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Abstract: The continuum decomposition of the Fe-Cr alloys from initial phase separation to
steady-state coarsening with concentrations varying from 25 at % Cr and 30 at % Cr to 33 at % Cr
aged at 750 K was studied by utilizing three-dimensional phase-field simulations. The dynamic
stages of separation of nanoscale Cr-enriched α′ phase were distinguished by the evolution of the
volume fraction, particle number density and the average particle radius of the α′ phase. The stage
of steady-state coarsening was characterized with an equilibrium volume fraction and decreasing
particle number density. The coarsening rate constant by linear fitting of the cube of average radius
and aging time shows an increase with the increasing Cr concentration. The time exponents decrease
from the growth and coarsening stage to the steady-state coarsening stage and show a dependence
on the particles number density at different concentrations. The quantitative evolutions of α′ phase
via nucleation growth and spinodal decomposition are theoretically helpful for understanding the
microstructure evolution with aging time in Fe-Cr alloys.
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1. Introduction

Fe-Cr alloys, the basic component of duplex stainless-steel (DSS), have exhibited excellent
mechanical properties at high temperatures. As a structural material, high-Cr DSS has been
used in nuclear power plants [1–3]. The excellent combination of mechanical properties and
corrosion resistance of DSS is obtained from the balanced amount of ferrite and austenite in the
microstructure. However, Fe-Cr alloys are susceptible to embrittlement at aging temperatures ranging
from 300–500 ◦C [4–6] or under radiation exposure [7]. This embrittlement is attributed to the
spinodal decomposition of the solid state into an ultrafine mixture of Cr-enriched and Fe-enriched
phases. The separation of the Cr-enriched phase occurs rapidly at the early stages of aging, which
has been demonstrated by concentration wavelength and hardness variations of Fe-Cr alloys [8].
The composition is a dominant factor for the decomposition kinetics [9]. Therefore, the phase separation
dynamics in Fe-Cr alloys are potentially useful for predication of the morphology evolution and
property change, and much attention has been focused on this question [10–15].

The separation of the Cr-enriched phase also can occur via the nucleation and growth in
Fe-Cr alloys with low Cr concentration [16,17]. The Mössbauer spectroscopy also demonstrated
the decomposition via nucleation and growth in Fe-24 at % Cr alloy at 475 ◦C [18]. Atom probe
tomography (APT) results showed that the α′ phase separation is by means of non-classical nucleation
and growth in Fe-20 at % Cr alloy aged at 773 K from 50–1067 h [3]. A transient coarsening regime was
observed for the overlap of the nucleation, growth and coarsening, and the steady-state coarsening was
not observed for an aging time of 1067 h, while a linear evolution of the cube of the mean particle radius
was presented. The Ising model demonstrates that there was a gradual transition from nucleation and
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growth to spinodal decomposition at the spinodal line [19], while a sharp change was predicted by the
Cahn-Hilliard theory of spinodal decomposition [20]. Xiong et al. [21] summarized the decomposition
mechanisms of the Fe-Cr alloys for the experimental and theoretical results, which show overlapped
regions for the nucleation growth and spinodal decomposition. In addition, their three dimensional
atom probe tomograph (3D-APT) results showed that a transition region from nucleation and growth
to spinodal decomposition exists in the composition regions from 24–36.3 at % Cr [22]. Therefore,
the transition mechanism from nucleation and growth to spinodal decomposition in Fe-Cr alloys is
theoretically interesting and practicably important.

In addition, the dynamics of growth and coarsening of the α′ phase is also indispensable for
quantitative analysis and morphology prediction during aging. An atomic-scale analysis of phase
decomposition in a thermally aged Fe-25 at % Cr alloy at 500 ◦C using a 3DAP and atomistic kinetics
Monte Carlo (AKMC) simulation was presented, in which the fitting of the length scale and time,
L3~t and L~t1/3 both presented a linear relationship [23]. Miller et al. [24–26] studied the kinetics of
early stage phase decomposition and the spinodal morphology in Fe-Cr alloys. The microstructure
scale simulated by the Cahn-Hilliard-Cook equation showed a time exponent close to the value of
1/3 of that predicted by Lifshitz-Slyozov-Wagner (LSW) [27,28] theory for the coarsening of isolated
precipitates. However, their experimental fitting yielded a time exponent of 0.25 ± 0.03, and the
Monte Carlo simulation fitted a power law relationship with a time exponent of 0.21 ± 0.03 [25].
Rogers et al. [29] used finite difference methods to study a 2D percolating spinodal system with a
continuous order parameter, and found that the domains coarsen with a time exponent of 1/3 at a late
time independent of thermal noise. The separation of the α′ phase by spinodal decomposition was
studied in a Fe-42 at % Cr alloy at 700 K, 725 K and 750 K, the results showed an increased growth and
coarsening rate with the aging temperature increases [30].

However, the continuum dynamics of α′ phase from initial separation to growth and coarsening
via nucleation and growth to spinodal decomposition with Cr concentration increasing need a
theoretical clarification in the Fe-Cr alloys. In this work, the alloys inside the regions of nucleation and
growth, near the spinodal line and inside the spinodal region, were chosen to ensure phase separation
from nucleation and growth to spinodal decomposition. The early stage evolving for the minute
nano-scale particles in the Fe-Cr system is a notable challenge [10], so we utilized a three dimensional
(3D) phase-field model [31,32] to investigate the evolution of the morphology, the time exponent of the
length scale of steady-state coarsening and the particle number density of α′ phase in Fe-25 at % Cr,
Fe-30 at % Cr and Fe-33 at % Cr alloys aged at 750 K. The stages of phase separation from the initial
separation to growth and steady-state coarsening were distinguished by the temporal variation of the
particle number density, the volume fraction and the average radius of α′ phase.

2. Phase-Field Model and Calculation Methods

2.1. Phase-Field Model

The composition evolution in Fe-Cr alloys can be described by the Cahn-Hilliard diffusion
equation [33]

∂c(r, t)
∂t

= Vm∇ ·
[

M∇
(

δF
δc(r, t)

)]
(1)

where c is the nominal composition of Cr, M is the chemical mobility given by Darken’s equation [34,35]
M = 1

Vm
[cMFe + (1− c)MCr]c(1 − c), where MFe and MCr are the atomic mobility of Fe and Cr,

respectively, which are related to the diffusivity through Einstein’s relation Mi = Di/RT, where i
denotes the element Fe or Cr, Di is the diffusion coefficient, and the diffusion constant for Fe and Cr are
1.2 × 10−4 and 2.0 × 10−5, respectively, the activation energy is 294 kJ·mol−1 for Fe and 308 kJ·mol−1

for Cr [36,37]. Recently, the mobility matrix related with the local composition was utilized in the
phase-field model for multi-component alloys [38], while the calculation is more complex than the
linear variation between the elements.



Materials 2017, 10, 1431 3 of 12

The total free energy F of Fe-Cr alloys includes the chemical free energy, interfacial energy and
elastic strain energy induced by the composition inhomogeneity between the α and α′ phase, and can
be expressed as [39]:

F =
∫

V

{
1

Vm

[
G +

1
2

κ(∇c)2
]
+ Eel

}
dV (2)

where Vm is the molar volume of the alloy, κ is the gradient energy coefficient, Eel is the elastic energy
density per unit volume, and G is the molar Gibbs free energy given by [40]

G = (1− c)G0
Fe + cG0

Cr + LFeCrc(1− c) + RT[c ln c + (1− c) ln(1− c)] + Gm (3)

where G0
Fe and G0

Cr are the energies of the pure elements [41], R is the gas constant, T is the absolute
temperature, LFeCr is the interaction parameter between Fe and Cr, and is adopted as LFeCr = 20, 500−
9.68T (J·mol−1) [42], Gm is the magnetic ordering contribution to the Gibbs free energy, and its
expression can refer to the literature [15,40].

The concentration gradient coefficient for the nearest neighbor interactions is expressed by
κ = 1

6 r2
0LFeCr [36], where r0 is the interatomic distance at a stress-free state and changes with

composition obey the Vergard’s law. It should be noted that the composition effects are neglected in
the gradient coefficient, which may have an influence on the interface width [43,44].

The free energy of Fe-Cr alloy including the Gibbs free energy G and elastic strain energy at 750 K
is plotted in Figure 1, where the compositions for phase separation and spinodal decomposition are
labelled in the curve, and points a and b are the composition boundary for phase separation and
spinodal decomposition at 750 K, respectively. The elastic strain energy density per unit volume
can be calculated by Eel = 1

2 Cijklε
el
ij ε

el
kl . For the detailed solution for elastic strain εel

ij , refer to the
literature [13,45,46].
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Figure 1. Free energy of the Fe-Cr alloy at 750 K, point a with Cr concentration cCr = 0.17 delegates the 
boundary composition of phase separation, point b (cCr = 0.30) delegates the critical composition of 
spinodal decomposition. The dotted line is the tangent through the spinodal boundary and 
dash-dotted line is the tangent of equilibrium composition. 

2.2. Numerical Calculation 

By substituting Equation (2) into Equation (1) and performing the dimensionless, we can 
calculate numerically by using the semi-implicit Fourier spectrum method [47,48] with a time step of 

Figure 1. Free energy of the Fe-Cr alloy at 750 K, point a with Cr concentration cCr = 0.17 delegates the
boundary composition of phase separation, point b (cCr = 0.30) delegates the critical composition of
spinodal decomposition. The dotted line is the tangent through the spinodal boundary and dash-dotted
line is the tangent of equilibrium composition.

2.2. Numerical Calculation

By substituting Equation (2) into Equation (1) and performing the dimensionless, we can calculate
numerically by using the semi-implicit Fourier spectrum method [47,48] with a time step of ∆t∗ = 0.001.
Tc = 900 K [21,24] is the critical temperature of spinodal decomposition of the alloy. The lattice
parameters are aFe = 0.2866 nm and aCr = 0.2882 nm [49], the dimensionless grid size is chosen
as ∆x∗ = ∆y∗ = ∆z∗ = 1.0, and the simulation cell size is 128∆x∗ × 128∆y∗ × 128∆z∗. The elastic
constants of Fe are approximately chosen as CFe

11 = 197, CFe
12 = 128 and CFe

44 = 107 GPa at 773 K [50]; those
for elemental Cr are CCr

11 = 358, CCr
12 = 106 and CCr

44 = 95 GPa at 650 K [51]. The chemical mobility M
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is updated for each calculation step with the iterative temporal changes in composition throughout
the simulation.

A random thermal fluctuation (Langevin noise) at a magnitude of [−0.002, 0.002] is introduced
into the initial composition in the simulation to trigger the phase separation, and an iteration of the
thermal fluctuation is performed for the alloys in the metastable regions (between point a and b of
Figure 1) of nucleation and growth (Fe-25 at % Cr) or near the boundary of spinodal decomposition
(Fe-30 at % Cr). It should be noted that the thermal fluctuation should have a minimum magnitude for
triggering the phase decomposition, as a large fluctuation may affect the initial particle number and the
particles radius. As we know, there are different approaches to simulate the nucleation in the phase field
simulation, such as the Langevin noise method and the explicit nucleation method [52–54]. The other
numerical algorithms for nucleation problems include computing saddle points and minimum energy
path [54]. The merits and drawbacks of these methods are discussed in the literature [52–54], in addition,
the implementation of these new approaches is not straight forward and is computationally complex.

3. Results and Discussion

3.1. Phase Separation in Metastable Regions

The morphology evolution of the Cr-enriched α′ phase in the Fe-25 at % Cr alloy aged at 750 K
is presented in Figure 2, where the red regions depict the Cr-enriched α′ phase and the blue regions
depict the Fe-enriched α phase. For the alloy locates in the metastable region, the initial thermal
fluctuation was added for an iteration of 400 time steps, and was removed when the system was
able to develop automatically. It can be seen from Figure 2a,b that some of the initially emerging
Cr-enriched clusters develop into the α′ phase as the aging progresses. There are deep blue regions of
low Cr concentration around the α′ phase, which is caused by the Cr atom diffusing from the matrix
α to support the growth of α′ phase. Then, the α′ phase precipitates gradually from the matrix and
its number increases, as shown in Figure 2b,c. The following coarsening of the spherical α′ phase
occurs through individual coarsening for the separated particles and coalescence coarsening for some
neighbor particles, as shown in Figure 2d.
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Figure 2. 3D morphology evolution of the Cr-enriched α′ phase in the Fe-25 at % Cr alloy aged at
750 K, (a) t = 46 h; (b) t = 115 h; (c) t = 5390 h; (d) t = 6773 h.

The spherical α′ particles in the Fe-25 at % Cr alloy aged at 750 K have an average radius of
approximately 3.4 nm after aging for 6773 h. The atom probe tomography (APT) result for the α′ radius
is approximately 2.53 ± 0.51 nm in Fe-20 at % Cr alloy aged at 773 K for 1067 h [3]. The characteristic
length of α′ is 3 nm in a thermally aged Fe-25 at % Cr alloy at 500 ◦C for 240 h detected by the 3D atom
probe (3DAP) [23]. Lopez-Hirata et al. studied the phase decomposition of a Fe-40 at % Cr alloy aged
at 475 ◦C and 500 ◦C [55], and their results revealed a Cr-enriched phase with a size of less than 10 nm.
The radius of the α′ phase is approximately 4 nm in Fe-40 at % Cr alloy aged at 773 K for 500–750 h
detected by a TEM experiment [8]. Thus, the simulated morphologies of α′ phase are consistent with
the previous experimental results.

The separation dynamics of the α′ phase in Fe-25 at % Cr alloy aged at 750 K were analyzed by the
temporal variation of volume fraction, particle number density and the average particle radius of the
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α′ phase. The particle number density Nd is defined by the α′ phase number per unit volume, and the
average particle radius <R> is an average radius of an approximate spherical shape with a volume V

of the α′ phase, <R> = 1
Np

Np

∑
i=1

(3V/4π)1/3, where Np is the total number of the α′ phases. As shown in

Figure 3, the separation of the α′ phase can be separated into four stages: (I) nucleation of the α′ phase
at the initial phase separation; (II) nucleation and growth; (III) concurrent growth and coarsening once
the maximum value of Nd is achieved; (IV) steady-state coarsening with a stable volume fraction. The
time exponent at the steady-state coarsening is calculated by fitting the relationships of Nd~tm and the
<R>~tn, they are m = −0.46 and n = 0.16.
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The time exponent 0.16 of the steady-state coarsening is less than 1/3 from classical LSW
theory [26,27]. However, the LSW theory is suitable under the conditions of dilute solutions with
near-zero volume fractions when there are no elastic interactions between precipitates. It is implicit
that the evaporation-condensation mechanism, i.e., Ostwald ripening, is operative in LSW theory.
In addition, the fitted exponent in the steady-state coarsening has a decrease in the early growth and
coarsening stage with the exponent 0.41, and the limited particles number also affects the statistic.
Miller also found a small time exponent 0.25 ± 0.03 by fitting their experimental results [25]. Pareige
did not fit the time exponent when studying the precipitation of the α′ phase in Fe-Cr alloys with
3DAP; however, they demonstrated a linear relationship between the domain scale L and time t, L3~t
and L~t1/3 were both presented [23]. The cube of the average particle size <R>3 and time t were fitted
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at the steady-state coarsening stage, as shown in Figure 4, which also shows a linear relationship with
the coarsening rate constant k = 2.8 × 10−3 independent of the time exponent of n = 0.16. Therefore,
the linear fitting of <R>3~t does not imply the time exponent n = 1/3. A time exponent n deduced
from the average radius and time <R>~tn indicates the dynamics of phase precipitation, which also
showed in the nickel-based alloys [56].
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3.2. Phase Separation Near the Spinodal Boundary

Figure 5 displays the morphology evolution of the α′ phase in the Fe-30 at % Cr alloy aged
at 750 K, which is near the point b of Figure 1. In this analysis, the magnitude of initial thermal
fluctuation is [−0.002, 0.002], and the length of time steps is the same as those of Figure 2, but the
number of iterations of thermal fluctuation is reduced to 100 time steps. The iterative addition of
thermal fluctuation for the precipitation indicates that nucleation and growth still happen for alloys
near the spinodal line. The initial morphology of the α′ phases shown in Figure 5a is similar to that
of Figure 2a, where the Cr-enriched particles emerge separately. Then, the spherical α′ phases grow
and coarsen continuously, as shown in Figure 5b–d, in which the coalescence coarsening and Ostwald
ripening are both present and some neighboring α′ particles interconnect each other and form a worm
shape. As the coarsening progresses, the distance between the particles is enlarged, the diffusion
distance of Cr to the α′ phase increases, and the Ostwald ripening becomes more obvious, as shown in
Figure 5c,d. Therefore, the coarsening of the α′ phase in the Fe-30 at % Cr alloy aged at 750 K prefers
the coalescence coarsening at initial stages but is dominated by the Ostwald ripening at later stages.

Figure 6 shows the temporal dynamics evolution of the volume fraction, particle number density
and the average particle radius of the α′ phase. The dynamics of phase separation in Fe-30 at % Cr
alloy aged at 750 K show three stages: (I) fast precipitation and concurrent growth of the α′ phase
with an increased particle number, volume fraction and radius; (II) slow precipitation and growth
before the maximum Nd is achieved; and (III) steady-state coarsening, in which the volume fraction
has a steady value. The dynamics exponents for the particle number density Nd~tm is m = −0.49 and
for the average particle radius <R>~tn is n = 0.18. The magnitudes of the time exponents are close
to those of Fe-25 at % Cr alloy aged at 750 K. The cube of the average particle radius <R>3 and time
t was also fitted with a linear function for the Fe-30 at % Cr alloys aged at 750 K at the steady-state
coarsening stage, the coarsening rate constant is k = 1.7 × 10−2. The variation of coarsening rate
constants indicates the increased coarsening rate as the Cr concentration increases, as shown in Table 1.
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Table 1. Coarsening rate constants k and time exponents for the average radius and particle number
density of the α′ phase in Fe-Cr alloys aged at 750 K.

Cr (at %) 25 30 33

k 2.8 × 10−3 1.7 × 10−2 2.1 × 10−2

n 0.16 0.18 0.18
m −0.46 −0.49 −0.48
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3.3. Phase Separation in Spinodal Decomposition Region

Figure 7 displays the morphology evolution of the α′ phase in the Fe-33 at % Cr alloy aged at
750 K, where more α′ particles precipitate, as shown in Figure 7a, than in any of the alloys in or near
the regions of nucleation and growth. For this alloy, the magnitude of initial thermal fluctuation is the
same as Fe-30 at % Cr alloy aged at 750 K while without iterations. As the precipitation and growth of
the α′ particles progresses, the connection of neighbor particles progresses simultaneously, as shown
in Figure 7a,b. Then, Ostwald ripening accompanied by coalescence coarsening occurs in Figure 7c,d
as the particle distance increases. Therefore, the coarsening of the α′ phase in the Fe-33 at % Cr alloy
aged at 750 K is dominated by the coalescence coarsening of the initial stages followed by concurrent
coalescence coarsening and Ostwald ripening at later stages. Due to the coalescence of the α′ particles,
a worm-shaped α′ phase is present at the aging time t = 1152 h.
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The time exponents were also calculated by fitting the particle number density and the average
particle radius of steady-state coarsening of the Cr-enriched α′ phase in the Fe-33 at % Cr alloy aged
at 750 K. Table 1 shows the time exponents of the average radius and particle number density of the
α′ phase with different compositions. The time exponents for the average radius are less than the
1/3 expected from classical LSW theory at 750 K. The coarsening time exponent increases as the Cr
concentration increases from 25 at % to 33 at % at 750 K. The present simulation includes the elastic
interactions between the α and α′ solid phases with a large volume fraction. In addition, the higher
particle number density has a smaller particle distance for the high concentration or low temperature
aging, which favors the coalescence coarsening and Ostwald ripening via short-distance diffusion.
Therefore, the coarsening time exponents are increased as the particle number density changes from
1.13 × 1024 to 9.7 × 1024 and 2.5 × 1025 m−3 as the Cr concentration increases at 750 K. As a result, the
coarsening time exponent of the α′ phase depends on the composition that relates with the particle
number density.

Additionally, there are some experimental results that show the coarsening time exponent is
less than 1/3 [29,57–59]. The autocorrelation function from the energy compensated atomic probe
in Hyde’s results also showed a time exponent of ~0.21, and the PoSAP (position-sensitive atom
probe) time exponent was ~0.25 in Fe-30 at % Cr alloy at 773 K [25]. While Hyde’s numerical results
simulated by the Cahn-Hilliard-Cook equation follow a power law close to the 1/3 of the classical
LSW theory, it should be noted that the elastic energy and magnetic energy are not considered in the
Cahn-Hilliard-Cook equation [24].

As a result of the phase separation in the Fe-Cr alloys from nucleation and growth to spinodal
decomposition, the coarsening time exponents of steady-state coarsening deduced by the <R>~tn

show values from 0.16 to 0.18 as the concentration changed from 0.25 to 33 at % Cr aging at 750 K.
The high concentration alloy with 35 at % Cr aging at 750 K has a time exponent 0.36 at 750 K, the
temperature dependent exponent is also shown in the Fe-35 at % Cr alloy [60]. The coarsening rate
constant k deduced from <R>3~kt increases with the concentration, which is attributed to the short
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distances of diffusion required at high concentrations. The statistic of simulation may include some
shortcomings, such as the composition independent interface energy and the simplified mobility,
which has an effect on the quantitative calculation of the coarsening time exponent. Therefore, further
work using the abundant thermodynamic database and the diffusion coefficients is expected for the
quantitative simulation.

4. Conclusions

The continuum separation dynamics and the morphology of nanoscale Cr-enriched α′ phase
in Fe-Cr alloys aged at 750 K were quantitatively investigated using three-dimensional phase-field
simulations. The dynamic stages from the initial separation and growth to steady-state coarsening of
α′ phase were distinguished by the temporal evolution of the volume fraction, particle number density
and the average particle radius of the α′ phase, accompanied by the phase separation mechanisms of
nucleation growth and spinodal decomposition deduced from the free energy curve.

The α′ phase proceeds through the stages of nucleation, nucleation and growth, growth and
coarsening and steady-state coarsening for the mechanism of nucleation and growth. The phase
decomposition is accelerated as the Cr concentration is increased. The time exponents of steady-state
coarsening show an increase from 0.16 of Fe-25 at % Cr aged at 750 K (nucleation and growth) to 0.18
of Fe-33 at % Cr aged at 750 K (spinodal decomposition) and as the Cr concentration increases, the
large particles number density results in the increased time exponent. Simultaneously, the fitting of the
cube of average radius and time, <R>3~t, shows an increased coarsening rate constant with the alloy
concentration increasing, as a result of the short distances of diffusion for high Cr concentrations alloy.
The results for the continuum dynamics evolution are scientific and applicable to phase separation
occurring via nucleation and growth and spinodal decomposition with variable compositions in the
Fe-Cr alloys.
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