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Abstract: In this study, the effect of corrosion on the static behavior of stud shear connectors was
investigated. An innovative test setup for single stud shear connectors was designed and established.
Two series of specimens having different stud diameters were fabricated and tested. The test
specimens were firstly corroded to different corrosion rates by the electronic accelerating method.
Static loading tests were then performed to obtain the load-slip curves and ultimate strengths of
the corroded test specimens. The actual corrosion rates were measured from the studs obtained
from the tested specimens. The test results were compared with the push out test specimens having
similar corrosion rates. It is shown that the test results obtained from the single stud shear connectors
are conservative compared with the corroded push test specimens, which prove the validation of
the single stud shear connector test method. The effect of corrosion on the behavior of stud shear
connectors was also presented.
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1. Introduction

The economic loss caused by corrosion in concrete structures is tremendous. Therefore, understanding
the effect of corrosion is crucial to predicting the behavior of concrete structures in use. Many studies have
been conducted to evaluate the effect of the corrosion of reinforcing bars on concrete structures [1–5].
However, there are few studies that have been conducted on the effect of corrosion on the behavior of
stud shear connectors used in steel-concrete composite beams [6,7].

Steel-concrete composite beams are developed structures based on RC structures and steel
structures, and are nowadays widely used in buildings and bridge constructions due to the satisfying
utilization of the two materials. However, unfavorable conditions may cause corrosion to occur in
the interface between the steel and concrete since there is a lack of protection. Headed stud shear
connectors are the most common type of shear connectors and are used in composite bridges. The
behavior of the stud connectors has been broadly investigated by many researchers [8–13]. The
deterioration in strength of stud connectors due to fatigue damage has also been reported [14–21].
Chen [6] has investigated the behavior of corroded shear stud connectors based on push out test
specimens. However, the corrosion rates of four stud shear connector push out test specimens
were different. The single stud shear connector test has been used recently [22,23]. In this study,
an innovative test setup for single stud shear connectors was proposed to accurately evaluate the effect
of corrosion.
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2. Experimental Investigation

2.1. Test Specimens

The proposed test device is shown in Figure 1a. Both the horizontal force and vertical force on
the test specimen was measured. The horizontal force was applied by a hand jack. Figure 1b shows
the details of the test specimens. The stirrups are HPB 235 (Mengruidi Steel Company, Hangzhou,
China) with a diameter of 6 mm. The test specimens were labeled so that the corrosion state, nominal
stud diameter, and expected corrosion rate could be identified from the label. For example, the labels
“W10.0-5” and “B16.0-10” define the specimens as follows:

• The first letter indicate that the designed corrosion state, where the prefix letter “W” refers to
corrosion along the whole stud shank, while the letter “B” refer to corrosion only at the bottom of
the stud shank.

• The following three digits (10.0 and 13.0) indicate the nominal diameter of the studs in mm.
• The following one (5) or two digits (10) are the expected corrosion rates of the stud in percentage.
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Figure 1. Test setup of the single stud shear connector: (a) Test device; (b) Test specimen.

2.2. Material Properties and Measurements

Three concrete cubic specimens were prepared at the time of the push test specimen casting,
to determine the concrete strength of the push test specimens. Table 1 summarizes the material
properties of concrete at 28 days. Two kinds of studs with nominal diameters of 10.0 and 13.0 mm were
used in this study. The heights of the studs are 50 mm and 70 mm, respectively. Tensile tests for the
stud material were conducted. The yield stress from the tensile tests was determined by 0.2% strain
because the steel used for studs generally does not show a clear yielding point. Table 2 summarizes
the material properties of the stud material. Quality control of the welding process is a very important
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factor, since the effect of welding quality may cover the effect of corrosion. Therefore, welding trials
were carried out to obtain the proper and reliable welding quality.

Table 1. Material properties of concrete.

Specimen Ec(MPa) fcu (MPa)

1 3.32 × 104 45.4
2 3.38 × 104 45.8
3 3.40 × 104 46.7

Average 3.37 × 104 46.0

Table 2. Material properties of the stud material.

Specimen Elastic Modulus (MPa) Yield Stress (MPa) Tensile Strength (MPa) Elongation (%)

10.0 mm 1.94 × 105 462.7 512.0 26.4
13.0 mm 1.98 × 105 431.2 490.6 24.9

2.3. Accelerating Corrosion Process

All specimens, except the uncorroded one (control specimen), were immersed in a 5% NaCl
solution for three days after being cured for 28 days, and then the direction of current (about
0.2 µA/cm2) was arranged for accelerating stud corrosion; studs worked as the anodes, while a piece
of stainless steel positioned in the solution served as the cathode, as shown in Figure 2. The corrosion
time of each specimen was determined based on the expected corrosion rate. Faraday’s theory was
used to calculate the corrosion time. The calculated results are shown in Tables 3 and 4 for the 10.0 mm
series and 13.0 mm series, respectively. The actual corrosion time was the same as the calculated result.
It should be noted that the actual corrosion rates of test specimens may differ from those expected
corrosion rates.
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Figure 2. Setup of the electronic accelerating corrosion.

Table 3. Expected stud corrosion rate and actual corrosion time of the 10.0 mm series.

Specimen Expected Corrosion
Rate (%)

Corrosion Time
(Hours)

Measured Corrosion
Rate (%)

W10.0-0
0 0

0
B10.0-0 0
W10.0-5

5 461
2.97

B10.0-5 8.23
W10.0-10

10 923
8.93

B10.0-10 12.68
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Table 3. Cont.

Specimen Expected Corrosion
Rate (%)

Corrosion Time
(Hours)

Measured Corrosion
Rate (%)

W10.0-15
15 1384

12.01
B10.0-15 17.38
W10.0-20

20 1845
17.65

B10.0-20 25.71
W10.0-25

25 2307
20.06

B10.0-25 32.23
W10.0-30

30 2768
25.55

B10.0-30 39.19
W10.0-35

35 3230
—

B10.0-35 44.78
W10.0-40

40 3691
38.15

B10.0-40 49.09
W10.0-45

45 4152
42.41

B10.0-45 53.43
W10.0-50

50 4614
54.14

B10.0-50 68.09

Table 4. Expected stud corrosion rate and actual corrosion time of the 13.0 mm series.

Specimen Expected Corrosion
Rate (%)

Corrosion Time
(Days)

Measured Corrosion
Rate (%)

W13.0-0
0 0

0
B13.0-0 0
W13.0-5

5 599
2.77

B13.0-5 9.56
W13.0-10

10 1199
9.09

B13.0-10 16.67
W13.0-15

15 1798
12.15

B13.0-15 19.08
W13.0-20

20 2398
15.35

B13.0-20 23.81
W13.0-25

25 2997
21.46

B13.0-25 29.22
W13.0-30

30 3596
24.35

B13.0-30 36.74
W13.0-35

35 4196
29.13

B13.0-35 40.62
W13.0-40

40 4795
36.78

B13.0-40 44.78
W13.0-45

45 5394
39.07

B13.0-45 50.04
W13.0-50

50 5994
46.44

B13.0-50 —-

2.4. Loading Test Setup and Procedure

Corroded push test specimens were loaded in the test device shown in Figure 1. The horizontal
and vertical forces were measured. The measured ultimate strengths of the specimens are shown in
Tables 5 and 6. The slip between the steel member and the two slabs was measured using LVDTs.
In this study, the expected failure load of the corroded specimens was difficult to predict, therefore
the load was first applied in increments up to 10% of the failure load of specimens having a 5% less
expected corrosion rate. Subsequent load increments were then imposed such that failure does not
occur in less than 15 minutes and the approximate loading rate was 0.5 mm/min. The longitudinal slip
between each concrete slab and the steel section was measured at each load increment. The friction
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between the concrete block and steel plate was obtained by the specimen without studs, as shown in
Figure 3. The test results of three test specimens are shown in Figure 4. The friction coefficient obtained
by the fitting curve was 0.58.

Table 5. Ultimate strengths of the 10.0 mm series single stud specimens.

Specimen Measured Corrosion Rate (%) Ultimate Strength (kN)

W10.0-0 0 43.37
B10.0-0 0 43.37
W10.0-5 2.97 38.67
B10.0-5 8.23 37.6

W10.0-10 8.93 36.11
B10.0-10 12.68 31.62
W10.0-15 12.01 30.62
B10.0-15 17.38 31.62
W10.0-20 17.65 29.53
B10.0-20 25.71 30.16
W10.0-25 20.06 27.68
B10.0-25 32.23 28.34
W10.0-30 25.55 24.59
B10.0-30 39.19 27.89
W10.0-35 — —
B10.0-35 44.78 22.86
W10.0-40 38.15 21.38
B10.0-40 49.09 18.54
W10.0-45 42.41 18.75
B10.0-45 53.43 14.09
W10.0-50 54.14 14.38
B10.0-50 68.09 8.61

Table 6. Ultimate strengths of the 13.0 mm series single stud specimens.

Specimen Measured Corrosion Rate (%) Ultimate Strength (kN)

W13.0-0 0 65.28
B13.0-0 0 65.28
W13.0-5 2.77 61.76
B13.0-5 9.56 60.68

W13.0-10 9.09 55.95
B13.0-10 16.67 54.2
W13.0-15 12.15 54.42
B13.0-15 19.08 45.51
W13.0-20 15.35 51.16
B13.0-20 23.81 45.1
W13.0-25 21.46 45.5
B13.0-25 29.22 42.14
W13.0-30 24.35 43.5
B13.0-30 36.74 35.25
W13.0-35 29.13 37.01
B13.0-35 40.62 31.44
W13.0-40 36.78 34.95
B13.0-40 44.78 29.35
W13.0-45 39.07 32.34
B13.0-45 50.04 16.21
W13.0-50 46.44 27.6
B13.0-50 —- 65.28
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2.5. Corroded Push Out Test

Two series of corroded push out test specimens were also tested for comparison. The test specimens
were corroded and tested using the same procedure described by Chen [6]. The materials used in
the push out test specimens were the same as those used in the single stud test specimens (different
from the test specimens used by Chen [6]). The measured corrosion rates of the studs and ultimate
strengths are shown in Tables 7 and 8. The test specimens were labeled so that the nominal stud
diameter and expected corrosion rate could be identified from the label. The first letter indicates the
nominal diameter of the stud, where the prefix letter “D” refers to the diameter.

Table 7. Ultimate strengths for the D10.0 series push out test specimens.

Specimen Measured Corrosion Rate (%) Ultimate Strength (kN) Test (Ptest)

D10.0-0A 0 42.9
D10.0-10 4.93 40.5
D10.0-20 16.44 38
D10.0-30 23.61 34.8
D10.0-40 34.66 30.1
D10.0-50 44.33 25.8
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Table 8. Ultimate strengths for the D13.0 series push out test specimens.

Specimen Measured Corrosion Rate (%) Ultimate Strength (kN) Test (Ptest)

D13.0-0A 0 69.3
D13.0-10 6.78 66.3
D13.0-20 15.41 62.1
D13.0-30 22.43 57.3
D13.0-40 34.99 45.8
D13.0-50 42.12 41.9

3. Test Results

3.1. Measurement of the Stud Corrosion Rate

The corroded studs were retrieved from the failed specimens (shown in Figure 5) and the corrosion
product was cleaned using a corrosion-inhibited HCl solution [24]. The corroded studs having different
corrosion rates are shown in Figure 6. The area loss of the steel rebar (∆A) was estimated afterwards by
subtracting the post-corrosion area from the measured pre-corrosion area. The post-corrosion area of
the stud was calculated using the measured diameter of the shank of the stud. The measured diameter
of the shank was used to calculate the corrosion rate of each stud (ψ) as: ψ = (A − ∆A)/A%. For the
push out test specimens, the average corrosion rate of eight studs was taken as the corrosion rate of
each push test specimen. It is shown that the measured corrosion rates of both the single stud test
specimen and the push test specimens are different from the expected corrosion rates. There is no
corrosion occurring between the interface of the concrete slab and the steel plate.
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Figure 6. Corroded stud shear connectors: (a) 10–30; (b) 10–50; (c) 13–30; (d) 13–50.

3.2. Static Behavior

The static behavior of the stud connectors can be described using the load–slip curves and ultimate
strength. In this study, the effect of corrosion on the static behavior of stud was investigated.

3.2.1. Load-Slip Curves

The load-slips curves of test specimens W10.0 series and B10.0 series are shown in Figures 7
and 8, respectively. The load-slips curves of test specimens W13.0 series and B13.0 series are shown in
Figures 9 and 10, respectively. Since the failure mode of all specimens was the stud failure, the load-slip
curves could only be measured up to the point of the ultimate strength. Studs that had corrosion along
the whole length and studs that had bottom corrosion showed similar load-slip curves. It is shown that
the initial stiffness of the specimens decreases with the increment of the corrosion rate for both series
of specimens. The ductility of the specimens showed no obvious relation with the corrosion rates.
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3.2.2. Ultimate Strength

In this study, the failure mode of all push test specimens was the stud failure. Figure 4 shows the
typical stud failure of the test specimens. The ultimate strengths of the 10.0 mm diameter test specimen
series and the 13.0 mm diameter series are shown in Tables 5 and 6, respectively. It is shown that the
ultimate strengths of the test specimens decrease when the corrosion rate increases. This means that
the corrosion has a significant effect on the ultimate strengths of the test specimens.

4. Comparison

The ultimate strengths of the 10.0 mm diameter single stud test specimen series and the 13.0 mm
diameter series were compared with the test results of the push out test specimens, as shown in
Figures 11 and 12, respectively. It is shown that the ultimate strengths of the push out test specimens
are relatively higher than those of the single stud test specimens that have the same corrosion rate.
For specimens with 10.0 mm diameters, studs that had corrosion along the whole length showed lower
ultimate strengths compared with those studs that had bottom corrosion. However, for specimens
with 13.0 mm diameters, studs that had corrosion along the whole length showed similar ultimate
strengths as those studs that had bottom corrosion. Generally, the ultimate strengths obtained from the
corroded single stud test specimens are conservative compared with those obtained from the corroded
push out test specimens.
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4. Comparison 

The ultimate strengths of the 10.0 mm diameter single stud test specimen series and the 13.0 mm 
diameter series were compared with the test results of the push out test specimens, as shown in 
Figures 11 and 12, respectively. It is shown that the ultimate strengths of the push out test specimens 
are relatively higher than those of the single stud test specimens that have the same corrosion rate. 
For specimens with 10.0 mm diameters, studs that had corrosion along the whole length showed 
lower ultimate strengths compared with those studs that had bottom corrosion. However, for 
specimens with 13.0 mm diameters, studs that had corrosion along the whole length showed similar 
ultimate strengths as those studs that had bottom corrosion. Generally, the ultimate strengths 
obtained from the corroded single stud test specimens are conservative compared with those 
obtained from the corroded push out test specimens.  
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Figure 12. Comparison of the ultimate strengths of W13.0, B13.0, and D13.0 series specimens. 

5. Conclusions 

Experimental investigations of steel and concrete composite single stud shear connector 
specimens with corrosion deterioration were conducted in this study. Two series of test specimens 
that had different stud diameters were tested. The test specimens were first corroded by the electronic 
accelerating method were then loaded to failure. Based on the test results, the effect of corrosion on 
the load-slip curves and ultimate strength were studied. It was shown that the corrosion of the stud 
had a significant effect on the ultimate strengths of the test specimens. The test results obtained from 
the single stud shear connector tests were compared with the test results obtained from the corroded 
push out test specimens. It was shown that the single stud shear connector tests provided 
conservative test results.  
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5. Conclusions

Experimental investigations of steel and concrete composite single stud shear connector specimens
with corrosion deterioration were conducted in this study. Two series of test specimens that had
different stud diameters were tested. The test specimens were first corroded by the electronic
accelerating method were then loaded to failure. Based on the test results, the effect of corrosion on
the load-slip curves and ultimate strength were studied. It was shown that the corrosion of the stud
had a significant effect on the ultimate strengths of the test specimens. The test results obtained from
the single stud shear connector tests were compared with the test results obtained from the corroded
push out test specimens. It was shown that the single stud shear connector tests provided conservative
test results.
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