Cross sections of two different directions; (c) Surface morphology of graphene 
by AFM 3D image. 

The values of latent heat thermal energy storage obtained from this research were compared 
with those available in literature (Table 3). The results depicted in Table 3 are promising and therefore 
the developed composite PCMs are potential thermal energy storage candidates for energy piles  
and buildings. 
  

Figure 7. Tapping mode image of atomic force microscopy (AFM). (a) AFM Image of graphene
(scan size: 5 × 5 µm); (b) Cross sections of two different directions; (c) Surface morphology of graphene
by AFM 3D image.

The values of latent heat thermal energy storage obtained from this research were compared with
those available in literature (Table 3). The results depicted in Table 3 are promising and therefore
the developed composite PCMs are potential thermal energy storage candidates for energy piles
and buildings.
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Table 3. Thermal properties comparison of composite PCMs with phase change temperature in the
human comfort zone.

Composite PCMs Melting Point (◦C) Latent Heat (J/g) Reference

Dodecanol (25–30 wt %)/gypsum 20 17 [33]
Capric-myristic acid (20 wt %)/Vermicuilite 19.8 27 [34]

Capric-lauric acid + fire retardant (25–30 wt %)/gypsum 17 28 [35]
Butyl stearate (25–30 wt %)/gypsum 18 30 [35]

Emersest2326/gypsum 16.9 35 [36]
Capric-lauric acid (26 wt %)/gypsum 19 35.2 [37]

Capric-myristic acid (25 wt %)/gypsum 21.1 36.2 [38]
Erythritol tetrapalmitate ester (18 wt %)/ cement 21.9 37.2 [39]

Capric-lauric acid (26 wt %)/gypsum 18.49 39.13 [40]
Propyl palmitate (25–30 wt %)/gypsum 19 40 [33]
Capric-palmitic acid (25 wt %)/gypsum 22.9 42.5 [41]

Paraffin/GNPs 22.68 47.22 This study
Decanoic/Dodecanoic acid/Diatomite 16.7 66.8 [42]

RT20 (58%)/Montmorillonite 23 79.3 [43]
PCM-clay composite (PMMT1-4) 16–17 82–128 [44]

Paraffin/Diatomite/CNTs 27.12 89.40 [45]
Capric acid (55%)/Expanded perlite 31.8 98.1 [46]

Octadecane (70%)/Expanded graphite 29.6 138.8 [47]
Paraffin/Expanded graphite 22.82 152.8 This study

3.4. Thermal Stability of the CPCMs

The thermal stability of composite PCM was determined to ensure that it is stable in the working
temperature range. The TGA thermograms of pure paraffin and composite PCMs are shown in
Figure 8. It can be seen that the initial decomposition temperature of composite PCMs shifted to a
higher temperature when compared to pure paraffin, indicating an increase in the thermal stability
of composite PCM. The results also indicate that EG and GPN were advantageous in slowing down
the degradation process. It is believed that the thermal energy is initially absorbed by EG and GPN;
hence, enough energy to initiate paraffin decomposition only becomes available at a slightly higher
temperature [48,49]. It is also suggested that the surfaces of EG and GPN might have adsorbed the
volatile decomposition products which in turn retarded its diffusion out of the sample and hence the
mass loss was only observed at a slightly higher temperature [48,49]. Finally, the observed weight loss
of paraffin in composites is in line with the vacuum impregnation results, indicating homogeneous
preparation of composite PCM. Conclusively, composite PCMs are thermally stable in the working
temperature range.
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3.5. Thermal Reliability of CPCMs

The developed composite PCMs were subjected to 100 thermal cycles, and FT-IR and DSC were
used to determine the changes in chemical structure and thermal properties. The FT-IR spectra of the
developed composite PCM are shown in Figure 9. The finger print of the composite PCM (before and
after thermal cycling) shows no obvious difference, clearly suggesting that thermal cycling did affect
the chemical structure of the developed composite.

The thermal properties of composite PCM (EG–paraffin and GNP–paraffin) before and after
thermal cycling are shown in Figure 10. After thermal cycling, the melting and freezing temperatures
for EG–paraffin changed by −0.44 ◦C and 0.03 ◦C respectively, while the latent heat of melting and
freezing changed by 1.2 J/g and 1.1 J/g respectively. For GNP–paraffin, the melting and freezing
temperatures changed by 0.41 ◦C and 0.02 ◦C respectively, while the latent heat of melting and freezing
changed by 0.86 J/g and 1.87 J/g respectively. This shows that the changes observed in phase change
temperature and latent heat storage capacity are smaller and therefore the developed composite PCMs
are thermally reliable and suitable for thermal energy storage applications.
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Figure 9. FT-IR of composite PCMs before and after thermal cycling.
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Figure 10. DSC thermograms of composite PCM before and after 100 thermal cycles. (a) endothermic
curve of EG-paraffin; (b) exothermal curve of EG-paraffin; (c) endothermic curve of GNPs-paraffin;
(d) exothermal curve of GNPs-paraffin.

3.6. Compressive Strength of Cement Paste Containing CPCMs

The compressive strength results of cement paste incorporated with 0 and 10% CPCMs (EG-
and GNP-based PCM) by weight of cement are presented in Figure 11. The compressive strength of
cement paste containing 10 wt % EG-PCM and GNP-PCM was found to be 14.6 MPa and 37 MPa
respectively. The percentage reduction in compressive strength for these mixes was 77.9% and 44%
respectively. In research conducted by Zhang et al. [24], the decrease in percentage of cement mortar
with 2.5% n-octadecane/EG composite PCM was found to be 55%. We would like to mention here
that the compressive strength of GNP-PCM cement paste was 37 MPa and is acceptable for many
applications as mentioned in literature [24,50–52] and Chinese National standard (GB 50574-2010) for
building materials.
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Figure 11. Compressive strength of cement paste incorporated with 0 and 10 wt % CPCMs (EG and
GNP-based PCM).

4. Conclusions

In this research, two kinds of composite PCM i.e., expanded graphite-based PCM and graphite
nanoplatelet-based PCM, were prepared using vacuum impregnation. The conclusions drawn are
as follows.

(1) The maximum percentage of paraffin retained by EG and GNPs through vacuum impregnation
was 92.3% and 31.5% respectively. This data is similar to the data obtained from TGA
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results (93.1% and 30.9%), thus testifying the homogenous preparation of composite PCM.
From micro-morphology, it was found that PCM possessed a honeycomb structure of EG due to
capillary and surface tension forces while for GNPs, the larger surface area provided favourable
conditions to absorb PCM.

(2) From the FT-IR analysis, the interaction between components of composite PCM was physical
in nature and therefore the components of prepared carbon-based composites are chemically
compatible with each other.

(3) The DSC analysis showed that the developed carbon-based PCMs possess considerable latent
heat and can therefore be a potential candidate for energy piles.

(4) From thermal stability results, it was found that the incorporation of carbon-based materials
in PCM shifted the initial decomposition to a higher temperature, indicating an increase in the
thermal stability of composite PCM. Furthermore, the developed composite PCM did not show
any sign of degradation below 100 ◦C. Hence, it is thermally stable and can be utilized for thermal
energy storage applications.

(5) The chemical structure and thermal properties of developed carbon-based composite PCMs were
not affected by thermal cycling. Therefore, the composite PCM is thermally reliable and can be
used for latent heat storage applications.

(6) The compressive strength of cement paste containing 10 wt % GNP-PCM was found to be 37 MPa
and it therefore has potential application for structural purposes.
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