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Abstract: The effect of porosity on the thermal conductivity and the coefficient of thermal expansion
of composites obtained by infiltration of Al-12 wt % Si alloy into graphite particulate preforms has
been determined. Highly irregular graphite particles were used to fabricate the preforms. The thermal
conductivity of these composites gradually increases with the applied infiltration pressure given the
inherent reduction in porosity. A simple application of the Hasselman-Johnson model in a two-step
procedure (that accounts for the presence of both graphite particles and voids randomly dispersed in
a metallic matrix) offers a good estimation of the experimental results. As concerns the coefficient
of thermal expansion, the results show a slight increase with saturation being approximately in the
range 14.6–15.2 × 10−6 K−1 for a saturation varying from 86% up to 100%. Results lie within the
standard Hashin-Strikman bounds.

Keywords: graphite particles; porosity; gas pressure infiltration; thermal conductivity; coefficient of
thermal expansion

1. Introduction

Metal/carbon composites are a family of materials currently used in several applications such as
electrical contactors [1,2], sliding contacts [3], automotive pieces [4–6] and plasma facing components in
fusion reactors [7,8]. One of their most recent applications catching the attention of many researchers is
as heat sink elements for electronics, given their high thermal conductivity and a coefficient of thermal
expansion that can be easily matched to that of materials used in microelectronic systems [9–11].

These composites are usually fabricated by infiltration of the metal into a preform obtained by
partial sintering or packing of graphite particles. Since graphite is generally poorly wetted by molten
metals [12], pressure is needed to assist infiltration. In recent contributions, the authors have studied
the capillary phenomena that govern the infiltration process of Al-12Si alloys in continuous graphite
preforms [13] and packed performs of graphite particles [6,14]. These studies confirm, by means of
drainage curves (plots of degree of metal filling, or saturation, versus applied pressure), that infiltration
takes place progressively with applied pressure and time at pressure. As a consequence, porosity in a
carbon/metal composite processed at a fixed pressure appears as an unavoidable phase inherently
linked to poor wetting at the interface. In spite of the high interest in carbon/metal composite materials,
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little attention has been paid to the effects of the applied pressure (hence porosity) on the properties of
final materials.

Amongst the two thermal properties currently evaluated in materials with interest in electronics,
thermal expansion and thermal conductivity, the former does present little or null dependence on the
presence of pores, as has been proved for different systems [15–17]. Porosity, on the contrary, may
strongly decrease the thermal conductivity of a material and the study of its influence becomes an
important issue to be addressed.

In the present study, Al-12 wt % Si/graphite composites have been obtained by infiltration of
the metal into performs of highly irregular graphite particles of three different sizes. The infiltration
pressure has been varied in order to obtain composites with various degrees of porosity. Both the
thermal conductivity (TC) and the coefficient of thermal expansion (CTE) of the composites have been
measured. A simple two-step application of the Hasselman-Johnson model rationalizes the effect of
the porosity on the measured thermal conductivity values. On the other hand, the Hashin-Strikman
bounds work nicely to determine the range over which the CTE is expected to vary.

2. Materials and Methods

2.1. Materials and Fabrication Procedures

Graphite particles of three different sizes were used in this study. They were kindly supplied
by Schunk Kohlenstofftechnik GmbH (Heuchelheim, Germany). The three particles are fabricated
by the same method of milling graphite blocks obtained by the subsequent steps of cold isostatic
pressurization, carbonization and graphitization at 2500 ◦C. The degree of graphitization is around
78%. More information on the characteristics of these particles can be found in [6]. SEM images
of the graphite particles can be observed in Figure 1 and their main characteristics are gathered in
Table 1. The high specific surface areas of these particles, a factor of 5 higher than that of typical ceramic
particles [18], are a consequence of their highly irregular shapes. The eutectic Al-Si alloy, which contains
12 wt % of silicon Al-12 wt % Si (hereafter referred as Al-12Si), used for the infiltration experiments
was kindly supplied by Leichtmetall Kompetenzzentrum Ranshofen GmbH (Ranshofen, Austria).

Materials 2017, 10, 177 2 of 10 

 

materials, little attention has been paid to the effects of the applied pressure (hence porosity) on the 
properties of final materials. 

Amongst the two thermal properties currently evaluated in materials with interest in electronics, 
thermal expansion and thermal conductivity, the former does present little or null dependence on 
the presence of pores, as has been proved for different systems [15–17]. Porosity, on the contrary, 
may strongly decrease the thermal conductivity of a material and the study of its influence becomes 
an important issue to be addressed. 

In the present study, Al-12 wt % Si/graphite composites have been obtained by infiltration of the 
metal into performs of highly irregular graphite particles of three different sizes. The infiltration 
pressure has been varied in order to obtain composites with various degrees of porosity. Both the 
thermal conductivity (TC) and the coefficient of thermal expansion (CTE) of the composites have been 
measured. A simple two-step application of the Hasselman-Johnson model rationalizes the effect of the 
porosity on the measured thermal conductivity values. On the other hand, the Hashin-Strikman 
bounds work nicely to determine the range over which the CTE is expected to vary. 

2. Materials and Methods 

2.1. Materials and Fabrication Procedures 

Graphite particles of three different sizes were used in this study. They were kindly supplied by 
Schunk Kohlenstofftechnik GmbH (Heuchelheim, Germany). The three particles are fabricated by the 
same method of milling graphite blocks obtained by the subsequent steps of cold isostatic 
pressurization, carbonization and graphitization at 2500 °C. The degree of graphitization is around 
78%. More information on the characteristics of these particles can be found in [6]. SEM images of the 
graphite particles can be observed in Figure 1 and their main characteristics are gathered in Table 1. 
The high specific surface areas of these particles, a factor of 5 higher than that of typical ceramic 
particles [18], are a consequence of their highly irregular shapes. The eutectic Al-Si alloy, which contains 
12 wt % of silicon Al-12 wt % Si (hereafter referred as Al-12Si), used for the infiltration experiments 
was kindly supplied by Leichtmetall Kompetenzzentrum Ranshofen GmbH (Ranshofen, Austria). 

 

Figure 1. SEM images of the three types of graphite particles used in this work named G1 (a); G2 (b) 
and G3 (c). 

The particles were packed in quartz crucibles of 17 mm inner diameter by means of alternative 
strokes of a piston and vibrations. A piece of solid Al-12Si alloy was placed inside the tube and on 

Figure 1. SEM images of the three types of graphite particles used in this work named G1 (a); G2
(b) and G3 (c).



Materials 2017, 10, 177 3 of 10

Table 1. Main characteristics of the graphite particles: average diameter (D, taken equal to D(4,3),
see [18]), span of the size distribution, density ρ and percentage of internal porosity (IP, in %). The span
is defined as (D(90)-D(10))/D(50), where D(x) is the diameter below which x % of the particulates are
found. The percentage of Internal Porosity (IP) and the Specific surface areas (S) are also given.

Particle D (µm) Span ρ (g/cm3) IP (%) S (m2/kg)

G1 15.1 1.39 2.24 0.20 7720
G2 27.2 0.99 2.20 1.98 3620
G3 64.0 0.94 2.18 2.87 950

The particles were packed in quartz crucibles of 17 mm inner diameter by means of alternative
strokes of a piston and vibrations. A piece of solid Al-12Si alloy was placed inside the tube and on top
of the graphite packed preform. Infiltration was carried out in a chamber described elsewhere [19–21].
Basically, it consists of a chamber that allows pressurization up to 5 MPa and directional solidification.
Before heating, vacuum was applied until a pressure of 0.1 mbar was reached. Then the chamber
was heated up to 670 ◦C and pressurized at different pressures over threshold (see [6] for details
of threshold pressure for infiltration of graphite particles with Al-12Si alloy). The infiltration time
was fixed at two minutes and finally the system was cooled directionally under pressure (see [21]
for more details). The extent of metal filling was determined on each infiltrated sample by means of
densitometry, once the particle volume fraction was determined as explained in [18].

2.2. Measurement of Thermal and Electrical Conductivity and Coefficient of Thermal Expansion

The thermal conductivity of the composites was measured by means of a relative steady-state
technique, in an experimental set up assembled in our laboratories (see [20] for a detailed explanation).
The overall uncertainty of the measured thermal conductivities is calculated to be about ±5%.
The electrical conductivity of the pore-free metal remaining non infiltrated on top of the samples was
measured by means of an Eddy-current apparatus (SIGMATEST 2.069) purchased from FOERSTER
INSTRUMENTS INC., Pittsburgh, PA, USA). Its accuracy is about 0.1 × 10−6 Ω−1·m−1.

A thermomechanical analyser (TMA 2940, TA Instruments, Trevose, PA, USA) was used to obtain
the thermal response curves from which the coefficient of thermal expansion was derived. Samples of
approximately 5 mm in length were cut from the infiltrated composites using a low speed saw, and
they were all subsequently polished. Measurements were carried out at an applied force of 0.05 N,
under nitrogen atmosphere, and in the temperature range 298–573 K (heating and cooling rates were
3.00 K/min). The samples were subjected to at least four heating and cooling cycles to remove large
residual stresses, if any, developed during processing of the composite. It is worth noting that the
hysteresis in the thermal cycle is highly sensitive to the experimental conditions, particularly to the
heating and cooling rates, sample size and shape, and the period of time elapsed between the point at
which the maximum temperature was reached and the initiation of cooling. The latter was kept close
to zero in the present experiments.

3. Results

The volume fraction attained in the graphite compacts is approximately 0.53 for the three particles,
which is a reasonable value for a preform formed by random packing of non-spherical particles (see [18]
for a comprehensive report of experimental data obtained by different groups). The infiltration pressure
and the attained saturation at each pressure are also shown in Table 2.
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Table 2. Thermal conductivity (TC) (in W/mK) of the composites obtained with graphite particles
and Al-12Si alloy for different infiltration pressures (P) (in kPa). The TC (W/mK) calculated with the
two-step Hasselman-Johnson model is given in parenthesis. Sa is the saturation (percentage of metal
filling; porosity in % is given by 100-Sa). EC is the electrical conductivity (in MS/m) of the remaining
non-infiltrated metal on top of the preform and CTE stands for the coefficient of thermal expansion
(×10−6 K−1).

Sample Pi Sa TC EC CTE

G1-1 2360 94.2 89 (86) 14.0 14.7
G1-2 3130 98 90 (90) 14.0 14.9
G1-3 3700 99 92 (91) 14.1 15.1
G1-4 4200 99.9 104 (104) 18.0 15.6
G2-1 1070 90.3 97 (97) 16.6 13.8
G2-2 1390 95.8 99 (100) 16.4 14.3
G2-3 2100 98.3 105 (102) 16.4 14.4
G2-4 2650 99.1 107 (104) 17.0 14.4
G2-5 3320 99.8 111 (108) 17.9 14.4
G2-6 4200 99.9 112 (113) 19.8 14.5
G3-1 730 86.7 99 (95) 15.8 14.3
G3-2 980 87.5 101 (98) 16.8 14.4
G3-3 1580 90.8 106 (102) 17.2 14.4
G3-4 2190 94.7 108 (106) 17.6 14.7
G3-5 2800 95.4 107 (109) 18.5 14.8
G3-6 3300 97.4 109 (112) 19.0 14.7
G3-7 4200 99.9 120 (119) 21.0 15.4

As the results reported in Table 2 unambiguously show, saturation increases with applied pressure,
confirming the non-wetting nature of the Al-12Si/graphite system. Figure 2 shows optical micrographs
of the composites fabricated by infiltration of the graphite particles for pressures at which saturation
reaches its maximum value (close to 100%).
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The composites appear to have a rather homogeneous distribution of graphite particles. Moreover,
there are no clear evidences of particle breaking, which makes these composites suitable for
confrontation with predictive models. Focusing the attention on the values of thermal conductivity,
it is apparent that this property is strongly affected by saturation, and hence porosity (Table 1).
The pores present in the composite may be understood as a third phase (with a given volume fraction)
consisting of a thermally isolating material. Experimental results for the CTE are also shown in Table 2.
The results corroborate the little or null dependence on the presence of pores already observed in
different systems [15–17]. This is better illustrated in Table 2 whereby a change in porosity from 14%
to 0% only produces an increase in CTE from approximately 14.3 up to 15.5 × 10−6 K−1.

4. Discussion

4.1. Thermal Conductivity

Thermal conductivity in composite materials is mainly governed by the conductivity of the
individual phases, their volume fraction and shape, and also by the size of the inclusion phase
due to a finite metal/ceramic interface thermal resistance. Modeling of thermal conductivity of
composite materials with thermally conductive inclusions has been extensively studied (see, for
example, [22,23]). One of the easiest analytical models that assume a non-idealized interface between
matrix and reinforcement is that proposed by Hasselman-Johnson [24]. In particular, they investigated
the case of spherical particles in a pore-free infinite matrix:

κc =
κm

[
2κm + κ

e f f
p + 2

(
κ

e f f
p − κm

)
Vp

]
2κm + κ

e f f
p −

(
κ

e f f
p − κm

)
Vp

(1)

where κm and κc are the thermal conductivities of metal and composite and κ
e f f
p is the effective thermal

conductivity of particles. Vp is the volume fraction of particles. This model has been proved to give
accurate predictions when particles and matrix exhibit a low ratio of conductivities [25], which is the
case of graphite particles and Al-Si eutectic. The effective thermal conductivity of particles κ

e f f
p is

given by:

κ
e f f
p =

κin
p

1 +
κin

p
ahc

(2)

where κin
p stands for the intrinsic thermal conductivity of particles while a and hc are the average radius

of particulate and the interfacial thermal conductance respectively.
The residual pores in composite materials processed by infiltration can be treated as non-thermally

conducting inclusions in the metal. Hence, κm in Equation (1) can be calculated with the
Hasselman-Johnson model as well, conveniently adapted for dispersions of zero conductivity:

κm = 2κin
m

1 − Vpo

2 + Vpo
(3)

where κin
m is the intrinsic thermal conductivity of the metal (free of pores) and Vpo the volume fraction

of pores in the metal. It is worth noting that Equation (3) corresponds to the well-known expression
of Maxwell’s model that is applied for composites with spherical non-conducting inclusions in a
conductive matrix [22].

In modeling thermal conductivity of porous composites, Equations (1) and (3) may be used
consecutively for calculating the thermal conductivity of the matrix (considered as formed by Al-12Si
alloy and pores) and the thermal conductivity of the overall composite (with a matrix of Al-12Si +
pores and graphite inclusions as reinforcement). Applying this procedure requires a precise value of
the thermal conductivity of the metal (Al-12Si). This parameter may vary considerably depending on
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the specific infiltration conditions of samples. However, it can be indirectly estimated by measuring
the electrical conductivity of the pore-free metal remaining non infiltrated on top of the samples.
Table 2 collects these measurements for all samples. The electrical conductivity increases somehow
with the applied pressure. Since electrical conductivity of alloys varies with the solubility state of the
alloying elements, the evolution observed in Table 2 suggests that the solidification conditions under
which samples have been processed have indeed varied from sample to sample. This is not surprising
given that the pressure applied in the infiltration chamber influences the cooling conditions of the
equipment. In metals and alloys, the following relation between the electrical conductivity and the
thermal conductivity holds,

κin
m = LσT (4)

where κin
m is the intrinsic thermal conductivity of the metal, σ the electrical conductivity, T the

temperature and L the Lorentz number (approximately 2.16 × 10−8 WΩ/K2 for Al at T = 300 K [26]).
In using Equation (1), two unknown parameters are needed: the intrinsic thermal conductivity of
the particles κin

p and the interface thermal conductance hc. Albeit graphite is a well-known and
extensively characterized material, it is not easy to ascribe an intrinsic value of thermal conductivity to
the graphite particles. Their purity, as well as their particular fabrication route, are important factors
that considerably affect this property. According to Equation (2), the effective thermal conductivity of
the particles, κin

p , can be rewritten as follows:

1

κ
e f f
p

=
1

κin
p
+

1
ahc

(5)

A plot of the inverse of the experimental effective particle conductivity versus the inverse of
the particle radius is shown in Figure 3. The data can be satisfactorily fitted by means of a straight
from which the intrinsic thermal conductivity of the particles κin

p and the interfacial conductance hc is
derived (see Equation (5)). In order to avoid effects associated to porosity, Figure 3 gathers only data
for samples infiltrated at maximum pressure (G1-4, G2-6, G3-7). The values derived from the linear
fitting are κin

p = 110 W/mK and hc = 7.7 × 107 W/m2·K. Introducing these values in Equations (1) and
(3), the thermal conductivity of the composites with various degrees of porosity can be calculated.
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Figure 4 shows the confrontation of the calculated thermal conductivity versus the experimental
data for the different samples fabricated. In accordance with expectations, the predictions have
good correspondence with the measured values. This indicates that the two-step procedure of the
Hasselman-Johnson model followed in this work is robust enough to account for the porosity in
composite samples as well as giving access to both the intrinsic value of particle thermal conductivity
and the interfacial conductance characteristic of the material under given processing conditions.
Actually, the values derived for those parameters are in good accordance with literature. On one hand,
the value of 110 W/mK represents the intrinsic thermal conductivity of the graphite particles with
a given internal porosity (indicated in Table 2) that depends on the particle type. If we subtract the
effect of internal pores by applying a convenient modified form of Equation (3), we obtain values
of 105–120 W/mK for the pore-free graphite material. These values are coherent with the specifications
given by the producer deduced from measurements of thermal conductivity of bulk materials
obtained by particle compression. On the other hand, the value of the interfacial conductance hc

may be estimated with various models, one of the simplest being the acoustic mismatch model [23].
This model treats the interface heat transfer in terms of continuum mechanics by calculating the
probability of an incident phonon to pass the interface. hc is calculated to be:

hc ∼=
1
2

Cp(ρmcm)

(
cm

cp

)2 ρmcmρpcp(
ρmcm + ρpcp

)2 (6)

where Cp is the specific heat of metal, ρm and ρp are the densities and cm and cp the phonon
velocities of metal and ceramic particles, respectively. Taking ρm = 2700 kg/m3, Cp = 895 J/kg·K and
cm = 3595 m/s for the metal [26] (considered here as pure aluminum, given the lack of data for Al-Si
alloys) and cp = 1500 m/s for graphite [27], we obtain hc = 1.4 × 108 W/m2·K, which is very close to
the value obtained experimentally.
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4.2. Coefficient of Thermal Expansion

All sophisticated treatments of the CTE of composites are based in thermo-elasticity theory.
Schapery’s model [28–30] gives upper (+) and lower (−) bounds to the CTE. The specific expression
for the former is,

α
(+)
c = αp +

(
αm − αp

)Km

(
Kp − K(−)

c

)
K(−)

c
(
Kp − Km

) (7)

where K(−)
c is the lower bound of the volumetric modulus of the composite and Kp and Km the

volumetric moduli of the reinforcement and the matrix, respectively. Bounds to the volumetric moduli
of the composite are calculated with the Hashin-Strikman model. In particular, the lower bound K(−)

c
is given by,

K(−)
c = Km +

Vm
1

Kp − Km
+ Vm

Km + 4
3 µm

(8)

where µm is the shear modulus of the metal. The upper bound to the bulk modulus is obtained by
interchanging the subscripts m and p everywhere in Equation (8) and, when inserted in Equation (7),
this gives the lower bound on the CTE. In calculating bounds for the present case, we included the
effects of porosity on the elastic (or Young) modulus of the metal matrix as in [31],

E = Em
(
1 − Vpo

)23/12 (9)

in addition, we took 0.32 for the Poisson coefficient of polycrystalline graphite [32]. Results are shown
in Figure 5. It is noted that with a single exception, experimental data are within the calculated bounds.
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Figure 5. Experimental data for the coefficient of thermal expansion of the composites investigated in
this work (G1, G2 and G3) versus saturation (degree of filling). Upper and lower bounds (see text) are
also shown.

5. Conclusions

The conclusions derived from the experimental work and the theoretical analysis presented in
this paper are: (i) thermal conductivity of Al-12Si/graphite materials processed by fixed-pressure
infiltration is considerably affected by the presence of residual pores; (ii) the thermal conductivity of
these composites can be predicted by using the Hasselman-Johnson model in a two-step procedure in
which pores are treated as inclusions of zero thermal conductivity; (iii) as already found in a variety
of systems, porosity scarcely affects the coefficient of thermal expansion; and finally; (iv) with the
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exception of a single case (out of 17), experimental data for the coefficient of thermal expansion lie
within Hashin and Strikman bounds.
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