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Abstract: Computational and analytical studies of degradation of wind turbine blade materials at
the macro-, micro-, and nanoscale carried out by the modelling team of the Section Composites and
Materials Mechanics, Department of Wind Energy, DTU, are reviewed. Examples of the analysis of
the microstructural effects on the strength and fatigue life of composites are shown. Computational
studies of degradation mechanisms of wind blade composites under tensile and compressive loading
are presented. The effect of hybrid and nanoengineered structures on the performance of the
composite was studied in computational experiments as well.
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1. Introduction

The perspectives of utilization and expansion of wind energy technology depend on the reliability
and lifetime of wind turbines. Degradation processes in wind turbine blades are controlled by
microscale processes in the materials [1]. The mechanical behavior and strength of materials can be
studied as a function of their microstructures using numerical models based on the computational
micro- and mesomechanics of the materials. In this paper, methods and approaches of computational
analysis of wind blade composites are discussed. The main objectives of these studies are:

# Understanding the degradation mechanisms of wind blades as a function of their structures,
and the prediction of the lifetime and performance of wind blades. For this, we estimate the
loads on the wind blades (Section 2), and develop the micromechanical models of wind blade
composite degradation at the level of fibers and bundles under tensile (Section 3) and compressive
(Section 4) loading.

# Exploring the promising ways to optimize the wind blade performance by tailoring the materials’
structures. Here, we develop computational models of hybrid and nanoengineered composites
(Section 5) and estimate the effect of these structures on the composite performance and lifetime.

Mainly, the works carried out at the Modelling team of the Section Composites and Materials
Mechanics, Department of Wind Energy, DTU, are summarized.

2. Loads on the Wind Blades and Stresses in the Material

In this section, a simple method to estimate loads on the wind blades is presented. There exist
a number of studies estimating the loads on wind blades from aerodynamic, physical loads [2–5].
However, in this work, we seek to develop a simple, beam model-based approach, which can be
introduced in the complex materials model as a boundary condition.
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2.1. Loads on a Wind Blade

A wind turbine blade is a long, slender structure where the dominating loads are given by the
aerodynamics and the gravitation. Seen on the large scale, a wind turbine blade is a simple beam
structure with well-defined load and boundary conditions. The beam theory describing the blade can
be made at different levels of complexity depending on its use [6]. An example of a more complex
version is the BECAS model (BEam Cross-section Analysis Software) (see, e.g., [7]). A simplified 1D
momentum theory (see, e.g., [6]), the maximum aerodynamic load on a blade in the flap-wise direction
can be simplified as a linear varying distributed load with vanishing load intensity at the root to a load
intensity of:

qL =
8
27

ρairu2
RπL (1)

at the blade tip. Here, L is the blade length, ρair = 1.2 kg/m3 is the density of the air, and uR is the
so-called rated wind speed for the turbine which corresponds to the wind speed when the turbine
production is reaching the generator size. In the edge-wise direction, the load has, in [6], been assumed
to be constant.

Using the simplified cross-section shown in Figure 1, the flap and edge-wise moment in the blade
(see, e.g., [5]) can be found as follows:
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where Ablade = 2(A f lap + Aedge). In order to achieve a constant stress level, σ
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blade material, it can be seen from Equations (4) and (5) that the blade height, h f lap
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2.2. Stresses in a Wind Blade

Following Equation (6) will result in blade geometries which are solely based on material strength.
In reality, the blade geometry is given by a combination of structural and aerodynamic requirements.
In Figure 2, Equation (6) is compared with typical blade cross-section variations, where the case
L = 86m, while the other two cases are representative blade geometries averaged from a number of
known blade geometries. The blade height h f lap

0 and width hedge
0 are specified such that Equation (6)

is crossing the representative blade geometry in the largest value points which, for the thickness
direction, is at the blade root while, for the width, it is at a point located away from that (see Figure 2).
During this, it turns out that h f lap

0 and hedge
0 , as a good approximation, can be assumed to follow linear

functions, with L as the blade length:

h f lap
0 = 0.066L − 0.369m; hedge

0 = 0.130L + 0.082m (7)

Therefore, based on the parameters given in [6], the mass of a specific wind turbine blade can be
estimated. Keeping in mind the assumption of a constant cross-section along the blade, the height and
width variation are obtained aiming for a constant stress value throughout the blade. In addition to
a blade design given by the material strength, the blade should also be stiff enough in order to avoid
the blade hitting the tower. In [8], the distance from the blade tip to the tower is given as 18 m; this is,
therefore, the maximum allowable deflection wmax = 18m for a L = 86m turbine blade. Solving the
Bernoulli-Euler equations numerically, one obtains the rotation and deflection at the root section:

θi = θi−1 +
1
2

(
Mi
EIi

+
Mi−1
EIi−1

)
(xi − xi−1) ; i = 1, . . . n

wi = wi−1 +
θi+θi−1

2 (xi − xi−1) ; i = 1, . . . n
(8)

where w is the transverse deflection, Mx is the moment in the beam at location x, and E is the material

stiffness, d2w
∂x2 = Mx

EIx
withIx = 1

2 A f lap
(

h f lap
x

)2
.
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Equation (6).

3. Three Dimensional Modelling of Composite Degradation under Tensile Loading

An important task of the analysis of wind blade materials is the prediction of service properties and
lifetime of the wind blades. This information can be obtained from computational modelling, which
can be carried out at several scale levels: mesolevel (laminates, sandwiches of the blade shells, fiber
bundles), microlevel (fibers and matrix), and nanolevel (interfaces, nanoparticles). In order to simulate
the deformation and strength of fiber reinforced composites, a number of approaches can be used, e.g.,
analytical models (often based on the shear lag model [9], among these models, one can mention the
break influence superposition (BIS) technique [10], Green function model [11,12], etc.); the fiber bundle



Materials 2017, 10, 1278 4 of 15

model (FBM) developed initially by Daniels [13], and further improved and generalized by many
groups (see, for example, [14]), fracture mechanics-based models (often applied to the cases of brittle
matrix and fiber bridging [15–17]), continuum damage mechanics-based models [18,19], and numerical
continuum mechanical (often, finite element-based) models [20–27], and multiscale models [28].
A detailed overview of models of fiber-reinforced composites can be found elsewhere [25,26].

Below, the micromechanical unit cell models of composites at the level of the fiber/matrix and
bundles are reviewed.

3.1. Computational Modelling of Micromechanisms of Degradation of Wind Blade Composites

In order to analyze the micromechanisms of damage in wind energy composites, micromechanical
finite element simulations have been used [29]. A series of programs has been developed, which
should automate the steps of the generation of 3D microstructural models of composites. After a 3D
microstructural model of a material with a complex microstructure is generated, the numerical testing
of the microstructure is carried out with the use of commercial finite element software, Abaqus 6.13
(Dassault Systèmes, Vélizy-Villacoublay, France). In order to model the fiber cracking, we introduced
potential fracture planes (in theform of damageable cohesive elements) in random sections of fibers,
suggested by González and LLorca [30]. The random arrangement of the potential failure planes
in this case reflects the statistical variability of the fiber properties. A similar concept was used to
simulate the interface cracking of composites. Given that surfaces of fibers can be rather rough, and
the interface regions in many composites contain interphases, the interface debonding was considered
not as a two-dimensional opening of two contacting plane surfaces, but rather as a three-dimensional
process in a thin layer. Thus, the interface was represented as a “third (interphase) material layer”
between the homogeneous fiber and matrix materials. The thickness of the interface layer can be varied
in simulations. The damage evolution in the damageable layers, placed in random sections of fibers, as
well as in the matrix and interphase layers, was modeled using the finite element weakening method.
The idea of this approach is that the stiffness of finite elements is reduced if a stress or a damage
parameter in the element or a nodal point exceeds some critical level. This approach has been realized
in the Abaqus subroutine User Defined Field. In this subroutine, the phase to which a given finite
element in the model is assigned is defined through the field variable of the element.

Figure 3a shows an example of the generated FE models with 20 fibers, and removed layers
of potential fracturing. A number of three-dimensional multifiber unit cells have been generated
automatically with the use of these programs and were subject to a uniaxial tensile displacement
loading along the axis of the fibers. As output results, the stress-strain curves and the damage strain
curves were obtained, as well as the stress and strain, and damaged element distributions in the unit
cells (see [29]). On the basis of the simulations, it was concluded that homogeneous fibers ensure
a higher strength of a composite at the pre-critical load. However, the fibers with randomly-distributed
strengths lead to the higher strength at post-critical loads, i.e., after the fiber cracking started.

Let us consider now the interaction between all three damage modes in composites (matrix cracks,
interface damage, and fiber fracture). Figure 3b,c show the results of simulations in the unit cell with
20 fibers: damage formation in the fibers, interface and matrix. The damage evolution begins by
formation of a crack in a fiber and (in another, rather far site) in the matrix (ε = 0.01). Then, the interface
crack forms near the fiber crack, and the large matrix crack is formed (ε = 0.015).

It is of interest that, in the case when all the three damage mechanisms are possible, the competition
between the matrix cracking and the interface debonding is observed. In the area where the interface
is damaged, no matrix crack forms; vice versa, in the area where the long matrix cracks are formed,
the fiber cracking does not lead to the interface damage. One can conclude that local weak places
in composite interfaces can be rather beneficial for the composite strength and toughness: they can
prevent the matrix failure (by channeling the fracture energy into interface defects), and even delay the
fiber failure. Practically, it means that a heterogeneous interface (interface with both weak and strong
regions) can prevent the matrix failure and, therefore, ensure the integrity of the material.



Materials 2017, 10, 1278 5 of 15

Materials 2017, 10, 1278  5 of 15 

 

defects), and even delay the fiber failure. Practically, it means that a heterogeneous interface 
(interface with both weak and strong regions) can prevent the matrix failure and, therefore, ensure 
the integrity of the material. 

 
(a) (b) (c) 

Figure 3. 3D FE micromechanical model: (a) example of a 3D unit cell; (b) competition of damage 
modes: one failed fiber and a few microcracks in the matrix (red); and (c) two fibers have failed, the 
interface crack is formed in the vicinity of a fiber crack and the matrix crack is formed (ε = 0.015) 
(reprinted from [29] with kind permission from Elsevier). 

3.2. Fiber Bundle Modelling with an Experimentally-Determined Fiber Distribution 

The model of the Section 3.1 above was applied to an ideal unidirectional structure. In order to 
simulate real structures of uni-directional non-crimp fabric-reinforced epoxy composites, an 
approach based on 3D X-ray tomography scanning is used [31]. The bundle and fiber/matrix 
structure of the composite is segmented as follows: A complete 0° load-carrying bundle, as well as 
complete 90° and 45° bundles, are contained in the 3 mm × 3 mm × 3 mm FoV scan. This makes it 
possible to choose three cut planes. Each cut plane is orthogonal to one of the bundles and contains 
its complete cross-section, as shown in Figure 4a. All subsequent analysis is performed in those three 
2D images, separately for each of the fiber bundles. The bundles are manually segmented, and the 
example of a 45° bundle is shown in Figure 4. For detecting the individual fibers, the automatic 
approach of Emerson et al. [32] is applied for estimating fiber centers. Fibers are then modeled as 
circles with the diameters calculated so that no fibers overlap, but all fibers touch at least one 
neighboring fiber. An example of the segmentation results for the fibers from a 45° bundle is shown 
in Figure 3, right. 

Compared with the expected fiber diameter of 17 µm and 16 µm for the load carrying 0° and 
the backing bundles (45°, 90°), the segmentation is found to underestimate the diameters somehow. 
As it can be seen in the zoomed image in Figure 4, right, it is difficult to distinguish individual fibers, 
so some uncertainty may also be expected for the chosen resolution. The current segmentation is 
performed for 2D cross-sections and a full 3D based segmentation is expected to give an improved 
precision. Additionally, a scan with a higher zoom and a better resolution would improve the 
precision significantly. The last column in Table 1 shows the estimated tex-values based on the 
segmentated data. Compared with the tex-values reported for the fabric, the 0° load-carrying bundle 
is found to be overestimated, while the backing bundles are found to be underestimated. Based on 
the under-estimation of the fiber diameters, an under-estimation of the tex-values was expected for 
all the bundles. Nevertheless, the boundary between the load carrying 0° bundles can be hard to 
identify on a 2D slice, so the segmented results may include some part of a neighboring bundle.  
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modes: one failed fiber and a few microcracks in the matrix (red); and (c) two fibers have failed,
the interface crack is formed in the vicinity of a fiber crack and the matrix crack is formed (ε = 0.015)
(reprinted from [29] with kind permission from Elsevier).

3.2. Fiber Bundle Modelling with an Experimentally-Determined Fiber Distribution

The model of the Section 3.1 above was applied to an ideal unidirectional structure. In order to
simulate real structures of uni-directional non-crimp fabric-reinforced epoxy composites, an approach
based on 3D X-ray tomography scanning is used [31]. The bundle and fiber/matrix structure of the
composite is segmented as follows: A complete 0◦ load-carrying bundle, as well as complete 90◦

and 45◦ bundles, are contained in the 3 mm × 3 mm × 3 mm FoV scan. This makes it possible to
choose three cut planes. Each cut plane is orthogonal to one of the bundles and contains its complete
cross-section, as shown in Figure 4a. All subsequent analysis is performed in those three 2D images,
separately for each of the fiber bundles. The bundles are manually segmented, and the example of
a 45◦ bundle is shown in Figure 4. For detecting the individual fibers, the automatic approach of
Emerson et al. [32] is applied for estimating fiber centers. Fibers are then modeled as circles with
the diameters calculated so that no fibers overlap, but all fibers touch at least one neighboring fiber.
An example of the segmentation results for the fibers from a 45◦ bundle is shown in Figure 3, right.

Compared with the expected fiber diameter of 17 µm and 16 µm for the load carrying 0◦ and
the backing bundles (45◦, 90◦), the segmentation is found to underestimate the diameters somehow.
As it can be seen in the zoomed image in Figure 4, right, it is difficult to distinguish individual fibers,
so some uncertainty may also be expected for the chosen resolution. The current segmentation is
performed for 2D cross-sections and a full 3D based segmentation is expected to give an improved
precision. Additionally, a scan with a higher zoom and a better resolution would improve the
precision significantly. The last column in Table 1 shows the estimated tex-values based on the
segmentated data. Compared with the tex-values reported for the fabric, the 0◦ load-carrying bundle
is found to be overestimated, while the backing bundles are found to be underestimated. Based on the
under-estimation of the fiber diameters, an under-estimation of the tex-values was expected for all the
bundles. Nevertheless, the boundary between the load carrying 0◦ bundles can be hard to identify on
a 2D slice, so the segmented results may include some part of a neighboring bundle.

Table 1. Quantification from the fiber segmentation inside the bundles.

Bundle Number of
Fibers

Average Fiber
Diameter

Total Bundle
Area

Total Fiber
Area

Local Fiber
Volume Fraction

Estimate
Tex-Value

0◦ 5954 15.8 µm 1.926 mm2 1.197 mm2 0.62 3113
45◦ 794 14.9 µm 0.245 mm2 0.142 mm2 0.58 369
90◦ 375 15.4 µm 0.125 mm2 0.071 mm2 0.57 185
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Based on the segmented fiber architecture, a two-dimensional micromechanical model oriented
orthogonally to the bundle orientation is built (see Figure 5a). In practice, the fiber architecture is
segmented as fiber center points and diameters. Based on this, a representative rectangular part of
the bundle area is selected for the finite element model and subsequently loaded in the transverse
direction. As the much stiffer fibers will constrain the matrix deformation in the fiber direction, a plane
strain linear triangle element is used. For the 45◦ bundle, a 1.0 × 1.0 mm representative box with
443 fibers is selected. Only the solution for a very small part of the simulated representative box is
shown in Figure 5a. The local fiber volume fraction inside the representative volume is found to be
Vf = 0.56. Based on the micromechanical finite element model, the transverse stiffness and Poisson’s
ratio are found to be EFEM = 13.8 GPa and νFEM = 0.49, whereas the inverse rules of mixture will give
EInvRoM = 6.4 GPa and the Halpin-Tsai estimate will give EHalpin−Tsai = 11.8 GPa. When the full 3D
constitutive relation of the bundle structure is obtained, this will be applied on the segmented bundle
structure, which is sketched in Figure 5.Materials 2017, 10, 1278  6 of 15 

 

 
(a) (b) (c) 

Figure 4. Segmentation of 0°, magenta: 45°, and green: 90° bundles, where the 0° is in the loading 
direction. (a) Cut planes, (b) Bundle segmentation, (c) Fibre segmentation. 

(a) (b)

Figure 5 (a) The normal horizontal stress contour plot of a transverse-loaded 45° backing bundle and 
(b) the 3D structure where the resulting constitutive law will be implemented. 

Based on the segmented fiber architecture, a two-dimensional micromechanical model oriented 
orthogonally to the bundle orientation is built (see Figure 5a). In practice, the fiber architecture is 
segmented as fiber center points and diameters. Based on this, a representative rectangular part of 
the bundle area is selected for the finite element model and subsequently loaded in the transverse 
direction. As the much stiffer fibers will constrain the matrix deformation in the fiber direction,  
a plane strain linear triangle element is used. For the 45° bundle, a 1.0 × 1.0 mm representative box 
with 443 fibers is selected. Only the solution for a very small part of the simulated representative box 
is shown in Figure 5a. The local fiber volume fraction inside the representative volume is found to be 

0.56fV = . Based on the micromechanical finite element model, the transverse stiffness and 

Poisson’s ratio are found to be 13.8GPaFEME =  and 0.49FEMν = , whereas the inverse rules of 

mixture will give 6.4GPaInvRoME =  and the Halpin-Tsai estimate will give 

11.8GPaHalpin TsaiE − = . When the full 3D constitutive relation of the bundle structure is obtained, 

this will be applied on the segmented bundle structure, which is sketched in Figure 5. 

4. Compressive Strength of Wind Turbine Composites 

The downwind side of the blade and the spar of the blade are subject to compressive loading. 
The failure mechanisms of unidirectional composites under compressive loading differ strongly 
from those under tensile loading [33]. The compressive strength of composites is often sufficiently 
lower than their tensile strength, especially for carbon fiber composites where it can be 50–60% of the 
tensile strength. 

In this section, two approaches to simulate the compressive strength of composites are considered: 
a statistical, fiber bundle-based model [34], and a smeared-out compressive approach [34]. The first 
analytical approach can be easily extended to more complex loading (fatigue, complex structures), 
while the smeared out model is applicable for larger amounts of fibers.  

Figure 4. Segmentation of 0◦, magenta: 45◦, and green: 90◦ bundles, where the 0◦ is in the loading
direction. (a) Cut planes, (b) Bundle segmentation, (c) Fibre segmentation.

Materials 2017, 10, 1278  6 of 15 

 

 
(a) (b) (c) 

Figure 4. Segmentation of 0°, magenta: 45°, and green: 90° bundles, where the 0° is in the loading 
direction. (a) Cut planes, (b) Bundle segmentation, (c) Fibre segmentation. 

(a) (b)

Figure 5 (a) The normal horizontal stress contour plot of a transverse-loaded 45° backing bundle and 
(b) the 3D structure where the resulting constitutive law will be implemented. 

Based on the segmented fiber architecture, a two-dimensional micromechanical model oriented 
orthogonally to the bundle orientation is built (see Figure 5a). In practice, the fiber architecture is 
segmented as fiber center points and diameters. Based on this, a representative rectangular part of 
the bundle area is selected for the finite element model and subsequently loaded in the transverse 
direction. As the much stiffer fibers will constrain the matrix deformation in the fiber direction,  
a plane strain linear triangle element is used. For the 45° bundle, a 1.0 × 1.0 mm representative box 
with 443 fibers is selected. Only the solution for a very small part of the simulated representative box 
is shown in Figure 5a. The local fiber volume fraction inside the representative volume is found to be 

0.56fV = . Based on the micromechanical finite element model, the transverse stiffness and 

Poisson’s ratio are found to be 13.8GPaFEME =  and 0.49FEMν = , whereas the inverse rules of 

mixture will give 6.4GPaInvRoME =  and the Halpin-Tsai estimate will give 

11.8GPaHalpin TsaiE − = . When the full 3D constitutive relation of the bundle structure is obtained, 

this will be applied on the segmented bundle structure, which is sketched in Figure 5. 

4. Compressive Strength of Wind Turbine Composites 

The downwind side of the blade and the spar of the blade are subject to compressive loading. 
The failure mechanisms of unidirectional composites under compressive loading differ strongly 
from those under tensile loading [33]. The compressive strength of composites is often sufficiently 
lower than their tensile strength, especially for carbon fiber composites where it can be 50–60% of the 
tensile strength. 

In this section, two approaches to simulate the compressive strength of composites are considered: 
a statistical, fiber bundle-based model [34], and a smeared-out compressive approach [34]. The first 
analytical approach can be easily extended to more complex loading (fatigue, complex structures), 
while the smeared out model is applicable for larger amounts of fibers.  

Figure 5. (a)The normal horizontal stress contour plot of a transverse-loaded 45◦ backing bundle and
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4. Compressive Strength of Wind Turbine Composites

The downwind side of the blade and the spar of the blade are subject to compressive loading.
The failure mechanisms of unidirectional composites under compressive loading differ strongly from
those under tensile loading [33]. The compressive strength of composites is often sufficiently lower
than their tensile strength, especially for carbon fiber composites where it can be 50–60% of the
tensile strength.

In this section, two approaches to simulate the compressive strength of composites are considered:
a statistical, fiber bundle-based model [34], and a smeared-out compressive approach [34]. The first
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analytical approach can be easily extended to more complex loading (fatigue, complex structures),
while the smeared out model is applicable for larger amounts of fibers.

4.1. Statistical Model of Compressive Damage Evolution

In this section, we investigate the effect of microstructures and the statistical distribution of
microstructural parameters of the composites on the damage, and the compressive and fatigue strength
of carbon fiber-reinforced composites under compressive and cyclic loading. A computational model
of a composite with a number of randomly-distributed and randomly-misaligned fibers has been
developed [34]. The model is based on the Monte-Carlo method and the Budiansky-Fleck fiber kinking
condition. The fibers are randomly arranged in the cell, using the RSA (random sequential absorption)
algorithm. The misalignment angles are assigned to each fiber, using random normal number generator
(with truncated Gaussian probability distribution, from −3◦ to 3◦). Then, the unit cells were subject to
axial loading (or repeated axial loadings). For each fiber, the kinking condition is checked according to
the Budiansky-Fleck formula. If one or several fibers kink, the stress is redistributed over the remaining
fibers, thus, increasing the load on the remaining fibers and the likelihood of their kinking. The load
sharing on the remaining fibers after kinking of some fibers was calculated using the “effective stress
concept” of damage mechanics and the power load sharing law. The schema of the multifiber unit cell
with random misalignments is given in Figure 6.
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Two scenarios of the load redistribution after the fiber kinking were considered, depending on the
“rate” of the load redistribution: “quick” loading (when the fibers are loaded, and fail independently,
and the load redistribution takes place only at the next loading), and “slow” loading (after a fiber is
failed, the stress on the remaining fibers increases instantly according to the “effective stress concept”
and “load sharing rule”, and so on for all the fibers which fail successively one after another). In the first
case, a j-th fiber does not “know” that the i-th fiber failed, until the next cycle of loading (the “quick”
loading term reflect non-sharing of the load, as if it was quicker than the load transfer from failed
to intact fibers). Only in the next cycle, the load is redistributed over remaining fibers. In the latter
case, the fibers kink one after another, depending on the misalignment of each fiber. Thus, the “slow”
loading leads to autocatalytic fiber kinking, caused not by the increase of the applied load, but rather
by the load redistribution after the fiber begins to kink.

This model can be applied, among others, to analyze the effect of the fiber clustering on the
compressive strength of the composites. In order to make the clustering effect better visible, we
considered the composite with 20% volume content of fibers. The unit cell models with random
and clustered arrangements of fibers were subject to loadings (“quick” loading scheme). In the
simulations, it was observed that the fiber clustering has no effect on the damage at the first “quick”
loading. However, at the second “quick” loading, the composites with clustered fiber arrangements
demonstrated sufficiently higher damage. Figure 7 shows the distributions of failed fibers in the cases
of clustered and random homogeneous fiber arrangements, for the N = 100 (five clusters), after the
second loading cycle. One can see that the clustered fiber arrangement leads to the quicker failure of
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the composite, due to the effect of the load redistribution. While there might be no difference between
the clustered and homogeneous fiber arrangement if the material is not pre-damaged, the clustered
arrangement leads to the much quicker failure of fibers at the second loading (or if the material is
pre-damaged). For instance, at the compressive stress is 1500 MPa, the damage in the composite with
clustered fibers is 32.5% higher than in the composite with homogeneously-arranged fibers.Materials 2017, 10, 1278  8 of 15 
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4.2. Effect of Local Fiber Misalignment and Wrinkles on Compression Strength of the Composite

As an alternative to modelling the individual fibers, which is far too detailed an approach
when we are talking about wind turbine blades which consist of millions of fibers, a smeared out
approach can be used where both the fiber and matrix constituents can be modelled as a non-linear
elastic-plastic model, but without modelling them individually. Such an approach is used in [35]
and the example on predictions for a specific material combination is shown in Figure 8. It has been
found that the kink-band formation is highly dependent on the plasticity of the matrix material (the
soft phase) in interaction with the fiber misalignment. Therefore, it has, e.g., been demonstrated
that temperature change from 20 ◦C to 50 ◦C can easily reduce the compression strength by 30%.
In [36], the individual fiber orientation was segmented in a filament-wound carbon fiber and a glass
fiber composite. Thereby, rather good agreement between experimental measurement and numerical
predictions were obtained.

Smeared out models are not limited to modelling the compression failure at the fiber matrix level.
In [35], a 2D FE model of alternating layers of elastic-plastic matrix and elastic orthotropic fiber laminae
was modelled. Additionally, at this larger scale, the compression strength of a wrinkled laminate was
found to be strongly dependent on the maximum initial lamina misalignment angle and the plasticity
of the matrix material. Finally, it is found that in hybrid wrinkles, an increasing amount of carbon
increases the compression strength.

In addition to through-thickness wrinkles we considered partial wrinkles [37]. It was shown that
the undisturbed laminate next to the wrinkle along the length reduces the kinking strength which,
afterwards, increases when the undisturbed laminate is on top of that added below and/or above
the waviness. The delamination study demonstrates that the global wrinkle model actually fails by
delamination for an initial misorientation equal to, or greater than, 4◦.
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5. Computational Modelling of Hybrid and Hierarchical Composites

Recently, several new promising directions of wind blade composites development has attracted
the attention of researchers, namely, hybrid and nanoengineered materials.

In a number of works, the strength and damage mechanisms of hybrid composites were
studied [38–43]. It was shown that the incorporation of glass fibers in carbon fiber-reinforced
composites allows the improvement of their impact properties and tensile strain to failure of
the carbon fibers. For the analysis of nanocomposites, a number of different micromechanical
models have been developed; for instance, approaches based on composite models (Halpin-Tsai
model, Mori–Tanaka theory, Eshelby model, and shear lag models [44–46]) and molecular
mechanics/molecular dynamics [47–52]. A number of special nanostructure-based models were
developed, e.g., the effective particle model [53], dilute suspension of clusters model [54], effective clay
platelet (effective nanofiller) [55], effective cluster material [56], etc. In this section, the computational
finite element of composites, developed in Sections 3 and 4, are applied to the analysis of the hybrid
and hierarchical composites.

5.1. Modellling of Hybrid Composites

While the effect of the hybrid structures of unidirectional composites on the stiffness and weight
is apparent, and can be well described by the rule-of-mixture (higher fraction of lightweight and stiff
fibers means a proportional increase of the composite stiffness and reduction of the weight), the effect
of the hybridization on the damage and fatigue resistance is more complex. For the analysis of
structure-strength/damage resistance relationships of hybrid composites, computational experiments
have been carried out with the use of the probabilistic fiber bundle model and micromechanical
multifiber FE unit cell models [33,57–59]. Figure 9a,b show examples of the unit cell FE models of
glass/fiber hybrid composites, with fiber misalignment. Figure 9c shows the simulated cracking
in fibers.

Further, the statistical model of composite cracking described in the previous section was applied
to the hybrid glass and hybrid composites. Figure 10 shows the critical stress (corresponding to the
load at which 50% of fibers fail), plotted versus the fraction of carbon fibers in hybrid glass/carbon
fiber composites [57], obtained using this model.

One can see that the strength of hybrid composite decreases when the fibers are mixed,
reaches lowest point at the fraction of carbon fibers 40–50% (of all fibers) and then begins to grow
sharply, to achieve the highest point for the pure carbon composite. Similar results were obtained
experimentally [60].
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5.2. Nanoengineered Composites

It has been demonstrated [61–67] that nanoparticles distributed in the polymer matrix or at the
fiber/matrix interface of the composites should enhance the compressive strength and fatigue lifetime
of the composites. In order to analyze the effect of the secondary nanoparticles on the mechanical
behavior and strength of composites, computational multiscale models were developed, which include
the fiber/matrix interaction at the higher-scale level (microlevel) and nanoparticles/epoxy matrix
interaction at the nanolevel.

Figure 11 shows a schema of a unit cell model. In this model, polymer composites with glass
fibers (GFRC), carbon fibers (CFRC), and hybrid fibers (HC) are reinforced with carbon nanotubes
(CNT). The aspect ratio of CNTs was 1000, and they were distributed in the sizing of the fibers.
The volume fraction of the CNT reinforcement is 0.46%. As a result of simulations, it was shown that
the CNT enhances the fatigue performance (maximum stress and lifetime) in all considered composites.
For the very low cycle loading, the CNT reinforcement leads to 25–43% increase in the stress while,
for the millions of cycles, the CNT effect increases the stress by 64–120%. Similarly, the nanoclay
particles located in the matrix or in the fiber sizing, ensure drastically enhanced fatigue lifetimes of
composites [62].

Figure 12a shows a schema of the model of the hierarchical fiber composite with nanoclay
reinforcements (a) and simulated crack paths in in-between platelets observed in the simulations
(aligned and randomly-oriented platelets, b and c) [66]. The composites with nanoclay reinforcement
achieve the same fatigue life (taken exemplarily at 5.68 × 107 cycles) as neat composites, while subject
to 2–3.5 times higher loadings. Composites with the nanoplatelets localized in the fiber/matrix
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interface layer (fiber sizing) ensure much higher fatigue lifetimes than those with the nanoplatelets in
the matrix: 43–49% higher applied stress corresponding to the selected lifetime of 5.68 × 107 cycles.

In further simulations, composites with nanoclay secondary reinforcements were analyzed [62].
Figure 12b,c show the simulated crack path in the interface area of the composite with aligned and
randomly oriented nanoclay particles. As a result it was shown that the nanoclay (NC) secondary
reinforcement allows to increase fatigue resistance drastically. Composites with NC achieve the same
fatigue life (taken exemplarily at 5.68 × 107 cycles) as neat composites, while subject to 2–3.5 times
higher loadings. Composites with NC in fiber sizing, with exfoliated NC, and aligned NC ensure
much higher fatigue lifetimes than with NC in the matrix, with clustered or randomly-oriented
NC (respectively).
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6. Conclusions

An overview of computational studies of composites for wind energy applications carried over
from recent years in the Composite and Materials Mechanics Section, DTU Wind, is presented. In this
review, the computational models of the deformation and damage evolution of various composites
are presented. In the numerical experiments, damage mechanisms were analyzed. The competition
between matrix cracking and interface debonding was observed in numerical experiments. In the area,
where the interface is damaged, no matrix cracks form, and vice versa, in the area where the long matrix
cracks are formed, the fiber cracking does not lead to interface damage. One can conclude that local
weak places in composite interfaces can be rather beneficial for the composite strength and toughness:
they can prevent matrix failure (by channeling the fracture energy into interface defects), and even
delay the fiber failure. Practically, this means that a heterogeneous interface (interface with both weak
and strong regions) can prevent matrix failure and, therefore, ensure the integrity of the material.
In the statistical model of composite compression, it was observed that the clustered, bundled fiber
arrangement leads to the quicker failure of the composite due to the effect of the load redistribution.
While there might be no difference between the clustered and homogeneous fiber arrangement if the
material is not pre-damaged, the clustered arrangement leads to the much quicker failure of fibers at
the second loading (or if the material is pre-damaged).

Compression strength of a wrinkled laminate was found to be strongly dependent on the
maximum initial lamina misalignment angle and the plasticity of the matrix material. Finally, it is
found that, in hybrid wrinkles, an increasing amount of carbon increases the compression strength.
The undisturbed laminate next to the wrinkle along the length reduces the kinking strength, which
afterwards increases when undisturbed laminate are on top of that added below and/or above
the waviness.

Further, the effect of hybrid and nanoengineered structures on the performance of the composite
was studied in computational experiments. It was shown that the strength of the hybrid composite
decreases when the carbon fibers replace glass fibers, reaching the lowest point at a fraction of carbon
fibers of 40–50% (of all fibers) and then begins to grow sharply, to achieve the highest point for pure
carbon composite. Further, it was observed that the nanoscale reinforcement enhances the fatigue
performance (maximum stress and lifetime) in all considered composites. For very low cycle loading,
the nanoreinforcement leads to a 25–43% increase in the stress while, for the millions of cycles, the CNT
effect increases the stress by 64–120%. Similarly, the nanoclay particles located in the matrix or in the
fiber sizing ensure drastically enhanced fatigue lifetimes of the composites.
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