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Electrical conductivity  

The electrical conductivity increased while the sheet resistance decreased with the coating process. 

The resistance of a material can be calculated as [1], 

𝑅 = 𝜌 
𝐿

𝐴
= 𝜌

𝐿

𝑊𝑡
 

where, R is the material resistance, ρ is the resistivity, A is the cross-sectional area, and L is the length. 

The cross-sectional area can be separated into the width (W) and the sheet thickness (t).   

𝑅 =  
ఘ

௧

௅

ௐ
= 𝑅௦

௅

ௐ
   Rs - Sheet resistance 

If the film thickness (t) is known, t and Rs can be multiplied to obtain the bulk resistivity ρ (in Ω 
cm): 

 𝜌 = 𝑅௦. 𝑡 
The reciprocal of the resistivity is the conductivity of the material.  𝜎 =

ଵ

ఘ
 where, the 

conductivity of the material can be give as,  

𝜎 = (𝑅௦. 𝑡)ିଵ 
The conductivity of the material was calculated according to the above equation.  

Electromagnetic Interference (EMI) Shielding Measurements 

The electromagnetic interference shielding effectiveness (EMI SE), is a measure of blocking 
electromagnetic waves (EMW). 

EMI SE is experimentally defined as the logarithmic ratio of incoming power (PI) to transmitted 
power (PT) [2] which is measured in decibel (dB),  

SE (dB) = logଵ଴ ൬
𝑃ூ

𝑃்

൰ 

When an EM radiation is incident on shielding film, the reflected power (PR), absorbed power 

(PA), and transmitted power (PT) must add up to incident power (PI), that is, 

𝑃ூ =  𝑃ோ +  𝑃஺ +  𝑃்   

For the intensity (I) it is,   

𝐼଴ =  𝐼ோ +  𝐼஺ +  𝐼் 
Specific Shielding Effectiveness (SSE) 
Mathematically, SSE is calculated dividing the EMI SE by the density of material (ρ) [3].   

SSE = EMI SE/density (dB cm3 g–1) 
SSE gives a more accurate account on EMI SE considering ρ of the material where, some light 

weight material might be having higher EMI SE.  
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SSE does not account for the thickness information of the material. A material with a large thickness 

may result in a higher SSE value while maintaining a low density. The following equation is used to 

evaluate the absolute effectiveness (SSE/t) of a material in relation to the thickness [3–5].   
SSEt= SSE/t (dB cm3 g–1 cm-1 = dB cm2 g–1) 
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Figure S1. XPS graphs of neat carbon fabric (A) XPS C1s peaks of MWCNT coated carbon fabric (B) 
XPS C1s peaks of CNTO (C) XPS C1s peaks of neat carbon fabric (D) XPS C1s peaks of MWCNT 
coated C/C composite. 
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Figure S2. Tensile-strain curves of MWCNT and GN coated C/C composites. (A) Tensile-strain curves 
of 1 g/l MWCNT coated C/C composites. (B) Tensile-strain curves of 2 g/l MWCNT coated C/C 
composites. 
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Figure S3. EMI SE of 1 g/l MWCNT coated C/C composites and respective single layers.  

 

Figure S4. XRD patterns of curves of MWCNT coated C/C composites. 
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Figure S5. Optical images of free-standing films. Digital photographs of (A) Neat carbon fabric as 
received. (B) MWCNT coated C/C composites (C1). Films fabricated were flexible and not transparent.  

Table S1. XPS results for MWCNTs, CNTOs, neat carbon fabric and MWCNT (1 g/l) coated samples. 

 MWCNT CNTO Fabric C5 C10 C15 C20 

Element At. % 

C1s 97.38 91.3 84.23 84.49 84.08 89.53 86.28 
O1s 2.19 5.91 8.8 11.72 11.54 7.55 8.89 
S2p 0.43 1.59  2.16 2.5 1.52 1.97 

Na1s    1.63 1.88 1.4 1.75 
N1s  1.2 1.16    1.1 
Si2p   0.51     

Table S2. Maximum tensile strengths of CNTO coated C/C composites.   

CNT (2 g/l) coating cycle 
Neat 
fabric 2 5 7 10 13 18 

 Tensile strength 
 (kgf/cm2) 

11.21 37.37 38.29 52.69 43.48 48.00 67.05 

 Fold-vice increase  3.3 3.4 4.7 3.2 4.3 6.0 

CNT (1 g/l) coating cycle  1 3 5 10 15 20 

 tensile strength 
(kgf/cm2) 

17.39 24.09 20.13 68.28 50.31 48.51 

 Fold-vice increase  1.6 2.1 1.8 6.1 4.5 4.3 
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Table S3. Specific EMI shielding effectiveness (SSE) and absolute effectiveness (SSE/t) of MWCNT 
coated C/C composites.  

MWCNT 

concentration 

Name 

 

ρ Ave. SE SSE SSE/t 

(g cm-3) (dB) (dB cm3g-1) (dB cm2 g-1) 

 C1 0.058 28.21 486.54 35256.75 

1 g/L C3 0.069 29.66 429.97 28856.96 

 C5 0.071 31.32 441.02 26251.43 

 C10 0.077 31.47 408.74 23223.86 

 C15 0.076 31.54 415.05 25154.77 

 C20 0.080 33.20 415.12 21072.17 

2 g/L C1 0.083 30.87 371.97 20550.75 

 C5 0.081 32.12 396.63 21792.73 

 C15 0.102 32.40 317.72 18052.40 

 NCF 0.067 25.56 381.50 30039.42 
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Table S4. Specific EMI shielding effectiveness (SSE) and absolute effectiveness (SSEt) various solid 
structure materials.  

Type 
Filling 
material 

Filler 
(Wt %) 

Polymer 
matrix 

t (cm) 
SE 
(dB) 

SSE 
(dB 
cm3g-1) 

SSE/t 
(dB 
cm2 g-

1) 

Ref 
C

ar
bo

n 
ba

se
d 

GN 7  0.25 45.1 173 692 [6] 
GN 25 PEDOT 0.08 70 67.3 841 [7] 
GN/Fe3O4 Bulk * 0.03 24 31 1033 [8] 
MWCNT 15 ABS 0.11 50 47.6 432.7 [9] 
MWCNT 20 PC 0.21 39 34.5 154 [10] 
MWCNT 20 PS 0.2 30 57 285 [11] 
CB 15 ABS 0.11 20 20.9 190 [9] 
CB 37.5 EPDM 0.2 18 30.3 15.1 [12] 
CNT * Polymeric 0.35 80 * * [14] 

M
et

al
 b

as
ed

 

Cu Bulk * 0.31 90 10 32.3 [13] 
Ni fiber 7 PES 0.285 58 31 108.7 [13] 
Ni 
filaments 

7 PES 0.285 87 47 164.9 [13] 

Stainless 
steel 

Bulk * 0.4 89 11 27.5 [13] 

Cu foil Bulk * 0.0010 70 7.8 7812 [5] 
Al foil Bulk * 0.0008 66 24.4 30555 [5] 
        

CF & 
MWCNT 

†NCF CF bulk * 0.0127 25.56 381.50 30039 This 
work †C1 CF/CNT * 0.0138 28.22 486.54 35256 

* Sign indicates that the values were impossible to calculate or not available enough data to calculate. † 
Densities of NCF and C1 were 0.067 g cm-3 and 0.058 g cm-3 respectively. C1 and NCF show better specific 
EMI shielding effectiveness compared to other reported materials. Foams are used in different purposes 
where the thickness is relatively higher compared to solid structured films. 

Table S5. Thermal conductivity and Electrical conductivity and specific shielding effectiveness of 
MWCNT coated C/C composites.  

C of coating 
solution 

Name Rs σ SSE 

 (Ω/sq) S/cm dB cm3 g -1 

1 g/l C1 5.465 13.259 486.54 

 C3 5.852 11.467 429.97 

 C5 4.803 12.393 441.02 

 C10 4.078 13.930 408.74 

 C15 3.871 15.655 415.05 
2 g/l C1 5.013 11.020 371.97 

 C5 3.345 16.424 396.63 

 C15 3.506 16.205 317.72 

 NCF 4.823 16.325 381.50 

NCF- Neat carbon fabric 
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