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Abstract: Knowledge of statistical characteristics of mechanical properties is very important
for the practical application of structural materials. Unfortunately, the scatter characteristics of
magnesium alloys for mechanical performance remain poorly understood until now. In this study,
the mechanical reliability of magnesium alloys is systematically estimated using Weibull statistical
analysis. Interestingly, the Weibull modulus, m, of strength for magnesium alloys is as high as
that for aluminum and steels, confirming the very high reliability of magnesium alloys. The high
predictability in the tensile strength of magnesium alloys represents the capability of preventing
catastrophic premature failure during service, which is essential for safety and reliability assessment.
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1. Introduction

Magnesium alloys are well known for their lightweight, high specific strength, high recycling
ability, and excellent damping capacity [1–4]. Therefore, the use of magnesium alloys has been
significantly increasing worldwide over the past years. Unfortunately, the macroscopic brittle fracture
of most magnesium alloys, through cleavage and quasi-cleavage fracture modes [5], may raise a concern
regarding the stability of characteristic strength, as extensively revealed in Mg-based glassy alloys [6].
Such a deleteriously flawed sensitivity behavior of magnesium alloys potentially presents a severe
problem for their application, which has unfortunately received no attention to date.

There are many approaches to quantify the effect of statistically distributed flaws or defects on
the mechanical properties of a brittle material. Among these approaches, Weibull statistical analysis
has been widely used to describe the reproducibility of fracture strength [7]. For example, numerous
Weibull models have been historically applied to rationalize the strength scatter in many ceramics
and brittle metals [8,9]. Nevertheless, extremely rare data are available on the Weibull statistical
distribution of strength for magnesium alloys. In this work, we employ Weibull statistical analysis to
evaluate the strength reliability of magnesium alloys; the statistical distribution of strength is found to
be highly correlated with the material’s specific microstructural state or feature. Our finding provides
insight into understanding and stabilizing magnesium alloys by tailoring processing protocols.

2. Experimental section

Mg-6Zn-1Mn (ZM61) was prepared by vacuum induction melting under an Ar atmosphere using
commercial high purity Mg (99.9%), Zn (99.9%) and Mg-4%Mn master alloys (ZG-0.01, Jinzhou, China).
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The alloy rods (80 mm in diameter and 250 mm in height) were machined and homogenized at 330 ◦C
for 24 h. Then, they were immediately inserted into the extrusion chamber (350 ◦C) and extruded
to bars with a diameter of 16 mm under an extrusion ratio of 25. Subsequently, the extruded bars
were solution treated at 420 ◦C for 2 h followed by water quenching and then artificially aged at
180 ◦C for 16 h. The detailed processing of the extruded and aged ZM61 magnesium alloys can be
seen elsewhere [10]. The microstructure of the extruded and aged alloys was examined by scanning
electron microscopy (SEM, TESCAN VEGA 3 LMH, Brno, Czech Republic) and a transmission electron
microscope (TEM, ZEISS LIBRA 200FE, Heidenheim, Germany), respectively. The uniaxial tensile
characteristics of dogbone-like specimens (50 mm in gauge length and 5 mm in gauge diameter) were
determined on a universal testing machine with a strain rate of 2 mm/min. The fracture morphologies
were also examined with an SEM (JEOL JSM-7800F, Tokyo, Japan).

3. Results and Discussion

Twenty samples were tested for each alloy, and all the stress-strain curves are shown in Figure 1a,b
for extruded and aged ZM61 magnesium alloys, respectively. The apparent strength for each
experiment was surprisingly uniform, especially for the extruded alloys. The 0.2% offset yield strength
(σy) for the extruded alloy ranged from 206 to 212 MPa, with a variation of only ±0.7% around its mean
value. The ultimate tensile strength (σu) and fracture strength (σf) ranged from about 300 to 307 MPa
and 280 to 291 MPa, with a variation of ±0.5% and ±1.3% around their corresponding mean values,
respectively. The statistical result for the extruded alloys demonstrated a very narrow distribution
range for the σy, σu and σf. For the aged alloys, the σy ranged from 307 to 320 MPa, with a variation
of ±1.3% around its average value. The σu and σf ranged from about 345 to 355 MPa and 302 to
333 MPa, with a variation of ±0.9% and ±3% around their corresponding average values, respectively.
Interestingly, the strength of all the magnesium alloys matched the statistical trend and displayed
a narrow distribution, which was evidently very different from common brittle materials, the tensile
strength of which is usually highly scattered [8].
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Figure 1. Tensile stress-strain curves of the ZM61 magnesium alloys: (a) extruded and (b) aged.
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Weibull statistics is a well-established characterization tool in the field of fracture strength of
brittle materials. Weibull related the cumulative failure probability Pf of volume V of a material under
a uniaxial tensile stress σ using the following relationship [8]:

Pf = 1 − exp
[
−V

(
σ − σu

σ0

)m]
(1)

where σ0 is a scaling parameter, m is the Weibull modulus and V is a normalized volume of the tested
sample. The σu is the location parameter, denoting the stress at which there is a zero failure probability;
it is usually taken as zero for the safest assumption [11]. For N nominally identical specimens ranked
from the weakest (i = 1) to the strongest (i = N), the failure probability Pf of the ith one is calculated
using the following equation [12]:

Pf ,i =
ni − 0.5

N
(2)

where ni is the ith sample (ni = 1, . . . , N experiments) and N is the total number of samples tested.
These results were then plotted in the usual double logarithmic form of the Weibull expression.
Therefore, the parameters of the Weibull distribution could be obtained by linearizing Equation (1).

ln

[
ln

(
1

1 − Pf

)]
= ln V + m ln σ − m ln σ0 (3)

By fitting a straight line to ln
[
ln
(

1/1 − Pf

)]
as a function of ln σ, the Weibull modulus m was

simply the slope, and the scaling parameter σ0 could be determined from the intercept. The coefficient
of determination R2 has been commonly used as a measure of the goodness of fit. The higher
the value of R2, the more likely the data are to follow the distribution being tested. Recently,
Tiryakioglu et al. [13] ran Monte Carlo simulations to determine the critical points of R2 and proposed
that the following formula can be used to evaluate the goodness-of-fit tests for sample sizes between 5
and 100:

R2
0.05 = 1.0637 − 0.4174

n0.3 (4)

If the calculated R2 is higher than R2
0.05, then it can be concluded that the data indeed came from

a Weibull distribution. The Weibull fit was acceptable. On the contrary, the two-parameter Weibull
analysis was not valid if R2 < R2

0.05.
Figure 2 shows the Weibull plots in the form suggested by Equation (3) for the extruded (a) and

aged (b) magnesium alloys. From Figure 2a, a very good linear relationship of the σy, σu and σf was
observed. The coefficients of determination, R2, for the σy, σu and σf were 0.925, 0.951 and 0.901,
respectively, which were all higher than the value of R2

0.05 (0.894), suggesting that the experimental
data could be reasonably described by the Weibull distribution equation. Linear least squares fitting of
Equation (3) was performed for these data given the Weibull modulus m of the σy, σu and σf as 166.3,
261.4 and 92.6 for the extruded alloys, respectively. Surprisingly, the failure Weibull modulus m, which
ranged from 90 to 100, was as high as the ductile aluminum and steel [8]. Since the m value reflected
the degree of variation in the strength of the samples tested, a higher m value implied a narrower
distribution of fracture stresses and a higher reliability. Typical values of the Weibull modulus m for
some materials including Mg-based bulk metallic glasses [14] were summarized and are listed in
Table 1. Although magnesium alloys are often regarded as macroscopically brittle materials, it was
interesting to observe a very high reliability from the rather uniform strength data and large Weibull
modulus. Furthermore, as shown in Figure 2b, the Weibull plots of the σy, σu and σf for the aged alloys
displayed a relatively poor linear relationship, especially for σf. The coefficients of determination, R2,
from the linear least squares fitting method were 0.838, 0.883, 0.677 for the σy, σu and σf, respectively.
The R2 was much lower than the value of R2

0.05 (0.894), implying that the experimental data for aged
alloys were not acceptable based on the two-parameter Weibull distribution [15]. We also noticed
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significant deviation of some points from the fitting line at high values of ln(σf). This was very
different from the previous report where the assumption of the threshold was zero, which was no
longer appropriate for the two-parameter distribution. This is still an open question and implies that
the Weibull analysis may be upgraded to a three-parameter version for fitting. When considering
the location parameter σu, the three-parameter Weibull model has also been suggested as a more
interpretable and accurate reliability assessment [16].
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Figure 2. Weibull plot of tensile strength of the ZM61 magnesium alloys: (a) extruded and (b) aged.

Table 1. Typical values of the Weibull modulus m for some materials.

Material m Ref.

Traditional Ceramics:
Brick, Pottery, Chalk <3 [8]

Engineered Ceramics:
SiC, Al2O3, Si3N4

5–10 [8]

Metals:
Aluminum, Steel 90–100 [8]

Extruded magnesium alloy 92.6 This work

Mg-based glassy alloy 5–41 [6,14]

The tensile failure strength σf was very sensitive to interior flaws and cracks. For the extruded
magnesium alloys, flaws such as shrinkage porosity, oxidation slags and cracks in the as-cast stage
were basically eliminated during the hot extrusion [17]. Figure 3a shows the backscattered electron
imaging in the SEM of the extruded alloy; after a complete solid solution heat treatment, only a few of
the α-Mn phases were precipitated for the extruded alloy, which could be further confirmed by the
bright field mode of the TEM as shown in the inset. Due to the small amount of precipitation with
sparse distribution, it has little effect on the variation of mechanical properties. After the hot extrusion
process, the microstructure of the alloy shows a relatively uniform and fine structure. Therefore,
a uniform failure strength and large Weibull moduli m were attained. However, for the aged alloy as
shown in Figure 3b, a large amount of precipitation with different morphologies, including rod MgZn2

Laves phase (β’1) and plate MgZn2 Laves phase (β’2), was observed. It has been demonstrated that the
main strengthening phase in the current Mg alloy was the β’1 phase [18]. However, the very different
diameter rod from ~12 nm to ~75 nm of the β’1 phase may be one of the negative influences on the
variation of mechanical strength. In addition, the coarsening of precipitated phases was observed after
ageing, which may increase the tendency of stress concentration on the grain boundaries and phase
boundaries. This could possibly increase the probability of initiation and propagation of crack and
flaws [19,20] and result in a relatively variable failure strength.
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These flaws could be further interpreted by the fracture morphologies of the extruded (a) and aged
(b) magnesium alloys as shown in Figure 4, which displayed ductile tearing fracture characteristics
and typical cleavage fracture features, respectively. The embedded Mn-rich particles in the dimples
appeared on the fracture surface as shown in the inset, implying that the extruded alloy did not have
any macro-inclusions. In contrast, EDS analysis of the inclusion-initiated fracture in the aged alloy with
the lowest σf revealed some impurities, such as Fe and Si. It was noted that such defects were usually
located at or near the specimen surface, which likely yielded a highly severe stress concentration.
These macro-inclusions were also responsible for the relatively large variation of the σf for aged Mg
alloys. These findings are consistent with the notion that magnesium alloys are capable of large
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ductility which reduces their flaw sensitivity, as indicated by the strain-to-failure ε (%) that decreased
from ~20% to ~10% for the extruded and aged magnesium alloys, respectively.
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Furthermore, the varieties of mechanical properties for magnesium alloys may be involved in
the solution treatment and artificial aging treatment. These flaws in magnesium alloys were generally
micron sized. Therefore, the microhardness could be further explained by the degree of flaws in
magnesium alloys under different processing conditions. In order to ensure the reliability of the
statistical results, we measured twenty indentations on each sample in well-defined regular arrays,
resulting in a total of four hundred raw data points for each alloy and fully reflecting the flaw
distribution in extruded and aged magnesium alloys. The experimental data could also be reasonably
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described by the Weibull distribution equation as shown in Figure 5. It can be seen that the Weibull
modulus m of microhardness for the extruded magnesium alloys was 33.7, which was much higher
than that of the aged ones. This implied that the micro-flaws in extruded alloys had rather uniform
sizes. Regardless of the flaw size, the narrow distribution in the measured microhardness was a result
of a narrow distribution of the flaw size, large or small, further explaining why the extruded alloys had
such a high uniformity, as indicated by the uniformity of the apparent yield strength, ultimate tensile
strength and fracture strength values measured for a large number of extruded magnesium alloys.
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magnesium alloys have a very high reliability with a Weibull modulus m = 92.6 for fracture strength.
Such a high Weibull modulus is comparable to many types of aluminum and steel. Compared to
the extruded magnesium alloys, the aged alloys show a higher flaw sensitivity, which originates
from the embrittlement effect by the distinct microstructural features whereby interconnected coarse
Laves phase often precipitates within the alloy matrix. We therefore believe that these findings
have very important implications for the safety and reliability assessment of magnesium alloys for
lightweight applications.

Acknowledgments: This work was financially supported by the National Natural Science Foundation of
China (No. 51671162, 51531002 and 51474043), the Fundamental Research Funds for the Central Universities
(No. XDJK2017B054 and XDJK2017D012), Chongqing Research Program of Basic Research and Frontier
Technology (No. cstc2015jcyjBX0107), and International Science & Technology Cooperation Program of China
(No. 2015DFA51330).

Author Contributions: Shengfeng Guo designed the study; Hongju Zhang performed the main experiments;
Shengfeng Guo, Ruoyu Liu, Xianquan Jiang, Dingfei Zhang and Jingfeng Wang performed the data analysis;
Shengfeng Guo wrote the paper with support from Fusheng Pan. All authors contributed to the general discussion.

Conflicts of Interest: The authors declare that they have no conflict of interest.

References

1. Kainer, K.U. Magnesium—Alloys and Technologies; Wiley-VCH: Weinheim, Germany, 2003.
2. Luo, A.A. Magnesium casting technology for structural applications. J. Magnes. Alloys 2013, 1, 2–22.

[CrossRef]
3. Xu, W.Q.; Birbilis, N.; Sha, G.; Wang, Y.; Daniels, J.E.; Xiao, Y.; Ferry, M. A high-specific-strength and

corrosion-resistant magnesium alloy. Nat. Mater. 2015, 14, 1229–1235. [CrossRef] [PubMed]
4. Qin, D.Z.; Wang, J.F.; Chen, Y.L.; Lu, R.P.; Pan, F.S. Effect of long period stacking ordered structure on the

damping capacities of Mg-Ni-Y alloys. Mater. Sci. Eng. A 2015, 624, 9–13. [CrossRef]

http://dx.doi.org/10.1016/j.jma.2013.02.002
http://dx.doi.org/10.1038/nmat4435
http://www.ncbi.nlm.nih.gov/pubmed/26480229
http://dx.doi.org/10.1016/j.msea.2014.11.011


Materials 2017, 10, 1271 8 of 8

5. Lu, Y.Z.; Wang, Q.D.; Ding, W.J.; Zeng, X.Q.; Zhu, Y.P. Fracture behavior of AZ91 magnesium alloy. Mater. Lett.
2000, 44, 265–268. [CrossRef]

6. Zberg, B.; Arata, E.R.; Uggowitzer, P.J.; Loffler, J. Tensile properties of glassy MgZnCa wires and reliability
analysis using Weibull statistics. Acta Mater. 2009, 57, 3223–3231. [CrossRef]

7. Weibull, W. A Statistical Distribution Function of Wide Applicability. J. Appl. Mech. 1951, 18, 293–297.
8. Meyers, M.A.; Chawla, K.K. Mechanical Behavior of Materials; Cambridge University Press: Cambridge,

UK, 2009.
9. Wu, W.F.; Li, Y.; Schuh, C.A. Strength, plasticity and brittleness of bulk metallic glasses under compression:

Statistical and geometric effects. Philos. Mag. 2008, 88, 71–89. [CrossRef]
10. Yu, D.L.; Zhang, D.F.; Sun, J.; Luo, Y.X.; Xu, J.Y.; Zhang, H.J.; Pan, F.S. High cycle fatigue behavior of extruded

and double-aged Mg-6Zn-1Mn alloy. Mater. Sci. Eng. A 2016, 662, 1–8. [CrossRef]
11. Sullivan, J.D.; Lauzon, P.H. Experimental probability estimators for Weibull plots. J. Mater. Sci. Lett. 1986, 5,

1245–1247. [CrossRef]
12. Yao, J.H.; Wang, J.Q.; Lu, L.; Li, Y. High tensile strength reliability in a bulk metallic glass. Appl. Phys. Lett.

2008, 92, 041905. [CrossRef]
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