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Abstract: Producing predictions of the probabilistic risks of operating materials for given lengths
of time at stated operating conditions requires the assimilation of existing deterministic creep life
prediction models (that only predict the average failure time) with statistical models that capture
the random component of creep. To date, these approaches have rarely been combined to achieve
this objective. The first half of this paper therefore provides a summary review of some statistical
models to help bridge the gap between these two approaches. The second half of the paper illustrates
one possible assimilation using 1Cr1Mo-0.25V steel. The Wilshire equation for creep life prediction
is integrated into a discrete hazard based statistical model—the former being chosen because of its
novelty and proven capability in accurately predicting average failure times and the latter being
chosen because of its flexibility in modelling the failure time distribution. Using this model it was
found that, for example, if this material had been in operation for around 15 years at 823 K and
130 MPa, the chances of failure in the next year is around 35%. However, if this material had been in
operation for around 25 years, the chance of failure in the next year rises dramatically to around 80%.

Keywords: creep; Wilshire equation; deterministic and random components; parametric and
non-parametric statistical models; discrete hazard based models

1. Introduction

The prediction of long-term creep properties from short timescale experiments is rated as the
most important challenge to the UK Energy Sector in a recent UK Energy Materials Review [1]. Creep
strain (ε) is a function not only of stress (τ) and absolute temperature (T), but also of time (t)

ε = f1(τ, T, t) (1a)

After an initial strain on loading, a decaying creep rate (
.
ε) during the primary stage of creep is

followed by an accelerating strain during the tertiary stage. A minimum creep rate (
.
εm) occurs at the

boundary of these two stages. As such, Equation (1a) is often represented in differential form

.
ε = f2(τ, T, t) (1b)

When it comes to extrapolating from short term accelerated test data, three very broad approaches
can be identified. Whole creep curve methods work by relating the whole creep curve to the test
conditions under which that creep curve was obtained. A single creep curve at steady uniaxial stress τ

and absolute temperature T can be modelled using a general functional form

ε = η
(
t, Ψ1, Ψ2, . . . . , Ψj, . . . . , Ψq

)
(2a)
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where η is some non-linear function and the Ψj are numerical parameters. At any one test condition,
the Ψj parameters are constant, but they do vary systematically with the test conditions. It is this fact
that enables creep curve predictions to be made

Ψj = gj(τ, T, bj,1, bj,2, . . . , bj,k, . . . ., bj,p) (2b)

where gj are non-linear functions, and bj,k are additional numerical parameters that can be estimated
using a suitable estimation technique. However, the form of the η and gj functions are not known and
consequently the literature contains many representations of these including, for example, the Theta
methodology proposed by Evans and Wilshire [2]

ε = Ψ1(1− e−Ψ2t) + Ψ3(e
Ψ4t − 1) (3a)

with
Ψj = bj,1, 1 + bj,2τ + bj,3T + bj,4τT (3b)

Whilst Evans [3] derived Equation (3a) from creep deformation mechanism theory, the all
important extrapolation function given by Equation (3b) is mainly empirical in nature. There are many
other approaches in the literature including those by McVetty [4], Garofalo [5], Ion et al. [6], Prager [7],
Othman and Hayhurst [8], Kachanov [9] and Rabotnov [10].

Secondly, parametric techniques work by relating a measured point on the creep curve to the test
conditions under which that measurement was made. This point is typically the minimum creep rate
or the time to rupture. Around the minimum creep rate there remains a considerable period of time
where

.
ε remains more or less constant, so that Equation (1b) reduces to

.
εm = f3(τ, T) (4a)

with, following Monkman and Grant [11],

1/t ∝
.
εm (4b)

where here t represent the time at which failure occur. Because the functional form of f3 is not known
the literature again contains many different representations of Equations (4a) and (4b). For example,
Dorn [12] and Larson and Miller [13], both assumed that at a constant stress

.
εm = C0 exp

[
− Qc

R∗T

]
(5a)

where Qc is the activation energy in J/mol. These two approaches then diverge with the incorporation
of stress with Dorn suggesting the parameter C0 varies with stress, whilst the Larson and Miller model
has Qc varying with stress—but in both cases the form of the stress function was empirically specified
(typically involving the use of polynomials in stress or the log of stress).

The literature contains many other variations including Manson and Haferd [14], Manson and
Muraldihan [15], Manson and Brown [16] and Trunin et al. [17]. Unfortunately, all these parametric
models suffer from parameter instability with respect to stress and temperature making reliable long
term life predictions from accelerated short term testing impossible—as empirically illustrated by
Abdallah et al. [18]. These empirical models are now quite old and, despite their known short comings,
are still extensively used for safe life estimation. The hyperbolic tangent method [19] and the Wilshire
Equation [20] can be seen as the most recent types of parametric model, with the later having the form

ln[t] = b0 + b1τ∗ + Qc
1000
RT

(5b)



Materials 2017, 10, 1190 3 of 30

where R is the universal gas constant, τ* = ln(−ln(τ/τTS)) with τTS being the tensile strength. Unlike
the above models, a raft of recent publications [21–26] on a wide range of high temperature materials
have demonstrated the parameters of this model (b0, b1, and Qc) are stable and so reliable long term
predictions have been made from this model using short term data of no more than 5000 h duration.

Finally, there are computational/numerical approaches that often incorporate detailed
deformation mechanism into finite element code to obtain creep property predictions. Many of these
numerical models are based on remaining life assessment with abridged accelerated testing. In some
of these approaches, for example [27,28], uniaxial test specimens are cut from removed components
that have been in service for over a long time (typically over 100,000 h) and re-tested under laboratory
conditions for short times until failure occurs by accelerating the temperatures (but using the in service
stress). Such testing yields the remaining life or useable residual life (around 60% of remaining life).
The above parametric models are then used to predict/extrapolate these residual lives to operating
temperatures. Often numerical models are used to extrapolate such abridged short-term testing. An
alternative to this destructive approach is the non-destructive disc test, where small discs are taken
from in service components without destroying their integrity. Again numerical models can be built
for this disc test, e.g., Evans [29] or parametric procedures can be used for extrapolative purposes.

What all the above studies have in common however is that they are all deterministic in nature.
As the level of stress increases the time to failure diminishes and the primary component of the creep
curve becomes less pronounced. These variations in creep properties are governed by (as yet not
fully understood) physical laws that can be used to determine creep properties at any test condition.
These physical laws are embedded into the above mechanistic models that can then be used to explain
variations in creep properties as a function of test conditions alone.

However, creep is not just a deterministic process that is predetermined by physical laws. It is
also a random process. If the time function, f1, could be quantified, it could then be used to predict
the strain at any time. Unfortunately, the nature of creep is such that this function could not then
be used to predict the strain for another specimen tested under exactly the same conditions. This
random component of creep is in turn very large. For example, in the NIMS [30] 1Cr-1Mo-0.25V steel
database used in this paper, the time to failure at 773 K and 373 MPa varies between the limits of
125 h and 1360 h depending on the batch. A lot of the random variation seen in creep databases of
this nature are down to variations in chemical composition and heat treatments experienced by the
different batches of the test material. However, even when such factors are removed, failure times
are still highly stochastic in nature. This was illustrated by Evans [31], who tested 15 specimens of
Ti-6.2.4.6 at different temperatures and stresses. These test specimens were all cut from the same batch
and tested within the same laboratory on the same make of calibrated uniaxial test apparatus. The
results are reproduced in Figure 1 where it can be seen that the random variation is great enough to
encompass variations induced by changes in stress.

This random component of creep is not just important because it is large in size, but also because if
predictions are to be made for more than just the average time at failure, then this random component
must be modelled with the same degree of vigour as displayed by all the above deterministic models.
However, they are not. We can summarise the above as stating creep life has both a deterministic and
a random component

.
εm = f3(τ, T)ef4(u) (6)

where u is the random component and f4 is some function that describes how the random component
is distributed.

The first aim of this paper is to address this shortcoming by providing a detailed, although
by no means complete (as this is a very large subject area), review of statistical failure time models
that describe different ways that f4(u) can be specified, so as to provide materials scientists with a
framework for further developing their deterministic creep models, such as the Wilshire Equation,
so that they become cable of providing predictions that have levels of confidence attached to them.
It should be noted that these statistical models say nothing about the deterministic models reviewed
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above and do not imply that one model is any better at prediction than another. However, when
a model of the random component is combined with the above deterministic components, they
become more capable of predicting both the systematic variation with test conditions and the observed
random variation at each test condition. Without this, the deterministic models can do no more than
accurately predict the average safe life and not the safe life corresponding to say a 1% chance of failure.
This review is provided in Section 3 of this paper and where appropriate illustrated using data on
1Cr-1Mo-0.25V steel.
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Figure 1. Uniaxial creep curves at 773 K for Ti-6.2.4.6 (including the band of creep curves obtained at a
repeat stress of 580 MPa bounded by the maximum and minimum rupture times).

The second aim of this paper is to illustrate one of the many ways that these deterministic and
random component models can be combined. It is impossible in one paper to do an illustration for
all of the above deterministic models reviewed above, and so the Wilshire model is selected for this
purpose. This approach is selected because it has been shown to outperform the others in terms of
accurately predicting the average time to failure beyond 100,000 h using very short term data (less
than 5000 h). The Wilshire equation is combined with a discrete hazard based model for the random
component. A hazard based model was chosen because it offers extra flexibility on distributional shape
and form compared to other approaches as discussed in the review section below. Further, a discrete
version of the hazard function is used because it helps empirically quantify the form of the hazard
function (and because it has never been used within the context of creep failure before—whereas other
approaches have [32]).

The review and illustration of combining deterministic and random creep models illustrated
using the NIMS database on 1Cr-1Mo-0.25V steel [30]. This is carried out in Section 4, and conclusions
are then drawn in Section 5.

2. The Data

This present study features forged 1Cr-1Mo-0.25V steel for turbine rotors and shafts. For multiple
batches of this bainitic product, both the creep and creep fracture properties have been documented
comprehensively by the National Institute for Materials Science (NIMS), Japan [30]. NIMS creep
data sheet No. 9B includes information on nine batches of as tempered 1Cr-1Mo-0.25V steel. Each
batch of material had both a different chemical composition and a different thermal and processing
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history—details of which can be found in creep data sheet No. 9B. Specimens for the tensile and creep
rupture tests were taken radially from the ring shaped samples which were removed from the turbine
rotors. Each test specimen had a diameter of 10 mm with a gauge length of 50 mm. These specimens
were tested at constant load over a wide range of conditions: 47–333 MPa and 723–923 K. In addition
to failure time (t) measurements, values of the 0.2% proof stress (τY) and the ultimate tensile strength
(τTS) determined from high strain rate (~10−3 s−1) tensile tests carried out at the creep temperatures
for each batch of steel investigated were also reported.

The review section below (Section 3) is illustrated using all batches of data, whilst the discrete
hazard based model outlined in Section 4 is illustrated using only a single batch of materials from
this database—VaA.

3. Illustrated Review of Approaches to Modelling the Stochastic Nature of Creep Failure

3.1. A Statistical Description of Continuous Failure at Fixed Test Conditions

Due to batch to batch variations in chemistry and heat treatment and within batch variations in
microstructure, creep failure times for a high temperature material (or indeed any given material), even
under fixed test conditions, are stochastic in nature. Therefor such failure times need to be described
through a random variable T. In reality, T can take on a large and continuous number of different
values at a given test condition, t1, t2, . . . , tn, with 0 ≤ t1 ≤ t2 ≤ . . . ≤ tn. As such it cannot be known
with certainty when failure will occur and so failure must be expressed using the survivor function
which gives the probability of surviving beyond a certain length of time, S(t)

Pr(T > t) = S(t) (7a)

The probability of failing at or before a given length of time is then given by F(t) = 1 − S(t).
The probability of failure in a very small increment of time, ∆t, is then f(t) = ∆F(t)/∆t. F(t) is often
referred to as the cumulative distribution function (cdf) and its derivative, f(t), the probability density
function (pdf).

The probability of failure can also be expressed through the hazard function. This function gives
the rate of failure at time t, given the specimen survives up to time t

h(t) = lim
∆t→0

Pr(t ≤ T < t + ∆t|T ≥ t)
∆t

(7b)

where |T ≥ t reads given that T is greater than or equal to t. As such, the hazard rate is a conditional
probability of failure. A conditional probability is defined as P(A|B) = P(A and B)/P(B), where in
terms of the hazard rate event B is the probability of surviving a length of time t and so equals S(t).
Event A and B would then be the probability of failing in the small increment of time ∆t beyond t,
which is the pdf at time t. Thus

h(t) = lim
∆t→0

Pr(t ≤ T < t + ∆t|T ≥ t)
∆t

=
f(t)
S(t)

(7c)

If follows from these definitions that the hazard function can also be found from the survivor
function using

h(t) =
−dln[S(t)]

dt
(7d)

and the cumulative (or integral) hazard function is given by

Λ(t) =
∫ t

0
h(t)dt = − ln[S(t)] (7e)
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Approaches to estimating the survivor function generally fall under three headings: parametric,
non-parametric and semi-parametric. The assumption behind the parametric approach is that the form
of the survivor function can be captured through a small number of parameters. For example, if failure
times at a fixed test condition are normally distributed, then the survivor function is fully defined
through two parameters—the mean and the standard deviation. In contrast, the non-parametric
approach is model (parameter) free and as such makes no assumptions about how failure times are
distributed. The semi-parametric approach combines these two approaches, for example, by specifying
a base line hazard function at a particular test condition non-parametrically and then using a few
parameters to model how this baseline function changes with the test conditions.

3.1.1. Non-Parametric Estimation

The starting point for many non-parametric techniques is to partition time into j = 1 to k equal
intervals, with k being as large as practically possible. If n equals the number of specimens placed on
test at the same test condition and dj the number of specimens failing during the kth interval, then
Kaplan and Meier [33] proposed the following estimator of the survivor function (for uncensored data)
that has as its basis the binomial distribution

Ŝkm(ti) = 1− Number of failures up to time ti
n

= 1−

k
∑

j=1
dj

n
(8a)

where dj is the number of failures in time interval j. This estimator is also referred to as the product-limit
estimator as originally these authors justified this estimator based on its properties when k tended to
infinity or as the time interval tended to zero.

Nelson [34] and Aalen [35] proposed the following non-parametric estimator of the cumulative
hazard function

Λ̂(ti) =
k

∑
j=1

dj

rj
(8b)

where rj is the total number of specimens at risk (or not yet failed) just prior to time ti. The
Fleming-Harrington [36] estimator of the survivor function is, from Equations (7e) and (8b),

Ŝ f h(ti) = exp(−Λ̂(ti)) (8c)

The above are of course estimates (designated by the hat symbol) of the survivor function
computed in the above ways, but from a population or very large sample. The standard deviation of
the above estimators provides a way to quantify the possible size of the difference between the true or
population survivor function—S(t)—and that calculated from a small sample or a randomly selected
sub set of the population. The standard deviation of these estimators are in turn estimated by

σ̂S =
√
[1− Ŝkm(ti)]Ŝkm(ti)/n and σ̂Λ =

√√√√ k

∑
j=1

(rj − dj)dj

(rj − 1)2 (8d)

In large samples, these estimates are unbiased and the Nelson Aalen estimator is then also
approximately normally distributed.

As an illustration, Figure 2 compares these non-parametric estimators of the survivor function for
the 1Cr-1Mo-0.25V specimens in the NIMS dataset tested at 823 K and 294 MPa. At low times to failure
the above two estimators provide very similar values for the survivor function, but these estimators
start to diverge at around 250 h—with the Fleming-Harrington estimator exceeding the Kaplan-Meier
estimator. The Nelson-Aalen estimator of the cumulative hazard function is shown on the right hand
side vertical axis. The errors bars associated with the estimated cumulative hazard function, which are
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made equal to one standard deviation, are also shown. As can be seen, the standard error increases
quite dramatically with the time to failure, making the estimates at high survival probabilities quite
unreliable in a sample this small.
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3.1.2. Parametric Estimation

Any distribution defined for t ∈ (0, ∞) can be used to specify parametric survivor and hazard rate
functions. A good transformation for visualising many commonly used parametric distributions is the
log transformation of failure time, Y = ln(T), with y ∈ (−∞, ∞). Then, a whole family of distributions
for Y opens up by introducing location (via parameter µ) and scale (via parameter b) changes of
the form

ln(T) = Y = µ + bZ (9a)

where, like T and Y, Z is a random (but standardised) variable, z ∈ (−∞, ∞). To prevent the occurrence
of a degenerate distribution for large values of k1 and/or k2, the following re-parameterisation is used

ln(T) = Y = µ + (b/δ)W = µ + σW (9b)

where δ =
√
(k1k2/(k1 + k2), σ = b/δ and where W is therefore another standardised random variable

defined as W = δZ.
By specifying a very general distribution for Z, it is possible to identify many of the familiar

failure time distributions used in failure time analysis. Prentice [37] and Kalbfleisch and Prentice [38]
for example defined the probability density function for Z as

f(z) =
(k1/k2)

k1

{Γ(k1)Γ(k2)}/Γ(k1 + k2)

exp (k1z)

(1 + {k1/k2}ez)(k1+k2)
(9c)

where Z is said to be distributed as the logarithm of an F random variable with 2k1 and 2k2 degrees
of freedom. T is described as following a four parameter generalised F distribution, T ~GENF(µ, σ,
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k1, k2). Г(k) is the gamma function at k. The Appendix A to this paper also shows that the pdf of this
generalised gamma distribution can be re-parameterised as a function of time

f(t) =
(k1/k2)

k1λ β

{Γ(k1)Γ(k2)}/Γ(k1 + k2)

(λt)β k1−1(
1 + {k1/k2} (λt)k1β

)(k1+k2)
(9d)

where λ = exp(−µ) and β = 1/(δσ) = 1/b. Except, under some restricted values for k1 and k2, there is no
closed form expression for the survivor and hazard functions, but they are related to the incomplete beta
function and Appendix A shows how this can be computed using percentiles from the F distribution.
Equation (9d) is however degenerate when k1 = k2 = ∞ and then a different specification of the pdf
must be used (see Appendix A).

Particular values for these parameters define important sub families within the GENF family
and these sub families are summarised in Figure 3. It can be seen that some of these distributions
are commonly used within engineering. When k2 = ∞, failure times have a Generalised Gamma
distribution, T ~GENG(µ, σ, k1). There are then three well known two parameter distributions within
this Generalised Gamma family. T is gamma distributed, T ~GAM(µ, σ, k1), when k2 = ∞ and σ = 1.
T is log normally distributed, T ~LOGNOR(µ, σ), when k2 = k1 = ∞; and T is Weibull distributed, T
~WEIB(µ, σ), when k2 = ∞ and k1 = 1. In turn, the Weibull distribution collapses to the exponential
distribution when k2 = ∞, k1 = 1 and σ = 1. The family, T ~BURR(µ, σ, k1), is obtained when either
k1 = 1 (Burr III) or k2 = 1 (Burr XII). Then when k2 = k1 = 1, T has a log-logistic distribution, T
~LOGLOGIS(µ, σ), and when k2 = k1 = 1 = σ the log-logistic distribution collapses to the logistic
distribution, T ~LOGIS(µ). The form and characteristics of all these special cases are further described
in the Appendix A.
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Figure 3. Members of the Generalised F distribution.

Evans [32] has shown how the parameters of these distributions can be estimated using maximum
likelihood procedures. An alternative semi-parametric approach is to use the least-square procedure
in conjunction with a probability plot. The procedure here is to linearise a plot of t against S(t) by
finding suitable transformations of S(t) and possibly t. A least squares best fit line to the data on such a
plot then yields estimates of the parameters µ (given by the intercept of the best fit line) and σ (the
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slope of the best fit line). However, as seen in Figure 1, the non-parametric estimate Ŝkm(ti) is a step
function increasing by an amount 1/n at each recoded failure time. Plotting at the bottom (top) of the
steps would lead to the best fit line being above (below) the plotted points and so lead to a bias in the
resulting parameter estimates. A reasonable compromise plotting position is the mid-point of the jump

1
2
[Ŝkm(ti) + Ŝkm(ti+1)] =

i− 0.5
n

= p̂i (10a)

where i indexes the ordered failure times (i = 1 for the smallest failure time, i = 2 for the next smallest
all the way up to n for the largest failure time), with t1 being the smallest failure time up to tn the
largest failure time. From the Appendix A to this paper, the log of the pth percentile for t is given by

ln(tp) = µ + (b/δ){wk1,k2,p} = µ + σ{wk1,k2,p} (10b)

where wk1,k2,p is the pth quantile of an F distribution with (2k1, 2k2) degrees of freedom. Percentiles of
the F distribution are tabulated at the back of many well know engineering statistical text books (it
can also be found in Excel using the FINV function). Using p̂i in Equation (4a) for p in Equation (10b)
allows values for wk1,k2,p to be computed. Thus, when wk1,k2,p̂i

is plotted against the ordered values for
ln(t), ln(ti), the data points will reveal scatter around a linear line provided the data have a generalised
F distribution with given values for k1 and k2.

The generality of Equation (10b) is clearly seen by considering the special case of k2 = ∞ and
k1 = 1, which is the Weibull distribution, whose survivor function is shown in the Appendix A of this
paper to be

S(t) = exp
[
− (λt)β

]
(11a)

This can be linearised as

ln(t) = − ln[λ] +
1
β

ln{− ln[S(t)]} = µ + σ ln{− ln[S(t)]} (11b)

Then, replacing S(t) with the parametric estimator p̂i and t by its ordered value ti gives

ln(ti) = − ln[λ] +
1
β

ln{− ln[ p̂i]} = µ + σ ln{− ln[ p̂i]} (11c)

Equations (11c) and (10b) imply that wk1,k2,p collapses to ln{−ln[S(t)]} when k2 = ∞ and k1 = 1.
As an illustration, Figure 4a is a ln(ti)/ ln{− ln[ p̂i]} plot for the ten 1Cr-1Mo-0.25V specimens

tested at 823 K and 294 MPa. The best fit line obtained using the least squares technique is also shown.
The slope of this best fit line is σ = 0.2938, with intercept µ = 5.8385. This implies β = 1/σ = 3.4 and λ
= exp(−5.8385) = 0.0029. However, with a coefficient of determination (R2) of just 85%, the Weibull
distribution is unlikely to be the best description of this sample of failure times.

This R2 value was computed over the range p = 0 to 2 and q = 0 to 1 (both in increments of
0.1), where

p = 2(k1 + k2)
−1 and q = (1/k1 − 1/k2) (1/k1 + 1/k2)

−0.5 (11d)

As such, this range covered all the distributions shown in Figure 3. It was found that R2 was
maximised when p = q = 0, i.e., when k1 = k2 = ∞. It therefore appears that, within the generalised F
distribution family, it is the log normal distribution that best describes the specimens tested at 823 K
and 294 MPa. This is consistent with the findings by Evans [32].

Figure 4b plots ln(ti) against wk1,k2,p̂i
when k1 = k2 = ∞, so that the variable on the horizontal axis

is essentially a standard normal variate. The R2 value is 93% and so much higher than the Weibull
case. The slope of this best fit line is σ = 0.3788 and can be interpreted as an estimate of the standard
deviation in log times to failure. The intercept is µ = 5.6768 and can be interpreted as an estimate for
the mean of the log times to failure at the stated test conditions. The survivor function associated with
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his normal distribution (using these parameter estimate) is shown in Figure 2. It tends to be lie above
the parametric estimators at intermediate failure times, but below it as the higher failure times.Materials 2017, 10, 1190  10 of 30 
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Figure 4. Probability plots for 10 batches of 1Cr-1Mo-0.25V tested at 823 K and 294 MPa: (a) the Weibull
distribution; and (b) the log normal distribution.

3.2. A Statistical Description of Continuous Failure Times at Varying Test Conditions

There are a number of approaches to extending the above concepts to the case of varying
test conditions.

3.2.1. Accelerated Failure Time Models (AFT)

In this type of model, µ in Equation (9b) is made a function of the test conditions

ln[T] = Y = µ + σW = r(x) + σW ()

with
r(x) = r(x1 + x2 + . . . . + xm) (12a)

where x1 to xm are separate variables describing the test condition (for example, x1 may be stress, x2

temperature etc.) and r is an un-specified function (its form being best suggested by creep theory). x
is a 1 by m matrix containing the m test variables that describe the test conditions for each of the N
specimen placed on test. A commonly used specification for r(x) is

r(x) = b1x1 + b2x2 + . . . + bmxm (12b)

where b1 to bm are parameters that require estimation. As the name suggests, this approach has an
accelerated life interpretation. In this formulation, the error term σW is seen as a base or reference
distribution that applies when x1 = x2 = . . . = xm = 0. This base distribution can be translated to a time
scale by defining T0 = exp{σW}. The probability that a test specimen will survive time t, S0(t), is then

S0(t) = Pr{T0 > t} = Pr{W > ln(t)/σ}
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In this accelerated model, T is distributed as

T0exp(b1x1 + b2x2 + . . . + bmxm)

and so the test conditions act multiplicatively on survival times. Therefore, the probability that a test
specimen with test conditions x will be survive time t is

S(t,x) = Pr{T > t|x} = Pr{T0er(x) > t} = Pr{T0 > ter(x)} = S0(teb1x1+ . . . +bmxm) (12c)

Thus, the probability that a specimen with test conditions x will survive time t is the same as the
probability that a base test specimen will be alive at time texp{r(x)}. This can be interpreted as time
passing more rapidly by a factor exp{r(x)}—for example, twice as fast or half as fast. (A good analogy
here is the use by humans of pet years to describe the age of their pets in relation to their life). Consider
for example a multiplier of two for a specimen with test condition x. In terms of survival, this means
that the probability that the specimen would be alive at any given time is the same as the probability
that a base specimen would be alive at twice the length of time. In terms of risk, this model implies
that an engineering component is exposed at any service life to double the risk of a base component
that has been in service for twice as long.

The importance of Equation (12c) for this paper is that Evans [32] has shown, when using an AFT
model, that whilst a generalised F distribution explained the shape of the failure time distribution at
most test conditions for 1Cr-1Mo-0.25V steel, none of the distributions contained as special cases within
the generalised F distribution adequately explained the shape of the actual failure time distributions at
the remaining test conditions. This failure is explained by Equation (6c) as it shows that the survivor
function should have the same form at all test conditions (namely that form identified for specimens
tested at the base conditions)—unless time is stretched too much. However, in hazard based models,
to be discussed below, the survivor function at a particular test conditions can differ markedly from
that identified at the base test conditions and so offers extra flexibility over AFT models.

3.2.2. Proportional Odds Models

Another approach assumes that the effect of the test conditions is to increase or decrease the odds
of failure by a given duration by a proportionate amount:

1− S(t, x)
S(t, x)

=
1− S0(t, x)

S0(t, x)
eb1x1+.....+bmxm (13a)

where S0(t,x) is a baseline survivor function, taken from a suitable distribution, and exp{b1x1 + . . . +
bmxm} is a multiplier reflecting the proportionate increase in the odds associated with test condition
values x. Taking natural logs, gives

logit(1 − S(t,x)) = logit(1 − S0(t)) + b1x1 + . . . + bmxm (13b)

so the test conditions effects are linear in the logit scale. A somewhat more general version of the
proportional odds model is known as the relational logit model. The idea is to allow the log-odds of
failing in a given population to be a linear function of the log-odds in a reference or baseline population,
so that

logit(1 − S(t)) = α + θlogit(1 − S0(t)) (13c)

The proportional odds model is the special case where θ = 1 (and where the constant α depends
on the test conditions).
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As an example, consider a proportional odds model with a log-logistic baseline. The
corresponding survival function and the odds of failure are

S0(t) =
1

(λt)β
;

1− S0(t)
S0(t)

= (λt)β (13d)

Multiplying the odds by exp(b1x1 + . . . + bmxm) yields another log-logistic model. However,
this is not true of other distributions: if the baseline survivor function is Weibull then this baseline
multiplied by the odds of failing is not a Weibull survivor function.

3.2.3. Proportional Hazard Models (PH)

The PH model of Cox [39] has a baseline hazard function h0(t) that shows how the hazard rate
increases with time when this linear combination of test conditions equals unity

h(t|x) = h0(t) r(x) (14a)

The log hazard function is then additive

ln[h(t|x)] = ln[h0(t)] + ln[r(x)] (14b)

Obviously, the cumulative hazards would follow the same relationship, as can be seen by
integrating both sides of the previous equation. Exponentiating minus the integrated hazard, we find
the survivor functions to be

S(t,x) = S0(t)exp(b1x1+b2x2+ . . . +bmxm) (14c)

so the survivor function for test conditions x is the baseline survivor raised to a power that is dependent
upon the test condition. If a test specimen is exposed to twice the risk of a reference specimen at every
point in time, then the probability that the specimen will be alive at any given time is the square of the
probability that the reference or base specimen would be alive at the same time. In this PH model, a
simple relationship in terms of hazards translates into a more complex relationship in terms of survival
functions. Choosing a different parametric form for the baseline hazard, leads to a different model in
the proportional hazards family. Apart from when the baseline hazard function corresponds to that of
the Weibull hazard function, the hazard function at all other test conditions will be different in form
from the baseline hazard function.

A possible limitation of the PH model is seen in Equation (14a), which implies that hazard
functions associated with different test conditions are always constant multiples of one another—hence
the name “proportional” hazards. One way to relax this proportionality assumption is to allow the
test variables to interact with time or equivalently to allow b1, b2 etc. to be time dependent. Then,
Equation (12b) becomes

b1(tx1) + b2(tx2) + . . . + bp(txp) (15)

If, for example, the base line hazard function corresponds to the log normal distribution (so under
test conditions r(x) = 1 the underlying failure time distribution is log normal), the underlying failure
time distribution will not be log normal at any other test condition (i.e., when r(x) 6= 1). This is a major
advantage of building a failure time model around the hazard function rather than around the pdf
or f(t).

3.3. Modelling Discrete Failure Times at Varying Test Conditions

Another major issue with hazard based models is to do with the identification of the baseline
hazard function, ho(t). Without having many repeat tests carried out at a single test condition, it is
difficult to accurately identify its functional form. One solution to this problem is to create a discrete
failure time dataset from the original continuous one, i.e., split the continuous failure time data up into
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small but equally sized time spans. By doing so, it is possible to calculate a piecewise hazard function
for each interval of time, which over all time intervals allows the shape of the base line hazard function
to be identified. Springer and Willett [40] provide a good review of this approach. This is the approach
taken in Section 4.

3.3.1. Creating Discrete Data from Continuous Data

The first step required in building a discrete hazard function is to create the specimen-specimens
dataset from the continuous failure time database. Here time is partitioned into k equal intervals Ij
= (aj−1 to aj), j = 1 to k and with k being as large as practically possible and a being a point in time.
As an illustration of how this is done, consider batch VaA of the NIMS database, where i = 1, N = 43
specimens are tested, with each specimen receiving a different stress-temperature test combination.
If x1 in Equation (12a) represent stress, then in batch VaA of NIMS this was varied from 412 MPa
to 47 MPa and if x2 represents temperature this varied over the range 723 K to 948 K. The smallest
recorded failure time was 338,760 s and the largest was 407,844,720 s. Many creep prediction models
work with the log time to failure and so in natural log units these failure time limits corresponded to
12.73 and 19.83. The researcher then needs to decide upon how many discretised time intervals to work
with. For example, the NIMS data could discretised into 15 equal (log) time intervals, respectively
giving (log) time intervals of width 0.5. In this example, k = 15 and aj−1 − aj = 0.5 with a0 = 12.5 and ak
= 20). The first interval this NIMS dataset is therefore 12.5–13.0 and corresponds to j = 1, the second is
13.0–13.5 and corresponding to j = 2 all the way up to the interval 19.5–20 and corresponding to j = 15.
The specimens-specimen data are then generated by creating a binary variable, v, for each time interval.
Thus, the binary variable equals 0 in time interval It if the specimen does not fail in that interval and 1
if it does. This binary variable is created for each specimen in the test matrix.

Table 1 illustrates the start of the creation of this specimens-specimen format by considering just
the firsts two NIMS specimen in batch VaA using aj−1 − aj = 0.5. The first specimen was tested at x1 =
412 MPa and x2 = 723 K. It failed at 16.36 log seconds. The second was tested at x1 = 373 MPa and x2 =
723 K and it failed at 17.84 log seconds. Continuing the process shown in Table 2, creates M values for
v, where M = kN = 358 for this NIMS batch.

Table 1. Illustration of the creation of a specimens-specimen dataset.

Time Interval Ij =
aj−1 − aj (Log

Seconds)

Specimen
Number, i

Stress, x1
(MPa)

Temperature,
x2 (K)

vij

12.5–13.0 1 412 723 0
13.0–13.5 1 412 723 0
13.5–14.0 1 412 723 0
14.0–14.5 1 412 723 0
14.5–15.0 1 412 723 0
15.0–15.5 1 412 723 0
15.5–16.0 1 412 723 0
16.0–16.5 1 412 723 1
12.5–13.0 2 373 723 0
13.0–13.5 2 373 723 0
13.5–14.0 2 373 723 0
14.0–14.5 2 373 723 0
14.5–15.0 2 373 723 0
15.0– 15.5 2 373 723 0
15.5–16.0 2 373 723 0
16.0–16.5 2 373 723 0
16.5–17.0 2 373 723 0
17.0–17.5 2 373 723 0
17.5–18.0 2 373 723 1
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Table 2. Classification table for a discrete hazard model.

Predicted vij
Observed vij Total

Survived: vij = 0 Failed: vij = 1

Survived: vij = 0 m1 m3 M3
Failed: vij = 1 m2 m4 M4

Total M1 M2 M

3.3.2. Re-Specification of the Continuous Hazard Based Models

Equation (14b) can be re-specified as

ln[h(ij|x)] = ln[h 0(j)] + ln[ r(xi)] = b0,jDj + b1x1i + . . . + bmxmi (16a)

where ln[h 0(j)] = b0,j and Dj = 1 if vij = 1 in interval aj−1 − aj and Dj = 0 otherwise (j = 1, .., k).
In Equation (14b), x is a Nk by 2 matrix where each column contains the i different stress and

temperature combinations that each specimen was tested at and xi is the ith first row of the matrix x.
However, when the data are discretised in this way, h(ij|x) in Equation (14a) is not directly observable.
Instead, there is the binary variable vij that equals zero when the specimen is un-failed in time interval
aj−1 − aj or 1 if it fails in that time interval. Therefore, what is required is a non-linear function that
maps between vij = 0 and vij = 1 to give the hazard rate between 0 and 1 for each specimen in each
time interval. Two commonly used functions that achieve this are the logistic

vij = [h(ij|x)] = eb0,jDj+b1x1i+...+bmxmi

1 + eb0,jDj+b1x1i+...+bmxmi
(16b)

and the log-log
vij = [h(ij|x)] = 1− exp

{
−eb0,jDj+b1x1i+..+bmxmi

}
(16c)

functions. These are in turn special cases of a more general S shaped curve given by

vij = [h(ij|x)] = 1− {1 +
(

1/α) exp(b0,jDj + b1x1i + . . . + b2xmi)}
−α

(16d)

so Equation (16d) collapses to Equation (16b) when α = 1 and tends to Equation (16c) as α tends to ∞.
Plotting estimated values of b0,j against time allows the shape of the baseline hazard function to

be observed, which in turn could lead to a simplification of Equation (16d). For example, if such a plot
reveals a straight line, the k bo,jDj terms can be replaced by a + b0j

vij = [h(ij|x)] = 1− {1 + (1/α) exp(a + b0 j + b1x1i + . . . + b2xmi)}−α (16e)

Non-proportionality can then be accommodated by allowing the x variables to interact with time
t in the following way

vij = [h(ij|x)] = 1− {1 + (1/α) exp(a + b0 j + b1 jx1i + . . . .+b2 jxmi)}−α (16f)

3.3.3. Estimation

These discrete hazard models are essentially binary response regression models and so the
unknown parameters can be estimated by maximising the log likelihood function given by

ln{L} =
N

∑
i=1

k

∑
j=1

[
vij ln

(
h(ij|x)

1− h(ij|x)

)]
+

N

∑
i=1

k

∑
j=1

(
1− vij

)
(ln(1− h(ij|x) (17)
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where the binary response variable vij and h(t|x) is given by Equation (16d), Equation (16e) or Equation
(16f). Hence, Equation (17) will be maximised yielding some given set of values for the unknown
parameters on the right hand side of Equation (16d), Equation (16e) or Equation (16f). This function
can be maximised for various values of α, with the chosen value for α corresponding to the largest of
these maximised log likelihoods. Direct maximisation can be carried out using standard non-linear
optimisation algorithms [41], or alternatively Equation (17) can be maximised indirectly by using the
iteratively reweighted least squares algorithm of McCullagh and Nelder [42].

3.3.4. Assessing Model Adequacy

There are a number of ways to assess the adequacy of these discrete hazard based models. The
discrete hazard models given by either Equation (16d), Equation (16e) or Equation (16f) produce a
predicted hazard rate or probability of failure within the time intervals at−1 to at, rather than a specific
time at which failure occurs. This makes it a little more complicated to assess whether the model is
capable of accurately predicting the observed failure times. To obtain predicted times to failure (more
specifically the time interval in which failure is predicted to occur), a cut-off point c is needed, such
that if the predicted hazard rate exceeds c in time interval at−1 to at then failure is predicted to have
occurred in that time zone. Otherwise, the prediction is that the specimen will not fail in that time
interval. The usual value for c is 0.5, and once chosen a simple classification table, such as that in
Table 2, can be constructed.

In Table 2, there are M2 time intervals where a specimen failed. The model correctly predicted
correctly m4 of these, but incorrectly predicted m3 of these intervals, that is m3 specimens failed in times
zones different from those the model predicted them to fail in (where M2 = m3 + m4). Similarly, there
are M1 time zones where vij actually equalled zero (M1 time zones not containing failed specimens)
and of these, the model predicted correctly m1 of these time zones, but incorrectly predicted m2 of
these zones (i.e., there were m2 times zones where a specimen survived, but the model predicted
failures to occur). M can be found from summing either M1 and M2 or M3 and M4.

The models success rate in predicting the time zones where specimens will not fail is given by
m1/M1. This can be taken to be the probability of the model correctly detecting a false signal and is
called the models specificity. The models success rate in predicting the time zones where specimens
will fail is given by m4/M2. This can be taken to be the probability of the model correctly detecting a
true signal and is called the models sensitivity. The models over-all rate of correct classification is then
given by (m1 + m4)/M.

Given the way in which a specimens-specimen dataset is constructed, there are many more
values of vij = 0 compared to vij = 1, it is common to observe sensitivity values well below specificity
values. Thus a well specified model will have high values for both sensitivity and specificity. However,
the sensitivity and specificity depend in part on the chosen value for the cut-off point c and c = 0.5
may not be the optimal value as far as failure time prediction is concerned. One solution to this is
to construct a classification table for a range of cut-off points to see how the discrete hazard model
works as a classifier of when failure will occur. However, a neater way of doing this is given by
the area under the receiver operating characteristic (ROC) curve. The ROC emerges on a graph that
plots the sensitivity against (1-specificity) associated with all possible values for c (c = 0 to 1). The
resulting area under the ROC curve lies between zero and unity and measures the ability of the
hazard model to discriminate between time zones where a specimen will fail and zones where it will
not. Hosmer and Lemenshow [43] suggest the following benchmarks for this area: An ROC of 0.5
provides no discrimination implying the model performance no better than tossing a coin to decide if
a specimen fails in a given time interval. An ROC between 0.7 and 0.8 gives acceptable discrimination,
whilst a ROC between 0.8 and 0.9 gives excellent discrimination. Finally, a ROC above 0.9 gives
outstanding discrimination.
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One way to determine an optimal value for c is to choose that value that yields the best failure
time predictions. For example, if c inserted for v in say Equation (16e), then the variable t on the right
hand side of the equation becomes the predicted time zone at which a specimen fails, t̂

c = [h(ij|x)] = 1− {1 + (1/α) exp(a + b0 ĵ + b1x1i + . . . + b2xmi)}
−α

(18a)

This can be solved for ĵ

ĵ = {ln[(1− c)(−1/α) − 1] + ln(α)− (a + b1x1i + . . . + b2xmi)}/b0 (18b)

Thus, ĵ is a prediction of the time interval where a specimen fails. For example, if ĵ = 2.5, failure is
predicted to occur in the time interval I2 = a2 − a1, and the actual predicted time is then equal to (a2 +
a1)/2 (or another example, actual failure time = 0.25a2 + 0.75a1 if ĵ = 2.75). Notice the j = 2 time interval
is, from Table 1, the 12.5–13 logged seconds and its mid point is therefore 12.75 logged seconds (or
96 h).

A plot can then be made of actual failure time against this predicted time. If a best fit line is put
through the data on such a plot, the optimal value for c can be taken to be the one that produces a best
fit line closest to the 45◦ line on such a plot. As an alternative, c can be chosen to minimise the mean
squared error defined as

MSE =

[
j− ĵ

]2
N

(18c)

Using c = 0.5 in Equation (18b) can also be interpreted as yielding a median predicted time to
failure, whilst using c = 0.05 produces a time interval prediction such that there is only a 5% chance of
failure occurring in that or an early time interval. Likewise using c = 0.95 produces a time interval
prediction such that there is a 95% chance of failure occurring in that or an early time interval. These
then come together to define a 90% confidence interval for the time interval where failure will occur.

4. Application of Discrete Hazard Function to Batch VaA of 1Cr-1Mo-0.25V

4.1. Incorporating Wilshire Variables into a Discrete Hazard Model

The intention of this paper is to keep within the discrete hazard model as many features of the
Wilshire methodology as possible—purely to illustrate the assimilation of that creep model with this
statistical model for the random component of creep and not because one implies the other. In its
simplest form, the Wilshire Equation is given by Equation (5b). However, the hazard function describes
a failure rate or conditional probability of failure and not the failure time itself. There are a number
of ways to incorporate this Wilshire equation into a discrete hazard based model and the following
describes some of the possibilities. The starting point is to map Equation (5b) onto Equation (16d–f) by
replacing ln[t] = y with the log hazard rate ln[h(t|x)]. This gives, based on Equation (16d),

ln[h(ij|x)] = ln[h 0(j)] + ln[ r(xi)] = b0,jDj + b1x1i + b2x2i (19a)

where x1 = τ* and x2 = 1000/RT.
However, h(ij|x) is not observable. Instead there is the binary variable vij that equals zero when

the specimen is un-failed in time interval aj−1 − aj or 1 if it fails in that time interval. Therefore, what is
required is a non-linear function that maps between vij = 0 and vij = 1 to give the hazard rate between 0
and 1 for each specimen in each time interval. Section 3.3.2 outlined a general form of such a function
allowing Equation (19a) to be written as

vij = [h(ij|x)] = 1− {1 + (1/α) exp(b 0,jDj + b1x1i + b2x2i)}−α (19b)
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If the b0,j parameters trace out a linear time trend, then Equation (19b) can be written as

vij = [h(ij|x)] = 1− {1 + (1/α) exp(a + bo j + b1x1i + b2x2i)}−α (19c)

As will be seen below, this plausibility of such a simplification can be assessed by plotting out the
estimated b0j values. Non-proportionality can then be accommodated by allowing τ and 1000/RT to
interact with time in the following way

vij = [h(ij|x)] = 1− {1 + (1/α) exp(a + b0 j + b1 jx1i + b2 jx2i)}−α (19d)

In addition, it is known (see Wilshire [21] and Evans [32]) that for this material the relationship
between t and τ* changes at some critical value for τ* (i.e., b1 changes value at this point) and that the
activation energy changes at around 823 K (i.e., b2 changes value at this point). Thus, Equation (19b)
can be written as

vij = [h(ij|x)] = 1− {1 + (1/α) exp(b0,jDj + b1x1i + b2x2i + b3x1iB1i + b4x2iB2i}−α (19e)

where B1 = 0 when τ* ≤ τcrit and unity otherwise. Similarly, B2 = 0 when T ≤ 823 and unity otherwise.
The reason for doing this is that it allows stress and temperature to have a different effect on the hazard
rate either side if 823 K and τcrit. The explanation provided by Wilshire is that as τcrit is close in value
to the yield stress, dislocation movement is confined to grain boundaries below the yield stress so
that the activation energy falls below that for self diffusion through the crystal—so causing the value
for b2 to change. Thus, when τ* ≤ τcrit, B2 = 0, and so the effect of temperature on the hazard rate is
determined by the value for b2. However, when τ* > τcrit, B2 = 1, and so the effect of temperature on
the hazard rate is determined by the value for b2 + b4. The role of stress is also different either side of
τcrit (changing from b2 to b2 + b3).

Often, the values for b0,j reveal a linear trend or some well defined non-linear trend such as a
polynomial, exponential or power law trend. For example, if a linear trend is revealed by a plot of the
b0,t values against t, then Equation (19e) takes the form

vij = [h(ij|x)] = 1− {1 + (1/α) exp
(
a + b0 j + b1x1i + b2x2i + b3x1iB1i + b4x2iB2i}−α (19f)

In Equation (19e,f), the effect of changing test conditions is to shift in a parallel fashion the log
baseline hazard function, but it is also possible to allow the slope of the baseline hazard function to
depend on x1 and/or x2. For example, if b0 depends on x1 then Equation (19f) becomes

vij = [h(ij|x)] = 1− {1 + (1/α) exp
(
a + b0 j + b1x1i + b2x2i + b3x1iBi1 + b4x2iB2i + b5x1i j}−α (19g)

4.2. Results

4.2.1. Model Given by Equation (19e)

A specimens-specimen dataset was created for batch VaA using k = 15 and Ij = aj−1 − aj = 0.5
with a0 = 12.5 and ak = 20. This dataset consisted of M = 358 observations on v. Using these data, the
parameters of Equation (19e) were estimated for a range of values for α and τcrit. The values for α
and τcrit that produced the highest ROC were α = 1 and τcrit = 0.1. This α value suggests the logistic
discrete hazard model is preferable to the log-log discrete hazard model, whilst the τcrit value is a
little higher than that identified by Evans [32] and Wilshire [21] but is broadly similar in value. Table 3
shows the results of applying the McCullagh and Nelder algorithm to this data. The values for x1 and
x2 were normalised to be zero at 823 K and 294 MPa so that the resulting estimated value for b0,t give
the baseline log hazard rates that corresponds to this test condition.
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Table 3. Estimation of the parameters in Equation (19e).

Parameter Variable Estimate Student
t-Value

b0,1 ln[ho(j = 1)] for 12.5–13.0 −4.7526 −2.81 **
b0,2 ln[ho(j = 2)] for 13.0–13.5 −1.7111 −1.43
b0,3 ln[ho(j = 3)] for 13.5–14.0 −0.5019 −0.48
b0,4 ln[ho(j = 4)] for 14.0–14.5 −0.7838 −0.53
b0,5 ln[ho(j = 5)] for 14.5–15.0 1.9713 1.26
b0,6 ln[ho(j = 6)] for 15.0–15.5 3.4266 2.16 **
b0,7 ln[ho(j = 7)] for 15.5–16.0 6.7247 4.24 ***
b0,8 ln[ho(j = 8)] for 16.0–16.5 9.8840 4.81 ***
b0,9 ln[ho(j = 9)] for 16.5–17.0 9.9378 4.31 ***
b0,10 ln[ho(j = 10)] for 17.0–17.5 11.9647 4.85 ***
b0,11 ln[ho(j = 11)] for 17.5–18.0 14.2367 5.11 ***
b0,12 ln[ho(j = 12)] for 18.0–18.5 16.4289 5.27 ***
b0,13 ln[ho(j = 13)] for 18.5–19.0 18.3696 5.39 ***
b0,14 ln[ho(j = 14)] for 19.0–19.5 17.9018 5.04 ***
b0,15 ln[ho(j = 15)] for 19.5–20.0 19.2411 0.38
b1 x1 −28.554 −5.13 ***
b2 x2 −1363.8818 −5.62 ***
b3 x3 5.4672 2.37 **
b4 x4 642.0808 −4.43 ***

Parameters estimates using the iteratively reweighted least squares technique of McCullagh and Nelder [42]. Student
t-values test the null hypothesis that the true parameter values equal zero. ** identifies statistically significant
variables at the 5% significance level, and *** identifies statistically significant variables at the 1% significance level.
These levels of significance are based on the student t-statistic that has a student t distribution.

The student t-values associated with x1 and x2 in Table 3 reveals that both τ* and the reciprocal of
temperature are statistically significant variables so yielding support for the Wilshire methodology,
whilst the last two rows show a discontinuity in the Wilshire model at τ* = 0.1 and at a temperature of
823 K. These estimates are not comparable in value to those in Equation (5b) because the latter show
the impact of τ* and T on failure times directly, rather than the log hazard rate as is so in the former
case. Reading across row one of Table 3, the estimated log hazard rate for time interval j = 1 (12.5–13.0
log seconds) when temperature is 823 K and stress is 294 MPa is −4.7526, implying a hazard rate of
exp(−4.7526) = 0.0086. This hazard rate corresponds to the log time interval of 12.5 to 13.0, which in
turn corresponds to a time interval in hours of 75 to 123. Associating this hazard rate with the mid
point of this time interval gives a hazard rate of 0.0086 at time 100 h. Proceeding in the same way
for this next two rows of Table 3 gives a cumulative hazard rate of 0.189 at 163 h and 0.795 at 268 h.
Recall that Figure 2 show the non-parametric estimate of the cumulative hazard rate associated with
the test conditions of this estimated baseline hazard rate. Reading of this graph at 270 h shows the
non-parametric estimate of the cumulative hazard rate is 0.85, showing this model is consistent with
this non-parametric estimator.

Table 4 shows the classification table for this model using c = 0.5 revealing that sensitivity equals
68% and specificity equals 98% with an overall correct failure time zone prediction rate of 94%. Figure 5
shows the ROC for this model and the area under this curve is 0.972, which according to Hosmer
and Lemenshow, makes this model outstanding in its ability to discriminate between failure and
non-failure in the 15 time zones.
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Table 4. Classification table for a discrete hazard model of Equation (13e) with c = 0.5.

Predicted vij
Observed vij Total

Survived: vij = 0 Failed: vij = 1

Survived: vij = 0 306 14 320
Failed: vij = 1 9 29 38

Total 315 43 358
Materials 2017, 10, 1190  19 of 30 
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Figure 5. The receiver operating characteristic (ROC) from model given by Equation (13e).

The MSE is minimised at c = 0.53 with a value of 0.0526. Figure 6 then plots the actual times to
failure (hours) for specimens in batch VaA, together with the failure time zones predicted by the model
using c = 0.53. The error bars shown around the predictions reflect the fact that this model predicts the
time interval in which failure occurs and the width of this time interval is 0.5 log hours. The models
predictions are taken to be the mid points of these error bars. With only a few exceptions (for example,
at 773 K with 373 MPa and 823 K with 157 MPa), the model predicts the time interval at which failure
actually occurs correctly. The worst prediction comes at 873 K and 47 MPa—but this point was also
poorly predicted in the original Wilshire [21] paper as well.

Figure 7 plots the piece-wise log hazard rates associated with each time zone (the b0t in Table 3)
against the numbered time zone and this plot reveals a well-defined linear trend. The trend is very
strong with an R2 value of 98.4% with no obvious deviation from linearity. This suggests that it should
be possible to create a more parsimonious version of Equation (19e), without affecting the predictive
ability of the simpler model, by replacing the fifteen b0t parameters with a linear trend containing just
two parameters—a and b0. Figure 7 implies that a = 6.57 and b0 = 1.86. This parsimonious version is
estimated in the following subsection.
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Figure 6. Actual failure times and predicted times interval obtained from the model given by
Equation (19e).
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based on Equation (19e).

4.2.2. Model Given by Equation (19f)

When Equation (19g) was estimated, the t value associated with parameter b5 suggested that b5

was insignificantly different from zero at the 1% significance level so that the data were not supportive
of the slope of the log base hard function estimated in the previous sub section changing at some
critical value for the normalised stress. Table 5 shows the estimated parameters of Equation (19f)
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obtained using the McCullagh and Nelder algorithm (again the values for α and τcrit that produced
the highest ROC were α = 1 and τcrit = 0.1).

Table 5. Estimation of the parameters in Equation (19f).

Parameter Variable Estimate Student t-Value

a Constant −5.8351 −4.91 ***
b0 Time trend, j 2.0736 6.02 ***
b1 x1 −30.8703 −5.85 ***
b2 x2 −1451.7496 −5.93 ***
b3 x3 5.1666 3.84 ***
b4 x4 596.9284 4.48 ***

Parameters estimates using the iteratively reweighted least squares technique of McCullagh and Nelder [42]. Student
t-values test the null hypothesis that the true parameter values equal zero. *** identifies statistically significant
variables at the 1% significance level. These levels of significance are based on the student t-statistic that has a
student t distribution.

The estimated values for b1 to b4 in Table 5 are consistent with those shown in Table 3 and, again,
the student t-values associated with these parameters reveal they are significantly different from zero
at either the 1% or 5% significance level. Further, the values for a and b0 are not that dissimilar from
the values sown in Figure 6. These parameter estimates can be used to calculate the hazard rate at
the base or reference test conditions of temperature = 823 K and stress = 294 MPa. For example, in
time zone j = 1 (corresponding to the log time interval of 12.5 to 13 or 75 to 123 h) the hazard rate is
predicted to be exp(−5.8351 + 2.0736 × 1) = 0.0232.

Table 6 shows the classification table for this model when c = 0.5 revealing that sensitivity equals
69.8% and (1-specificity) equals 96.8% with an overall correct failure time zone prediction rate of 95%.
Figure 8 shows the ROC for this model and the area under this curve is 0.951, which according to
Hosmer and Lemenshow, makes this model outstanding in its ability to discriminate between failure
and non-failure in the 15 time zones. Further, this value is only slightly below that from the previous
model, showing that the use of a simple linear time trend instead of a piece-wise hazard function has
not resulted in a significant reduction in predictive ability.
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Table 6. Classification table for a discrete hazard model of Equation (19f) with c = 0.5.

Predicted vij
Observed vij Total

Survived: vij = 0 Failed: vij = 1

Survived: vij = 0 305 13 318
Failed: vij = 1 10 30 40

Total 315 43 358

The MSE is minimised at c = 0.53 and Figure 9 then plots the actual times to failure for specimens
in batch VaA against the failure time predicted by the model using c = 0.53. As a continuous base
hazard function is now used instead of the piece-wise hazard function, an actual failure time, rather
than an interval time, prediction can be made. Figure 9 plots the actual failure times against the
predicted failure times (n natural logs). The best fit line on this plot is very close to the ideal outcome
associated with the 45 degree line—corresponding to a situation where the model predicts each failure
time perfectly. Hence, the bias in prediction remains small in this more parsimonious model.
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Figure 9. Actual log failure times plotted against predicted log failure times obtained from the model
given by Equation (19f).

Figure 10 shows a different representation of these predictions—where stress is shown on the
vertical axis and times to failure on the horizontal. This time the error bars show a 50% prediction
band based on using c = 0.25 and c = 0.75 in Equation (18b). Again, and with only a few exceptions,
the actual failure times fall within the models 50% prediction bands.

Figure 11 illustrates how this model can be used to predict the hazard rates associated with in
service life under various conditions—in this illustration operating at 130 MPa and 823 K. It can be seen
that the hazard rate remains very close to zero up to 50,000 h or about 8 years of in service use. The
risk of failure then starts to rise quite dramatically. For example, if this material had been in operation
for around 15 years, the chances of it failing in the next year is around 35%, but, if this material had
been in operation for around 25 years, the chances of it failing in the next three years rises dramatically
to around 80%.
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Figure 10. Actual failure times and predicted failure times obtained from the model given by
Equation (19f).
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Figure 11. Predicted hazard rates at various times in operation at 823 K and 130 MPa from the model
given by Equation (19f).

5. Conclusions

This paper has provided a summary review of some statistical failure time models with the aim
of aiding the assimilation of such models with existing predictive models for creep life. This will
enable an enrichment of prediction to be achieved with a move away from predicting failure times on
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the average towards predicting the safe life associated with a minimum chance of failure This was
followed by an illustration of one possible assimilation, namely—the deterministic Wilshire equation
and the statistical discrete hazard model. This statistical model was chosen because it provided the
capability of estimating failure probabilities in future time intervals for materials that have already
been in service for various lengths of time.

Estimation of this model revealed that at a fixed test condition, the log of the probability of failure
in the next time interval (given survival up to then) is a linear function of time. This log base line
hazard function then shifted in a parallel fashion with the well-known Wilshire variables of τ* and the
reciprocal of temperature. Like in the original Wilshire methodology, this shifting nature of the base
hazard function was different above and below 823 K and τ* = 0.1. The model was shown to produce
outstanding discrimination with respect to which time interval a specimen would fail in. Finally, and
as an illustration of the output this model was capable of producing, it was found that if this material
had been in operation for around 15 years at 823 K and 130 MPa, the chances of it failing in the next
year is around 35%. However, if this material had been in operation for around 25 years under this
condition, the chances of it failing in the next year rose dramatically to around 80%.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. The Generalised F Family of Failure Time Distributions

Using the change of variables technique, and substituting Z = (Y − µ)/b into the pdf of
Equation (9c) in Section 3.1.2 yields

f(y) = f(z)
∂z
∂y

=
1
b

(k1/k2)
k1

{Γ(k 1)Γ(k 2)}/ Γ(k 1 + k2)

exp
(

k1
b [y− µ]

)
(

1 + {k1/k2}e
k1
b [y−µ]

)(k1+k2)
(A1)

Using β = 1/b, λ = exp(−µ) and T = exp(Y), it follows that

exp (
k1

b
[y− µ]) = exp (y)k1/b exp (−µ)k1/b = t

k1/b
λk1/b = (λt)k1/b = (λt)k1β (A2)

Substituting Equation (A2) into Equation (A1) and using the change of variable technique then
gives the pdf for T

f(t) = f(y) ∂y
δt = t−1

b
(k1/k2)

k1

{Γ(k1)Γ(k2)}/Γ(k1+k2)
(λt)k1β(

1+{k1/k2}(λt)k1β
)(k1+k2)

= (k1/k2)
k1λ β

{Γ(k1)Γ(k2)}/Γ(k1+k2)
(λt)β k1−1(

1+
{

k1/k2}(λt)k1β
)(k1+k2)

(A3)

This equation is not valid when k1 = k2 = ∞, which corresponds to the log normal distribution.
Abramowitz and Stegun [44] show that the gamma function can be approximated by

ln[Γ(k)] = (k− 0.5) ln(k)− k + 0.5 ln(2π) +
1

12k
− 1

360k3 +
1

1260k5 −
1

1680k7 + . . . (A4)

and based on this approximation, it follows that Г (k + 1) = kГ(k) and Г(1) = 1. As mentioned in the
main text, Z is a standardised variable, and its mean (or expected value E) and its variance are given by

E[Z] = Ψ(k1) − Ψ(k2) + ln(k2) − ln(k1) (A5)

Var[Z] = Ψ/(k1) + Ψ/(k2) (A6)
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where Var(Z) reads the variance of Z and the di (Ψ) and tri (Ψ/) gamma functions are the first and
second derivatives respectively of the log gamma function with respect to k and so

Ψ(k) = ln(k)− 1
2k
− 1

12k2 +
1

120k4 −
1

252k6 + . . . (A7)

Ψ/(k) =
1
k
+

1
2k2 +

1
6k3 −

1
30k3 +

1
42k7 + . . . (A8)

The distribution of Z is degenerate in that as either k1 or k2 tends to infinity, Ψ/(k) tends to zero
and so the variance of Z tends also to zero, i.e., the pdf for Z collapses to a single point. However, from
the rules behind computing expected values, it follows that Var(W) = δ2Var(Z).

For example, as k2 → ∞, δ2 → k1, Ψ/(k2)→ 0 and Ψ/(k1)→ 1/k1 and so Var[W]→ 1. Thus, W
has a non-degenerate distribution.

It follows from Equations (A7) and (A8) and the rules of expected values that:

E[Y] = µ + bE[Z] (A9)

and
Var(Y) = b2Var(Z) (A10)

where Var(Y) is the variance of Y. Meeker and Escobar [45] have shown that, when k2 > 1/β the mean
and variance for T are given by

E[T] =
1
λ

Γ(k1 + β−1)Γ(k2 − β−1)

Γ(k1)Γ(k2)

(
k2

k1

)1/β

and

Var[T] =
1

λ2
Γ
(
k1 + 2β−1)Γ(k2 − 2β−1)

Γ(k1)Γ(k2)

(
k2

k1

)2/β

− E[T]2 (A11)

There is no closed form expression for the survivor function, but the pth percentile for T is given by

tp = exp(µ)(wk1,k2,p)(b/δ) (A12)

where wk1,k2,p is the pth quantile of an F distribution with (2k1, 2k2) degrees of freedom. tp can thus be
computed for various values of p and a plot of 1 − p against tp defines the survivor function for T.

Appendix A.1. The Generalized Logistic Family

Appendix A.1.1. The Burr XII [46] Distribution (k1 = 1)

Setting k1 = 1 into Equation (A3) gives

f(t) =
(1/k2)λ β

{Γ(k 2)}/Γ(1 + k2)

(λt)β −1(
1 + {1/k2}(λt)β

)(1+k2)
(A13)

Further when k1 = 1, Г(1 + k2) = k2 Г(k2) and so Г(k2)/Г(1 + k2) = 1/k2 and Equation (A13) becomes

f(t) =
λ β (λt)β −1(

1 + {1/k2}(λt)β
)(1+k2)

(A14)
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The survivor function is therefore given by

S(t) = 1−
t∫

0

f(t)dt =
[

1 +
1
k2
(λt)β

]−k2

(A15)

Substituting k1 = 1 into Equation (A11) leads to the following expressions for the mean and
variance of T

E[T] =
1
λ

Γ(1 + β−1)Γ(k2 − β−1)

Γ(k2)
(k2)

1/β

and

Var[T] =
1

λ2
Γ
(
1 + 2β−1)Γ(k2 − 2β−1)

Γ(k2)
(k2)

2/β − E[T]2

Appendix A.1.2. The Burr III Distribution (k2 = 1)

Setting k2 = 1 into Equation (A3) gives

f(t) =
k2

1λ β (λt)k1β−1(
1 + {1/k1}(λt)β

)(1+k1)
(A16)

Appendix A.1.3. The Log-Logistic [47] Distribution (k1 = k2 = 1)

Setting k1 = k2 = 1 into Equation (A3) gives

f(t) =
λ β (λt)β −1(
1 + (λt)β

)2 (A17)

The survivor function can easily be found by substituting k2 = 1 into Equation (A13)

S(t) =
[
1 + (λt)β

]−1
(A18)

Substituting k1 = k2 = 1 into Equation (A11) leads to the following expressions for the mean and
variance of T

E[T] =
1
λ

Γ(1 + β−1)Γ(1− β−1)

and
Var[T] =

1
λ2 Γ(1 + 2β−1)Γ(k2 − 2β−1)− E[T]2

The Gumbel [48] distribution has a similar restriction, k1 = k2.

Appendix A.1.4. The Logistic Distribution (k1 = k2 = σ = 1)

σ = 1 implies β = 1, Setting k1 = k2 = 1 into Equation (A3) gives

f(t) =
λ

1 + λt
(A19)

The survivor function can easily be found by substituting β = 1 into Equation (A17)

S(t) = [1 + (λt)]−1 (A20)
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Appendix A.2. The Generalised Gamma Family

Appendix A.2.1. The Generalised Gamma Distribution (k2 = ∞)

Prentice [37] has shown that, when k2 = ∞, Equation (9c) in Section 3.1.2 reduces to

f(z) =
k1

k1

Γ(k1)
exp (k1z− k1ez) (A21)

with δ =
√

k1 and thus W =
√

k1Z = (Y − µ)
√

k1
b . Using the change of variable technique,

it follows that

f(y) = f(z)
∂z
∂y

=
1
b

k1
k1

Γ(k1)
exp

(
k1

b
[y− µ]− k1e

1
b [y−µ]

)
(A22)

Again, using β = 1/b, λ = exp(−µ) and T = exp(Y), and the change of variable technique

f(t) = f(y) ∂y
δ t =

t−1

b
k1

k1

Γ(k1)
exp

(
k1
b [y− µ]− k1(λt)β

)
= k1

k1λβ
Γ(k 1)

(
(λt)k1β−1 exp[−k1(λt)β]

) (A23)

Appendix A.2.2. The Weibull (k1 = 1) [49] and Exponential Distributions (k1 = 1 = σ)

Inserting k1 = 1 into Equation (A22) yields the well-known Weibull distribution

f(t) =
λβ

Γ(1)

(
(λt)β−1 exp[−(λt)β]

)
= λβ(λt)β−1 exp[−(λt)β] (A24)

Closed form expressions exist for the survivor and hazard function of the Weibull

S(t) = 1−
t∫

0

f (t)dt = exp
[
− (λt)β

]
and h(t) = −dln[S(t)]

dt
= βλ(λt)β−1 (A25)

As k2 tends to infinity it can be shown that

Γ(k2 − σ)

Γ(k2)
(k2)

σ → 1 and
Γ(k2 − 2σ)

Γ(k2)
(k2)

2σ → 1 (A26)

and substituting this expression and k1 = 1 into Equation (A11) gives the formulas for the mean and
variance of T when this variable is Weibull distributed

E[T] =
eµΓ(k1 + σ)Γ(k2 − σ)

Γ(k1)Γ(k2)

(
k2

k1

)
= eµΓ(1 + σ) =

1
λ

Γ(1 + 1/β) (A27)

Var[T] = e2µΓ(k1+2σ)Γ(k2−2σ)
Γ(k 1) Γ(k 2)

(
k1
k2

)2σ
− E[T]2 = e2µΓ(1 + 2σ)− E[T]2

= 1
λ2 Γ(1 + 2/β)− 1

λ2 Γ2(1 + 1/β)
(A28)

If σ also equals 1, then β = 1 and the Weibull distribution collapses to the exponential distribution

f(t) = λ(λt)1−1 exp[−(λt)1] = λ exp[−(λt)] (A29)

Substituting β = 1 into the survivor and hazard functions of the Weibull distribution then gives
these functions for the exponential distribution

S(t) = 1−
t∫

0

f (t)dt = exp(−λt) and h(t) = −dln[S(t)]
dt

= λ (A30)
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Given Г(2) = Г(1) = 1 and, Г(3) = 2,

E[T] =
1
λ

Γ(1 + 1) =
1
λ

and Var[T] =
1

λ2 Γ(1 + 2)− 1
λ2 Γ2(1 + 1) =

2
λ2 −

1
λ2 =

1
λ2 (A31)

Appendix A.2.3. The Gamma [50] Distribution (σ = 1).

σ = 1 implies β = 1/
√

k1 and so

f(t) =
√

k1 λ

Γ(k1)

(
(λt)

√
k1−1 exp[k1(λt)

√
k1 ]
)

(A32)

Appendix A.2.4. The Log Normal Distribution (k1 = k2 = ∞)

Lawless [51] has shown that the distribution for W when k2 = ∞

f(w) =
k1

k1−0.5

Γ(k1)
exp

(√
k1w− k1ew/

√
k1
)

(A33)

tends to
f(w) =

1√
2πσ2

exp
(
−0.5w2

)
(A34)

as k1 → ∞. This is the equation for a standard normal distribution, so W is a standard normal variate
with mean zero and standard deviation of 1. This then implies Y is normally distributed and therefore
T is log normally distributed with pdf

f(t) =
1

σ t
√

2π
exp

(
−0.5

(ln(t)− µ)2

σ2

)
(A35)
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