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Abstract: Elastic properties of model crystalline systems, in which the particles interact via
the hard potential (infinite when any particles overlap and zero otherwise) and the hard-core
repulsive Yukawa interaction, were determined by Monte Carlo simulations. The influence of
structural modifications, in the form of periodic nanolayers being perpendicular to the crystallographic
axis [111], on auxetic properties of the crystal was investigated. It has been shown that the hard
sphere nanolayers introduced into Yukawa crystals allow one to control the elastic properties of
the system. It has been also found that the introduction of the Yukawa monolayers to the hard sphere
crystal induces auxeticity in the [111̄][112]-direction, while maintaining the negative Poisson’s ratio in
the [110][11̄0]-direction, thus expanding the partial auxeticity of the system to an additional important
crystallographic direction.
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1. Introduction

The colloidal crystals [1] have been a subject of intense studies in recent years [2–9]. This is mainly
due to their potential applications [10–12]. Some physical properties of charge-stabilized colloids can be
well described using the hard-core repulsive Yukawa potential [13–18]. Recently, it has been shown that
systems with such kind of interaction exhibit interesting elastic properties, namely these systems reveal
a negative Poisson’s ratio [19]. The Poisson’s ratio describes the lateral mechanical response under the
longitudinal uniaxial strain of infinitesimal magnitude [20]. Materials with negative Poisson’s ratio
(so-called auxetics) [21] increase their dimensions in directions perpendicular to the applied stretching
and shrink in directions perpendicular to the applied compression. In general, Poisson’s ratio depends
on both the direction of applied deformation and the direction of measurement of response to external
stress. Materials in which the Poisson’s ratio is negative only in some crystallographic directions are
called partial auxetics [22].

Auxetics are a relatively new class of materials. A few decades ago, the first man-made material
with a negative Poisson’s ratio [23] and the model system [24] exhibiting auxetic properties were
presented. Since then, one can observe quickly growing interest in this class of materials because of their
unusual, counter-intuitive properties [25–28], which originate from various mechanisms involving both
micro- and macroscopic structures [23,29–38], inter-particle interactions [24,39–41] as well as special
conditions applied to the system [42,43]. At present, research is being conducted extensively in the
pursuit for auxetic properties in already existing and new materials [39,44–52], the fabrication of auxetic
composites [53–55], the construction of models for explaining auxetic properties [56–64], and the search
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for new mechanisms leading to the appearance of auxetic properties in various systems. The studies on
the influence of structural modifications on the auxetic properties of Yukawa crystals are an example
of the latter [65,66]. In the referenced studies, it has been shown that the introduction of nanochannel
filled by hard spheres into Yukawa crystal enables enhancing the auxetic properties [65]. On the other
hand, the introduction of the monolayer of hard spheres in the Yukawa crystal oriented in the (010)
crystallographic plane leads to the appearance of a new auxetic direction to emerge [66]. Gathering
the facts, the following question arises: what effect on the auxetic properties will the introduction of
nanolayer into the Yukawa crystal oriented in a different crystallographic direction have?

This work concerns the study of the effects of structural modification in the form of insertion
into crystal of nanolayers that are oriented parallel to the (111) crystallographic plane. The aim of this
work is to determine the elastic properties of such structurally modified crystals, in which the particles
interact via hard and hard-core repulsive Yukawa potentials. In particular, we examine the effect of
this structural modification on the auxetic properties of the system under study. The purpose of this
paper is to present data that show that the discussed structural modifications have a significant effect
on auxeticity of the studied model system. We believe that in a not far future it will be possible to use
this knowledge in designing real materials.

2. Model and Computational Details

In the considered model, the initial face-centered cubic structure forms by particles interacting
through the hard-core repulsive Yukawa potential (HCRYP) [13–15]

βuij =

∞, rij < σ,

βε
exp[−κσ(rij/σ−1)]

rij/σ , rij ≥ σ,
(1)

where β = 1/kBT, kB is the Boltzmann constant, T is the temperature, σ is the diameter of the particles’
hard core, ε is the contact potential, and κ is the inverse of the Debye screening length. In order to
form a system with nanolayers, Yukawa particles that belong to periodic arrays of crystallographic
planes (111) are replaced by particles interacting via hard potential

βuij =

{
∞, rij < σ,

0, rij ≥ σ.
(2)

The result is the system of Yukawa particles with nanolayers formed by hard spheres. Figure 1
illustrates a few examples of studied systems. From Figure 1a, one can see that the same system can be
considered as the system with nanolayers consisting of monolayers of hard spheres or as the system
with nanolayers consisting of multilayers of particles interacting through Yukawa potential. On the
other hand, the system with nanolayers consisting of monolayers of particles interacting via Yukawa
potential can be viewed as the system with nanolayers consisting of multilayers of hard spheres
(see Figure 1c). Table 1 contains the details of the studied systems. The use of periodic boundary
conditions in the directions x, y, z leads to the periodic structure with parallel nanolayers. Then, the
systems described in the table can be considered as single super-cells. In order to analyse obtained
results, we introduce concentration as a ratio of nanolayer particles (NHS) to all particles in the system
(N) [66]

c =
NHS

N
× 100%. (3)

In order to determine the elastic properties of the studied systems, extensive Monte Carlo
simulations in isobaric-isothermal ensemble (NpT) were performed using the Parrinello-Rahman
method [40,67,68]. As the result of using that method, one obtains an elastic compliance 4th order
tensor (Sijkl) that describes elastic properties of studied systems entirely. Knowing each component of
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the compliance tensor, the Poisson’s ratio in arbitrary crystallographic direction and for any symmetry
of the crystal can be determined using the formula [69]

νnm = −
mimjSijklnknl

npnrSprstnsnt
, (4)

where ~̂n is a versor in the direction of the applied load and ~̂m is the versor in the direction in which the
Poisson’s ratio is measured, and the following relation has to be fulfilled: ~̂n·~̂m= 0. More details on
calculating the Poisson’s ratio can be found in References [65,66].

Figure 1. Typical structure of a studied crystal with nanolayers parallel to the (111) crystallographic
plane. Yukawa’s particles are denoted with a green color and the hard spheres are marked with a
red color. (a) a system with nanolayers consisting of a monolayer of hard spheres can be also seen
as multilayer Yukawa system. This system is denoted in the text as 1HS or 6Y; (b) a system with
nanolayers consisting of double layer of hard spheres; (c) a system with nanolayers consisting of four
layers of hard spheres; (d) a system with nanolayers consisting of a monolayer of particles that interact
via Yukawa potential. For more details, see Table 1.

Table 1. Examples of structural modifications of studied systems. Each structure was based on the
face-centered cubic (fcc) lattice which unit cell contains four atoms. n is the number of unit cells in
direction’s x, y, z. N = 4n3 is the number of particles in the system. NHS is the number of particles
in nanolayers. c is the concentration of nanolayers particles in the system. ρ = N/V is the density
of the system. nY is the number of layers of Yukawa particles in a nanolayer. nHS is the number of
layers of hard spheres in a nanolayer. The description column holds the abbreviations that indicate the
number of layers in a nanolayer, and are used in figures and in the text to refer to those systems.

n N NHS c [%] ρ nY nHS Description

7 1372 196 14.29 0.9940(4) 6 1 6Y,1HS
6 864 144 16.67 1.0042(9) 5 1 5Y,1HS
7 1372 392 28.57 1.0358(7) 5 2 5Y,2HS
5 500 100 20.00 1.0190(7) 4 1 4Y,1HS
6 864 288 33.33 1.0554(4) 4 2 4Y,2HS
7 1372 588 42.86 1.0854(9) 4 3 4Y,3HS
4 256 64 25.00 1.0422(2) 3 1 3Y,1HS
5 500 200 40.00 1.0848(1) 3 2 3Y,2HS
6 864 432 50.00 1.1189(3) 3 3 3Y,3HS
7 1372 784 57.14 1.1472(8) 3 4 3Y,4HS
3 108 36 33.33 1.0840(4) 2 1 2Y,1HS
4 256 128 50.00 1.1343(2) 2 2 2Y,2HS
5 500 300 60.00 1.1729(8) 2 3 2Y,3HS
6 864 576 66.67 1.2036(3) 2 4 2Y,4HS
7 1372 980 71.43 1.2281(8) 2 5 2Y,5HS
8 2048 1536 75.00 1.2476(1) 2 6 2Y,6HS

10 4000 3200 80.00 1.2753(5) 2 8 2Y,8HS
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Table 1. Cont.

n N NHS c [%] ρ nY nHS Description

3 108 72 66.67 1.2406(4) 1 2 1Y,2HS
4 256 192 75.00 1.2789(1) 1 3 1Y,3HS
5 500 400 80.00 1.3021(1) 1 4 1Y,4HS
6 864 720 83.33 1.3159(9) 1 5 1Y,5HS
7 1372 1176 85.71 1.3247(4) 1 6 1Y,6HS

Elastic properties of studied systems were determined for the following parameters of the Yukawa
potential: κσ = 10, βε = 20, and pressure p∗ ≡ βPσ3 = 100 expressed in dimensionless units.
The choice of these parameters was made on the basis of previous works [16,19,65]. The cut-off radius
used in the simulations was equal to 2.5σ. The acceptance ratio of box moves and particle moves in the
Monte Carlo method was 30%. In order to improve the accuracy of the obtained results, all physical
values (elastic compliances and the Poisson’s ratios) were averaged over 10 independent runs for each
of the studied systems. In other words, each system was simulated at least ten times. Single runs
lasted (2÷ 4)× 106 Monte Carlo (MC) cycles (depending on system sizes). The simulations of hard
sphere system took 12× 106 MC cycles. First, 106 cycles were treated as a period in which the system
reaches the state of thermodynamic equilibrium.

3. Results and Discussion

Introducing a nanolayer into a perfect crystal with the face-centred cubic structure leads to change
in the symmetry of the studied system. These changes were noticed in recent computer simulations [66].
A transition from fcc structure to the tetragonal one was observed. This is manifested by the change of
the shape of simulation box from a cuboid to a rhombohedron. The matrix describing the simulation
box of the system with nanolayers in the (111) plane has the form

h =

hxx hxy hxy

hxy hxx hxy

hxy hxy hxx

 . (5)

In this case, using Monte Carlo simulations utilizing the Parrinello-Rahman method, one obtains
the following form the elastic compliance tensor (given in the matrix form in the Voigt notation [70]):

S =



S11 S12 S12 S14 S15 S15

· S11 S12 S15 S14 S15

· · S11 S15 S15 S14

· · · S44 0 0
· · · · S44 0
· · · · · S44


. (6)

The above form is the consequence of the symmetry of the Sijkl tensor. To determine the symmetry
of the studied system uniquely, we bring the box matrix to its principal axes h′ij = RipRjrhpr using the
following rotation matrix

R =
1
6

−3−
√

3 3−
√

3 2
√

3
3−
√

3 −3−
√

3 2
√

3
2
√

3 2
√

3 2
√

3

 . (7)

In the rotated coordinate system, the h′ and S′ matrices can be written, respectively, as



Materials 2017, 10, 1338 5 of 12

h′ =

h′xx 0 0
0 h′xx 0
0 0 h′zz

 , (8)

S′ =



S′11 S′12 S′13 S′14 −S′15 0
· S′11 S′13 −S′14 S′15 0
· · S′33 0 0 0
· · · S′44 0 2S′15
· · · · S′44 2S′14
· · · · · 2(S′11 − S′12)


, (9)

where

S′11 =
1
2
(S11 + S12 − 4S15) + S44, (10)

S′12 =
1
6
(S11 + 5S12 − 2(4S14 + 2S15 + S44)), (11)

S′13 =
1
3
(S11 + 2S12 + S14 + 2S15 − 2S44), (12)

S′14 =
1
3
(S11 − S12 + S14 − S15 − 2S44), (13)

S′44 =
4
3
(S11 − S12 − 2S14 + 2S15 + S44). (14)

The above form of the S′ matrix corresponds to the system of trigonal symmetry [70]. This clearly
indicates that the systems with nanolayers in the (111) plane have trigonal symmetry.

Figure 2 shows the elements of elastic compliance matrix as a function of concentration for all
studied systems. It can be seen that the values of elastic compliances (S∗11, S∗12, S∗44) of systems in
which nanolayers contain Yukawa multilayers (2Y–5Y) are, respectively, similar and the remaining
elastic compliances (S∗14, S∗15) present the same (continuous) trend as functions of concentration.
However, at least in the concentration dependence of S∗14, a discontinuity at the transition to the
systems with Yukawa monolayers (1Y) is observed. For the latter systems, some components of
elastic compliances (S∗11, S∗14, S∗15) differ notably when compared with corresponding values of the
same elements of double-layer Yukawa systems (2Y). This difference may be due to the lack of strong
repulsion between the adjacent Yukawa layers inside the nanolayer in 1Y systems, which presents in
multilayer systems (2Y–5Y). This has a significant effect on the auxetic properties of the 1Y systems.

In Figure 3, the Poisson’s ratio in the main crystallographic directions has been shown. It can be
observed here that the dependencies of Poisson’s ratio on c for Yukawa multilayer systems are very
similar between each other. However, for certain crystallographic directions ([110][001], [111][11̄0],
[111][112̄], [111̄][11̄0], [111̄][112]), in the case of 1Y systems, we observe a qualitatively different
character of the dependence of Poisson’s ratio from the concentration (c). Moreover, Poisson’s ratio in
the [111̄][112] crystallographic direction exhibits negative values (see Figure 3d). This means that this
direction is an auxetic one. It is worth noting that this happens while maintaining the auxeticity in the
crystallographic direction of [110][11̄0] (see Figure 3b).

The dependencies of the minimum and maximum Poisson’s ratio values of the studied systems on
the concentration are presented in Figure 4. Here, one can see a qualitatively different dependence of
the Poisson’s ratio on the concentration in systems with Yukawa monolayer and systems with Yukawa
multilayers. For multilayered Yukawa systems, the concentration weakly affects the extreme values of
the Poisson’s ratio. Moreover, the extreme values of the Poisson’s ratio are barely dependent on the
number of Yukawa layers in the nanolayers (see Figure 4). This is reflected in the results obtained for
multilayered Yukawa systems, which are presented in Figure 4 in the range of concentrations from 0%
to 80%. However, in the case of monolayers of Yukawa particles in the system, one can find in Figure 4
that the dependence of the Poisson’s ratio on the concentration is qualitatively different from those
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obtained for multilayered Yukawa systems. It is important to note that minimum value of Poisson’s
ratio in the monolayer Yukawa system (1Y) at c = 66.67% reaches the value −0.39(3) in the [21̄2][141]
crystallographic direction.

Figure 2. Elastic compliances versus concentration involved in particles of nanolayers in studied systems.
Colors indicate the type of the system depending on the number of layers of appropriate particles in
a nanolayer. 1HS (black) is the system with hard spheres monolayer. 1Y (red) is the system with
monolayers of Yukawa particles. 2Y (light brown) is the system with double layers of Yukawa particles.
3Y (blue) is the system with triple layers of Yukawa particles. 4Y (magenta) is the system with four-layers
of Yukawa particles. 5Y (green) is the system with five-layers of Yukawa particles. In addition, miniature
images of studied systems are placed in the graph so that the centres of the structures coincided with the
corresponding concentrations. The systems in the figure are grouped according to the numbers of layers
in nanolayers. Miniatures of structures represent the studied systems seen from the [1̄10]-direction.
The color convention of data presentation from this figure is maintained in all following figures. Lines are
drawn to guide the eyes.
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Figure 3. Poisson’s ratio in the main crystallographic directions versus concentration of particles of
nanolayers in the studied system. The deformation of the system is applied respectively in the direction:
(a) [100], (b) [110], (c) [111], (d) [111̄], and (e) [11̄0]. The meaning of colors is the same as in Figure 2.

Figure 4. Maximal (squares) and minimal (circles) Poisson’s ratio taken from all crystallographic
directions as a function of concentration of particles of nanoslit in studied system. All miniature
images are placed in the graph so that the center of it coincided with the corresponding concentration
(except pure Yukawa and HS systems). Upper row of miniature images correspond to the maximal
values of Poisson’s ratio in all crystallographic directions. Lower row of miniature images describe the
absolute value of minimal negative Poisson’s ratio in all crystallographic directions of studied systems.
The studied structures of trigonal symmetry and crystallographic axes of three-dimensional plots have
the same orientation as in Figure 1. The shaded area denotes the data on the graph concerned with the
system with the nanolayer consisting of a monolayer of particles that interact via Yukawa potential.
Lines are drawn to guide the eyes.



Materials 2017, 10, 1338 8 of 12

In Figure 4 (see inserts), some structures studied for a few concentrations are presented.
They illustrate extreme values of Poisson’s ratio in all crystallographic directions in the three-dimensional
plot. If we assume that, in the plot, a vector from the origin of the coordinate system points to some point
of three-dimensional surface, then a direction of the vector represents the direction of the applied stress (~̂n),
and its modulus has the extreme value of Poisson’s ratio in that direction. Thus, each point on the surface
of the plot corresponds to the maximal value of Poisson’s ratio (top row of inserts in Figure 4) or absolute
value of minimal negative Poisson’s ratio (bottom row of inserts in Figure 4) for the direction in which the
stress is applied. This gives a qualitative picture of changes in the extreme values of Poisson’s ratio in all
crystallographic directions due to the presence of nanolayers in the studied system. In the case of minimal
Poisson’s ratio (Figure 4 bottom row), the increase in volume of the figure signals the enhancement of the
auxetic properties in the system—this is observed for the Yukawa monolayers (shaded area in Figure 4).
On the other hand, it can be seen that, for Yukawa multilayer systems, there are crystallographic directions
in which the value of Poisson’s ratio changes with concentration (see Figure 3), although the extreme
values of Poisson’s of the entire system, obtained from extremal values in all crystallographic directions,
are almost constant.

Besides all this, it follows from Figure 4 that not only does the concentration of particles of
nanolayer affect the elastic properties of the system, but also the distance between the layers in the
nanolayer. In particular, an absence of inter-layers Yukawa interactions leads to sharp changes of the
elastic properties of the system (see Figure 4). In order to quantitatively describe the change of the
auxeticity in studied systems, recently, the degree of axeticity has been defined as [71]

χ =
3

√
3A
4π

, (15)

where A =
2π∫
0

dφ
π∫
0

sin θdθ
R(θ,φ)∫

0
r2dr is the integral of absolute values of mean negative Poisson’s ratios

and R(θ, φ) = 1
2π

π∫
0

(∣∣∣νn(θ,φ)(α)
∣∣∣− νn(θ,φ)(α)

)
dα is the average over negative values of Poisson’s ratio

in the direction of ~̂n. Here, the versor ~̂n is determined in spherical coordinates. For more details, see
Reference [71].

In Figure 5, the degree of auxeticity of studied systems as a function of concentration is presented.
A qualitative difference in elastic properties of monolayered Yukawa systems and multilayered
Yukawa systems is observed. In the case of monolayered Yukawa systems, an essential enhancement
of auxeticity was found. However, the increase of concentration of nanolayer particles is causing a
weakening of auxetic properties of the system.

Figure 5. Degree of auxeticity as a function of concentration c. χ = 0 corresponds to the case of
non-auxetic system. Lines are drawn to guide the eyes.
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4. Conclusions

This work is a continuation of the study on the effect of structural modifications on elastic properties,
and particularly on the auxetic properties of the model of nanocomposites. Comprehensive Monte Carlo
simulations revealed that the structural modification of the Yukawa system in the form of nanolayers in
the (111) crystallographic plane can lead both to strengthening as well as weakening the auxetic properties
of the system. Reduction of auxetic properties is achieved by increasing the concentration of nanolayer
particles in multilayer Yukawa systems, whereas monolayered Yukawa systems exhibit the enhancement
of auxetic properties. The latter is the appearance of a new auxetic direction ([111̄][112]) while preserving
other, already existing, auxetic directions in the system.

The extreme values of the Poisson’s ratio of the studied systems were also determined.
The presentation of them in the form of a three-dimensional plot is suitable for a quick qualitative
assessment of changes in the auxetic properties of the whole system caused by the modification of the
structure of the studied system. On the other hand, a use of degree of auxeticity gives a quantitative
description of auxetic properties of the system under study.

The results presented in this paper demonstrate another (simple and efficient) way of controlling
the elastic properties of materials and show the consequences of introducing the nanolayers in the
(111) crystallographic plane of given crystal. This information may be useful for the construction
of nanocomposites, and may indicate directions for further research on materials with desired
elastic properties.
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