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Abstract: Rapid progress in the reduction of substrate thickness for silicon-based microelectronics
leads to a significant reduction of the device bending stiffness and the need to address its implication
for the thermo-mechanical fatigue behavior of metallization layers. Results on 5 µm thick Cu films
reveal a strong substrate thickness-dependent microstructural evolution. Substrates with hs = 323 and
220 µm showed that the Cu microstructure exhibits accelerated grain growth and surface roughening.
Moreover, curvature-strain data indicates that Stoney’s simplified curvature-stress relation is not valid
for thin substrates with regard to the expected strains, but can be addressed using more sophisticated
plate bending theories.
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1. Introduction

Thermo-mechanical fatigue of metallic thin films has been one of the key concerns in
microelectronics during a product’s lifecycle. The material damage and subsequent failure regarding
functionality is often associated with film cracking, severe surface roughening, and void formation in
the film interior. The driving force behind such microstructural changes is always connected to the
evolving stresses in the film material. Stresses arise as a consequence of the substrate constraint and
the different coefficients of thermal expansion (CTE) between the film and substrate. The cornerstone
of experimental evaluation of film stresses is performed with the well-known Stoney Equation [1].
Although many authors have developed refined calculations for substrate bending [2–6], Stoney’s
equation has been used unchanged for more than a century. The arising biaxial film stress, σf, is derived
by the simple expression:

σf =
Es h2

s κ

6(1− υs)h f
(1)

where hs, Es, and υs are the thickness, elastic modulus, and Poisson’s ratio of the substrate, hf is the film
thickness, and κ denotes the film/substrate curvature (inverse of radius). Since biaxial film stresses
develop as a consequence of the thermal mismatch strain, εm, then:

εm ∼=
(

αs − α f

)
∆T (2)

which is an invariant bound by the different CTE of the substrate and film, αs and αf, determination of
stresses is only connected to the variation of the film/substrate curvature.

In other words, for the same σf the corresponding curvature is proportional to 1/hs
2 and hf,

and scales with the elastic properties of the substrate. To guarantee validity, Equation (1) is based on the
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main assumption that hf is much less than hs [7]. Thereby, the criterion, h* = hf/hs is not strictly defined,
but rather arbitrarily chosen (often set to h* = 0.01, see [6]). In modern microelectronics, increasing
product performance requires thinner and thinner substrates to decrease the vertical resistance and
device volume, while keeping the metallization thicknesses similar [8,9]. In literature, numerous
studies report the effect of film thickness on microstructural changes [10–12], but experimental work
dealing with the influence of substrate thickness is very limited. Few studies have shown that,
as a consequence of the increase of h*, large non-linear deformations and bifurcation (κx 6= κy) of the
substrate curvature can occur due to deposited films [13,14]. This raises the question of in which range
Stoney’s approximation is still valid with regard to cyclic thermal fatigue testing. Therefore, in the
present study, the influence of substrate thickness is shown by thermally cycling identical 5 µm thick
Cu films on silicon substrates with different thicknesses.

2. Materials and Methods

Copper films with hf = 5 µm were electrodeposited using a Cu electrolyte on 725 µm thick,
(100)-oriented silicon wafers. Afterwards, samples were annealed for 30 min in an inert/reducing
atmosphere at 400 ◦C. For detailed information regarding the used copper film and its microstructure,
see references [15,16], where the film used here was denoted as Film A. To achieve different substrate
thicknesses, sample pieces of 5 × 10 mm were cut, mounted into sample holders, and wet-ground
with a semi-automated lab tool (Struers TegraPol, Struers ApS, Ballerup, Denmark). This process
enabled specimens with hs down to ~200 µm. Below that thickness, sample integrity (e.g., substrate
cracking) becomes a major concern. For thermal cycling and subsequent microstructural analysis,
samples with hs of 725, 541, 323, and 220 µm resulting in h* of 0.007, 0.009, 0.015, and 0.023, respectively,
were used. Those samples were thermo-mechanically cycled in an infrared furnace between 170 ◦C
and 400 ◦C in a formic gas atmosphere. To study the effect of varying substrate thickness on the
thermo-mechanical behavior of Cu films, a site-specific microstructural tracking technique was
applied throughout the thermal cycling process [17]. Using electron back scatter diffraction (EBSD)
(EDAX, Weiterstadt, Germany) in combination with atomic force microscopy (AFM) (Veeco, Aschheim,
Germany), the microstructural and topographical evolution of a specifically marked film surface
area was studied. Furthermore, scanning electron microscope (SEM) (Zeiss, Oberkochen, Germany)
images and focused ion beam (FIB) film (Zeiss, Oberkochen, Germany) cross-sections were used to
substantiate experimental evidence. To guarantee an oxide-free film surface, specimens were subjected
to 100 vol % acetic acid at 35–40 ◦C for 3 min. This enables the selective removal of any copper oxide
and does not affect the actual Cu microstructure [18]. Experimental determination of the substrate
curvature evolution was performed with a custom-built wafer curvature set up with a multiple optical
beam sensor, kSA MOS (k-Space Associates, Inc., Dexter, MI, USA), with a heating rate of 10 ◦C/min.
Experimental details regarding temperature calibration, settings of the used instruments, and its
software packages can be found in references [17,19,20].

3. Results

To quantitatively assess the effect of decreasing hs with respect to the cyclic thermo-mechanical
behavior of the 5 µm thick Cu film, Table 1 presents the grain size (including twin boundaries)
and standard deviation determined by EBSD for 0, 100, and 500 thermal cycles. For hs = 725 and
541 µm, an almost identical grain size evolution is present, where marginal grain growth during
thermo-mechanical loading occurs. Below the 541 µm substrate thickness, significant grain growth
could be observed. For hs = 323 µm, the grain size increased up to 4.3 ± 1.3 µm after 500 cycles, while
for hs = 220 µm, the average grain size increased by a factor of two after 500 cycles. Figure 1 provides an
overview of local microstructural changes for hs = 541, 323, and 220 µm. The inverse pole figure (IPF)
images with overlaid image quality (IQ) in normal direction (ND) document the grain growth with
respect to cycle number, where white lines indicate high angle grain boundaries (HAGB ≥ 15◦) and
thin black lines indicate primary twins (misorientation = 60◦). For the Cu film on the thick substrate,



Materials 2017, 10, 1287 3 of 8

hs = 541 µm, marginal microstructural changes could be observed during the cycling with respect to the
initial stage. For instance, the ~{100}//{212}-oriented parent/twin grain highlighted by a circle showed
no essential plasticity during cycling, and in particular no twin boundary migration, as this controls
grain growth in these films on standard 725 µm thick substrates [19]. On the contrary, the two thinner
substrates (hs = 323 and 220 µm) revealed grain growth during the thermo-mechanical loading in
combination with noticeable twin boundary migration as a plastic deformation mechanism. This was
highlighted for hs = 220 µm in the squared section. The approximately {110}-oriented twinned grains
showed distinct grain growth via HAGB migration as well as detwinning during cycling.

Table 1. Grain size evolution of the Cu film with four different substrate thicknesses during cycling.

Cycle Number (-)
Grain Size (Including Twins) (µm)

hs = 725 µm hs = 541 µm hs = 323 µm hs = 220 µm

0 2.4 ± 0.8 2.3 ± 0.7 2.5 ± 0.7 2.4 ± 0.8
100 2.7 ± 0.9 2.7 ± 0.8 3.6 ± 1.1 3.8 ± 1.2
500 2.8 ± 0.9 3.0 ± 1.0 4.3 ± 1.3 5.1 ± 1.6
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mean squared (RMS) roughness evolution of the film surface with regard to a decreasing hs.  
An almost identical roughness evolution for hs = 725 and 541 µm was observed, in accordance with 
the grain size evolution in Table 1. Both films started with an initially very flat surface of about  
20 nm RMS roughness, which increased up to 110 nm after 1000 cycles. For hs = 323 and 220 µm, a 
significant increase was observed. After 750 cycles, the RMS roughness of the Cu films on hs = 323 
and 220 µm was increased by a factor of 3 and 5 compared to that on hs = 541 µm. The significant 
increase of surface roughening for thinner substrates was due to the formation of hillock-like features 
and voids on the surface (Figure 2b), as well as void formation at grain boundaries in the film interior 
(Figure 2c). 

Figure 1. Microstructural evolution of 5-µm thick Cu films on silicon substrates with different
thicknesses. The inverse pole figure-image quality (IPF-IQ) images display the changes with respect to
the cycling stage of 0, 100, and 500 cycles. For thicker substrates, marginal microstructural changes in
the grains (circular markings) were observed during thermal cycling, whereas the on thinner substrates
the grains exhibited pronounced growth and twin migration (squares). Scale bar is valid for all electron
back scatter diffraction (EBSD) images.

A comparable trend was found when evaluating the roughness. Figure 2a illustrates the root
mean squared (RMS) roughness evolution of the film surface with regard to a decreasing hs. An almost
identical roughness evolution for hs = 725 and 541 µm was observed, in accordance with the grain
size evolution in Table 1. Both films started with an initially very flat surface of about 20 nm RMS
roughness, which increased up to 110 nm after 1000 cycles. For hs = 323 and 220 µm, a significant
increase was observed. After 750 cycles, the RMS roughness of the Cu films on hs = 323 and 220 µm
was increased by a factor of 3 and 5 compared to that on hs = 541 µm. The significant increase of
surface roughening for thinner substrates was due to the formation of hillock-like features and voids
on the surface (Figure 2b), as well as void formation at grain boundaries in the film interior (Figure 2c).
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4. Discussion

The experimental findings show a significant substrate thickness dependency with regard to
the thermo-mechanical fatigue behavior. The substrates with hs = 725 and 541 µm showed minimal
grain growth (Table 1) and restricted surface roughening (Figure 2a), thus confirming results from
a previous study on 725 µm thick substrates (denoted as Film A in that work) [19]. However,
a distinctively different thermal fatigue behavior was observed for substrate thicknesses <541 µm.
From a phenomenological point of view, it seems that at a certain h*, a threshold strain energy was
overcome to enable the observed HAGB migration and twin boundary migration. Since the mismatch
strain is only defined by the mismatch in CTE of the corresponding materials (see Equation 2), thermal
film stresses were supposedly the same in every cycled sample and, hence, cannot cause the different
thermal fatigue behavior.

In a study by Chu et al. dealing with the reformulation of the Stoney formula, the author points
out that the original problem of bending a composite beam (or plate) due to thermal stress will always
result in a net bending moment as long as there is an elastic bending curvature [21]. In other words,
the composite plate curvature results in a bending stress configuration which is opposite in sign
to the generated thermal stress. The exact derivation not only points out the falsehood of Stoney’s
simplified and arbitrarily chosen neutral axis position b, where b = 2hs/3 [1], but leads to a substantially
different curvature-strain relation. For h* smaller than 0.1, Stoney’s formula would underestimate the
corresponding bending curvature by a factor of ~2. (see Figure 6, [21]). Thereby, the curvature (inverse
of the radius) is related to:

1
R

=
12

M f
Ms

h f
hs

hs

(
1 + 6

M f
Ms

h f
hs

) εm (3)

where Ms and Mf are the biaxial moduli of the substrate and film, respectively.
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To validate the predictions of the actual bending curvature using Stoney and Chu curvature-(film)
strain relations, the curvature evolution due to thermal mismatch was measured for substrate
thicknesses of hs = 725 and 400 µm using substrates that were processed using semiconductor industry
tools to exclude preparation artefacts. Both wafers had the same 5 µm thick Cu film on the top,
and specimens of 10 × 10 mm in lateral dimension were used. In Figure 3a, the two corresponding
sample curvatures are presented from room temperature up to 50 ◦C, where pure elastic strain
development can be assumed. In both cases a linear curvature-temperature (strain) relationship
was observed. The decrease of hs down to 400 µm increased the substrate curvature by a factor
of ~5. For both configurations, the resulting thermal elastic strain in the copper film at any given
temperature was nearly the same and followed Equation (2). We assume a constant CTE mismatch
between Cu and Si of ∆α = 14 ppm/K. Using the temperature data from the curvature measurements,
the respective strain evolution is plotted as a thick black line in Figure 3b. It should be noted that
due to the finite substrate thicknesses, a slight deviation to a smaller compressive film strain is
present since a small portion of the mismatch strain is carried by the substrate. For the presented
configurations this deviation can be neglected, because even for the thinner substrate the film thickness
represents only about 1.25% of the total sample thickness (400 µm thick substrate, 5 µm thin film).
As displayed in Table 2, a thermal strain of −3.9 × 10−4 and −65 MPa respectively (using σf = εm Mf,
with Mf = 168 GPa) at 50 ◦C is obtained. Rearranging Equations (1) and (3), we can calculate the strain
from the curvature data using Ms = 180.5 GPa. For a common wafer thickness, hs = 725 µm, final
strains of −4.9 × 10−4 and −2.5 × 10−4 are obtained, which would result in −82 MPa and −42 MPa
for Stoney and Chu, respectively. One could argue that this discrepancy regarding an overestimation
for Stoney (and an underestimation for Chu’s relation) could simply be a sensitivity problem due to
the small curvature evolution [22]. However, a clearer picture evolves for hs = 400 µm, where Stoney’s
relationship would result in −7.0 × 10−4 and −118 MPa. This would overestimate the strain/stress by
almost a factor of ~2, whereas the analysis of Chu et al. perfectly correlates with the developed stress
by the predicted CTE mismatch of −65 MPa in the Cu film.

Table 2. Comparison of the predicted strain and stress values in copper at 50 ◦C.

Method of Validation
hs = 725 µm hs = 400 µm

Compressive εm Compressive σf Compressive εm Compressive σf

CTE mismatch −3.9 × 10−4 −65 MPa −3.9 × 10−4 −65 MPa
Stoney −4.9 × 10−4 −82 MPa −7.0 × 10−4 −118 MPa

Chu −2.5 × 10−4 −42 MPa −3.7 × 10−4 −63 MPa
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These observations confirm that, in general, Stoney’s equation is only an approximation of
the stress development for thin films on thick rigid substrates. For thin substrates, it leads to the
wrong curvature-strain relationship, while the Chu et al. derivation, where the curvature is ~2·κstoney,
correlates well with our experimental observations. In fact, this emphasizes that the simplified model
of having a net-zero bending moment with regard to the composite curvature is not correct. If we
consider the stress fields proposed in reference [21], Equation (15) for the Cu layer, it becomes evident
that a stress/strain gradient is directly proportional to the evolving curvature κ, scaling with the
resulting bending curvature and the applied thermal strain εm. This is similar to the bending strain
relationship for flexible electronics, where the strain in the outer fiber (e.g., metallization layer) is
proportional to its bending curvature [23]. With the decrease of hs and the understanding that the
curvature is underestimated by a factor of ~2, significant strain gradients could locally lead to higher
stresses in the surface region and cause an accelerated microstructure evolution, as evidenced in
Figures 1 and 2. Furthermore, the density of geometrically necessary dislocations ρG is proportional to
|κ|, which would give rise to a strain gradient in the bent lattice curvature [24].

Furthermore, the CCD (charge couple device) detector images of the deflected laser beams in
Figure 4 reveal that between hs = 400 µm and 210 µm, an abrupt “snap over” of the substrate curvature
occurred, seen as a bifurcation of the sample curvature. Besides the impracticable measurement of
the curvature evolution for hs = 210 µm, this observation points to the presence of large non-linear
deformation. Focusing on the ellipsoidal shape of the detected laser spots suggests that the curvature
is a function of position and that twist moments are present. Such effects rise inevitably in modern
microelectronics, and are not considered in common analysis but can have a pronounced effect on the
thermo-mechanical material behavior.
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5. Conclusions

The detailed results regarding the microstructural evolution of 5 µm thick Cu films upon
thermo-mechanical fatigue revealed a strong substrate thickness dependency. The findings showed
that distinct grain growth coupled with twin migration and accelerated surface roughening was
present for Cu films cycled on thin substrates with hs = 323 and 220 µm. The examination of Stoney’s
curvature-strain relation using wafer curvature measurements showed distinct deviations between
the expected and measured curvature. The significantly larger sample curvature in combination with
expected plastic strain gradients in the film material can serve as an explanation for the accelerated
material degradation. The observations with respect to non-uniform sample curvature and bifurcation
for thinner substrates (e.g., 210 µm) further highlight the need for more detailed investigations of
the actual limits of Stoney’s assumptions on small substrate deformation and its implications for
microstructural effects on semiconductor thin film materials.
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