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Abstract: A mesoscopic analytical model of wrinkling of Plain-Woven Composite Preforms (PWCPs)
under the bias extension test is presented, based on a new instability analysis. The analysis is aimed
to facilitate a better understanding of the nature of wrinkle formation in woven fabrics caused by
large in-plane shear, while it accounts for the effect of fabric and process parameters on the onset of
wrinkling. To this end, the mechanism of wrinkle formation in PWCPs in mesoscale is simplified and
an equivalent structure composed of bars and different types of springs is proposed, mimicking the
behavior of a representative PWCP element at the post-locking state. The parameters of this equivalent
structure are derived based on geometric and mechanical characteristics of the PWCP. The principle
of minimum total potential energy is employed to formluate the model, and experimental validation
is carried out to reveal the effectiveness of the derived wrinkling prediction equation.
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1. Introduction

Taking advantage of the unique combination of light weight and strength, Textile Structural
Composites (TSCs) have long been recognized as an attractive material for the applications extending
from automotive parts to aircraft structures [1]. Among TSCs, Woven Fabric-Reinforced Composites
(WFRCs) have become popular for manufacturing the parts with intricate three-dimensional (3D)
shapes. In the manufacturing of WFRCs, the formability of composite part plays a pivotal role and
is limited by the drapability of reinforcement phase, i.e., woven preform. The previous research has
demonstrated that drapability of woven preforms is constrained by a number of modes of defects,
including fiber slippage, wrinkling, in-plane waviness, and yarn bunching. Among these, wrinkle
formation is the most critical defect mode [2,3], which is also the focus of the current research. Among
different classes of woven fabrics, the Plain-Woven Composite Preforms (PWCPs) have been commonly
used in characterization research as well as the reinforcement phase in the WFRCs industry [2–11].

It is generally agreed that the main deformation mode in the draping of PWCPs is in-plane
shear between the warp and weft yarns. If large shear deformation is needed in the course of the
process, there would be a limit on the extent of the relative warp/weft angle of PWCPs, owing to
anticipated defects such as wrinkling [4,5]. In large shear deformation, woven fabrics continue to be
deformed through the meso-level mechanisms elucidated in [6] until the trellis gaps reach the thickness
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of the interlacing yarn. At this point, locking arises, and further shear of PWCPs is accommodated
dominantly through lateral compaction of the yarns [2]. The shear deformation of woven fabric in the
post-locking stage will proceed to a certain limit, termed as the ‘wrinkling onset’. This instant is one of
the main concerns in the forming of PWCPs.

To analyze the shear behavior and the nature of wrinkle formation—due to large shear—in the
woven composite preforms, two experimental characterization methods are widely employed in the
literature, namely the Bias Extension Test (BET) and the Picture Frame Test (PFT) [7]. In addition to
offering a simpler set-up, the BET is known to be more analogous to real forming process of woven
fabrics because of the defects induced during the course of the test (such as yarn lateral slippage,
wrinkling, and cross-over rotational slippage) [2,6]. Furthermore, shear within yarns—known as
intra-yarn shear—does not occur in the BET, inferring that the yarn width is constant during the test
prior to locking point.

A considerable amount of research has been conducted and reported in the literature on
determining the onset of fabric wrinkling in woven fabrics [2–11]. Prodromou and Chen [8] are
among the pioneers who recognized the importance of a modeling approach to determine locking
angle and the onset of wrinkling in the PWCPs. In their model, the locking angle was defined as the
shear angle at which the distance between the warp and weft yarns becomes zero. To develop the
approach, they modified the pin-joint theory (PJT), which is solely based on the kinematics of the
fabric structure, and included fabric construction parameters such as yarn spacing and yarn size in
the analytical calculations. Moreover, they assumed that the onset of wrinkling is coincident with the
locking, while the fabric structure undergoes further shear deformation due to lateral compaction of
yarns; therefore, it provides more room for shear deformation, and the onset of wrinkling is markedly
delayed. In their model, the contribution of the thickness of the interlacing yarn on locking and
wrinkling has been overlooked. A detailed critic discussion on this approach has been presented in [6]
by the authors.

Lightfoot et al. investigated in-plane waviness and out-of-plane tow wrinkles of the composite
preforms in the course of draping process [9]. Through their study, they elucidated the mechanism
behind the formation of these two defects. In a study conducted by Launay et al. [10], the effect of
tension on yarns was experimentally examined. They demonstrated that the onset of wrinkling is
delayed by increasing the tension on yarns. In spite of providing reasonable experimental explanations
about the wrinkle formation and the affecting parameters, such as yarn tension, a theoretical
interpretation was not presented [9,10].

An energy-based model to predict the wrinkle initiation in the PWCPs has been proposed by
Zhu et al. [2,11,12]. The study developed an analytical criterion based on the assumption that wrinkles
initiate whenever the energy required for in-plane shear deformation mode becomes greater than
that of the out-of-plane deformation mode. This assumption could be challenged given the fact that
the comparison was made between two terms of energy that are both internal, and their total always
equals the external work done by shear forces.

In view of the extent of the literature available and the wrinkle prediction issues outlined
above, the present study is aimed to establish an analytical mesoscopic framework for the prediction
of wrinkling in the PWCPs due to large in-plane trellising (BET) deformation. To this end,
an explanation about the nature of wrinkle formation—deviation from in-plane deformation to
out-of-plane deformation—in the PWCPs is first presented (Section 2). Subsequently, an equivalent
structure mimicking the behavior of a representative PWCP element in the post-locking stage is
proposed (Section 3). The minimum total potential energy principle is applied to determine the shear
angle at which a deviation in deformation mode occurs. The analytical prediction is validated using a
BET on plain weave carbon fiber fabric (Section 4).



Materials 2017, 10, 1184 3 of 16

2. Mechanism of Wrinkle Formation in the BET

Wrinkles in the PWCPs can be formed through three distinct loading conditions, namely in-plane
compression, out-of-plane bending, and large in-plane shear deformation (Figure 1). Wrinkles induced
in the course of the BET belong to the third group [2,3].

Based on the pin-joint theory, in the initial stage of shear deformation of PWCPs, yarns rotate
with little resistance, which is mainly due to frictional forces between overlapping families of
yarns. Afterwards, the shear resistance of PWCPs increases more rapidly when inter-yarn gaps
vanish—locking initiates—and adjacent parallel yarns begin to press each other transversely (Figure 2).
Further shear deformation of PWCPs at this stage is dominantly by yarns lateral compaction.
By growing the shear deformation of PWCPs, the pressure between adjacent parallel yarns rises,
triggering the formation of wrinkles.
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In light of the above discussion, the PWCPs in advance of wrinkling experience two main stages,
“pre-locking” and “post-locking”. In a recent research conducted by the authors [6], it is demonstrated
that the locking of the PWCPs mainly depends on kinematics and the geometry of the both yarn
families in the woven fabric structure: it is defined as an instant at which the distance between the
adjacent parallel yarns is bounded by the thickness of the interlacing yarn. Equation (1) is derived
for the bias extension test, in which there exists no intra-yarn shear, and is used to predict the locking
angle of the PWCPs [6]:

γLocking = cos−1
(

w0 + t
l

)
(1)

where γlocking, w0, t, and l are the locking angle, initial yarn width, yarn thickness and initial distance
between the central axis of the adjacent parallel yarns, respectively (Figure 3).
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Figure 3. A PWCP representative element at the beginning of shear deformation.

Contrary to the pre-locking stage, the behavior of PWCPs in the post-locking stage is dominantly
governed by the material properties of the yarn (e.g., its transverse compaction resistance and flexural
rigidity). Hence, the onset of wrinkling in PWCPs as a whole depends not only on test kinematics and
geometry of the fabric elements, but also the material properties of the yarns. Although much earlier
research on the behavior of PWCPs in the pre-locking stage has been conducted [6,8], the mechanism
of deformation in the post-locking stage has not yet been fully understood.

In other related references [2,13], it was reported that the smallest fabric sub-structure, in which
wrinkles can potentially initiate, is the representative element illustrated in Figure 3. Accordingly,
this element can be analyzed under large shear angles in the PWCP structures to identify the onset of
wrinkling [14].

Figure 4 illustrates the compressive forces established between adjacent parallel yarns during
the course of lock-up, and thereof Figure 5 depicts the mechanism of wrinkle formation in the
representative element of PWCP.
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Figure 4. Compressive forces induced between adjacent yarns during in-plane shear deformation
of PWCP (a) simulation; (b) experimental investigation of the yarn strain field in large shear
deformation [3].

In mechanical structures under compressive forces, there are discrete values of the load at which
secondary equilibrium configurations may appear in the neighborhood of the initial equilibrium
position. To put it differently, a system under critical compressive loads admits additional, but adjacent,
equilibrium states with different deformation patterns called structural modes [15]. The nature of
wrinkling in PWCPs can be analogous to a deviation in deformation mode of the material structure.
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This analogy opens up a window toward the theoretical analysis of wrinkling phenomenon in PWCPs
from an instability point of view.

In the next section, an analogy-based equivalent structure for the representative element of
PWCP, which mimics the behavior of the fabric at the post-locking stage, is introduced. Subsequently,
the analytical criterion at which deviation of deformation mode from the in-plane to out-of-plane
mode becomes possible is derived and validated experimentally.
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3. Prediction of Fabric Wrinkling Based on an Instability Analysis

3.1. Analogy-Based/Equivalent Structure

As alluded in Figures 4 and 5, the adjacent parallel yarns of the fabric element undergo
compressive forces during shear deformation, and subsequently, at a certain instant termed the
onset of wrinkling, the fabric structure alters its deformation pattern from the in-plane mode to
the out-of-plane mode. Given this definition, a simple four-link equivalent structure mimicking
the behavior of a representative PWCP element in the post-locking stage is proposed, as shown in
Figure 6. This equivalent structure has been inspired by the phenomenological study conducted
by Zhu et al. [16], in which the mechanism of wrinkle formation was experimentally studied and
discussed. A mesoscopic finite element simulation was also conducted by the authors (Figures 6 and 7)
to observe and identify the nature and mechanism of wrinkling. Based on these mesoscopic trials,
the four-link equivalent structure was introduced.
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It is assumed that the instant of deviation in equilibrium mode of this equivalent structure
is coincident with the onset of wrinkling in the fabric (Figure 7). This structure, hereafter called
PWCP Equivalent (PWCPE), comprises of four rigid bars of length w0 (initial width of yarns). These
bars are clamped elastically at one end against rotation—about the dash-lined axes illustrated in
Figure 6—using four torsional springs of stiffness Kt, and linked to ball-joints at the other end (Point O).
The torsional springs in fact imitate the role of interlacing yarns in the fabric (Figure 8). To elucidate,
yarn Y-2 at the onset of wrinkling tends to rotate about its longitudinal outer edge (i.e., about JJ’ axis in
Figure 8) and form a wrinkle. In order to accommodate such deformation, the transverse bending of
the interlacing yarn Y-3 is necessitated, as shown in Figure 9. That is, the interlacing yarn Y-3 resists
against wrinkling. Hence, this out-of-plane resistance of interlacing yarn is modeled by an equivalent
torsional spring (Kt). The other yarns in the representative PWCP element simultaneously experience
the same sequence of events.

Four sliding springs with the stiffness coefficient K are placed around the bars to capture the
lateral compaction stiffness of yarns—in the width direction—and their stiffness coefficient needs to be
characterized via experimentation (to be discussed in more detail in Section 4.2.2).

The bars are treated as the cores of the sliding springs. The quasi-static compressive forces P act
on the system, as illustrated in Figure 7. These forces are to model the compaction forces between
adjacent parallel yarns in the real fabric. If the compressive forces P in the PWCPE structure reach a
critical value, termed as Pcr, the equivalent structure will become unstable. At the onset of instability,
the PWCPE structure will change its deformation mode from in-plane to out-of-plane (Figure 7).
Accordingly, obtaining Pcr is a significant step to predict the onset of wrinkling in the fabric structure.
Before that, however, we first need to characterize the stiffness properties of the structure as follows.
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3.1.1. Characterization of Stiffness Elements of the PWCPE Structure

As stated earlier, the stiffness coefficient of the sliding springs, representing the lateral compaction
of the yarns, needs to be characterized via experimentation. However, the stiffness of torsional
springs may be characterized analytically for a given fabric. To derive the latter stifness for PWCP,
it is presumed that yarn Y-3 is a straight beam (Figure 9) made of a linear, transversely isotropic,
homogeneous material, with an effective flexural rigidity in the longitudinal direction Qb [17].
The Euler-Bernoulli theory is used to analyze such a hypothesized beam [16,17]. Moreover, as the
proposed model takes the effect of tension on the yarns into account, instead of a first-order analysis
that is based on the superposition principle and considers the deflection of the beam independent
of the applied tension, the second-order analysis [18] is undertaken, which accounts for the effect of
tension on the overall flexural rigidity of yarns, F

YS/2
.

When considering the assumptions made, the deflection of the yarn as a beam at its mid-span
and under arbitrary vertical force F can be written as [18]:

YS/2 =
F

2Qb

(
T

Qb

) 3
2

S
√

T
Qb

2
− tanh

S
√

T
Qb

2

 (2)

where T, Qb, and S are tension along the yarn, the effective flexural rigidity of yarn in its longitudinal
direction, and the length of yarn in the representative PWCP element (Figure 3), respectively.

It is important to note that theoretically, the second order analysis determines the extent of the
increase in bending stiffness due to the applied tension in an integrated (continuum) beam. However,
yarns are comprised of thousands of filaments. Accordingly, the effective bending rigidity of yarn, Qb,
where filaments are only in frictional contact with each other and can slide over one another in the dry
form, is much less than when the filaments are perfectly jointed (e.g., the yarn is consolidated with a
resin) and make an integrated beam. This critical point may be addressed by measuring the flexural
rigidity of the dry yarn via the setup explained in Section 4.2.1, which can directly take the discrete
nature of the yarns into account (instead of using the yarns’ tensile modulus along with their width
and height, as used for integrated beams). However, one point may still be overlooked: an increase in
the internal bending rigidity of yarns can occur due to tension; e.g., by considering more interaction
and frictional force between filaments. This fact can be accounted for when Qb in Equation (2) becomes
a function of tension level.

Materials 2017, 10, 1184 7 of 16 

 

3.1.1. Characterization of Stiffness Elements of the PWCPE Structure 

As stated earlier, the stiffness coefficient of the sliding springs, representing the lateral 
compaction of the yarns, needs to be characterized via experimentation. However, the stiffness of 
torsional springs may be characterized analytically for a given fabric. To derive the latter stifness for 
PWCP, it is presumed that yarn Y-3 is a straight beam (Figure 9) made of a linear, transversely 
isotropic, homogeneous material, with an effective flexural rigidity in the longitudinal direction Qb 
[17]. The Euler-Bernoulli theory is used to analyze such a hypothesized beam [16,17]. Moreover, as 
the proposed model takes the effect of tension on the yarns into account, instead of a first-order 
analysis that is based on the superposition principle and considers the deflection of the beam 
independent of the applied tension, the second-order analysis [18] is undertaken, which accounts for 
the effect of tension on the overall flexural rigidity of yarns, ி	௒ೄ/మ. 

When considering the assumptions made, the deflection of the yarn as a beam at its mid-span 
and under arbitrary vertical force F can be written as [18]: 

ௌܻ/ଶ = 2ܳ௕ܨ ቀ ܶܳ௕ቁଷଶ ۇۉ
ܵට ܶܳ௕2 − tanhۇۉ

ܵට ܶܳ௕2 (2) ۊیۊی

where T, ܳ௕, and S are tension along the yarn, the effective flexural rigidity of yarn in its longitudinal 
direction, and the length of yarn in the representative PWCP element (Figure 3), respectively. 

It is important to note that theoretically, the second order analysis determines the extent of the 
increase in bending stiffness due to the applied tension in an integrated (continuum) beam. However, 
yarns are comprised of thousands of filaments. Accordingly, the effective bending rigidity of yarn, ܳୠ, where filaments are only in frictional contact with each other and can slide over one another in 
the dry form, is much less than when the filaments are perfectly jointed (e.g., the yarn is consolidated 
with a resin) and make an integrated beam. This critical point may be addressed by measuring the 
flexural rigidity of the dry yarn via the setup explained in Section 4.2.1, which can directly take the 
discrete nature of the yarns into account (instead of using the yarns’ tensile modulus along with their 
width and height, as used for integrated beams). However, one point may still be overlooked: an 
increase in the internal bending rigidity of yarns can occur due to tension; e.g., by considering more 
interaction and frictional force between filaments. This fact can be accounted for when ܳ௕  in 
Equation (2) becomes a function of tension level. 

 
Figure 9. (a) Modeling of yarn as a bending beam (made of a linear, transversely isotropic, 
homogeneous material with an effective flexural rigidity in the longitudinal direction ܳ௕); (b) an 
equivalent torsional spring of coefficient Kt. 

Now, by equating the deflection of the mid-span of the beam ( ௌܻ/ଶ), which is caused by the 
arbitrary force, F, to the nodal displacement of the end of the link caused by the same force (ܱܱ′ in 
Figure 9), the equivalent stiffness of the torsional spring is determined as: 

Figure 9. (a) Modeling of yarn as a bending beam (made of a linear, transversely isotropic,
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Now, by equating the deflection of the mid-span of the beam (YS/2), which is caused by the
arbitrary force, F, to the nodal displacement of the end of the link caused by the same force (OO′ in
Figure 9), the equivalent stiffness of the torsional spring is determined as:
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Kt =
2Qb

(
T

Qb

) 3
2 w2(

S
√

T
Qb

2

)
− tanh

(
S
√

T
Qb

2

) =
2Qb

(
T

Qb

) 3
2
(w0 − ∆)2(

S
√

T
Qb

2

)
− tanh

(
S
√

T
Qb

2

) (3)

where w, w0 and ∆ are, in turn, the instantaneous width of yarn, initial width of yarn, and compaction
of the yarn due to lateral compressive force. For subsequent calculations, it is convenient to define the
following lumped parameter notation:

A =
2Qb

(
T

Qb

) 3
2(

S
√

T
Qb

2

)
− tanh

(
S
√

T
Qb

2

) (4)

3.2. Determination of Critical Compressive Force (Pcr) and Shear Angle at the Onset of Wrinkling

As discussed in Section 2, the onset of wrinkling in the fabric element is coincident with the instant
at which a deviation of deformation mode in the PWCPE structure occurs. As such, the methods
developed in the field of structural analysis can be borrowed to estimate the onset of deviation in the
equilibrium mode (wrinkling) of PWCPE in Figure 6. One of the de facto analytical approaches is
the principle of minimum total potential energy. This approach is based on the assumption that the
corresponding mechanical system is conservative (with no energy loss). However, there exist two
sources of energy loss due to friction in dry fabrics. The first is the energy dissipated through the
friction at crossovers. Because this is substantially less than the lateral compaction energy [2], it should
not sizably violate the above assumption. The second source of energy dissipation would be the
filaments’ sliding within the yarn while it is under lateral compaction. This mechanism would cause
an elastoplastic behavior of the yarn in the lateral direction toward the wrinkling onset. However,
upon locking, the compaction (lateral stiffness) of individual filaments is the main source of resistance
of the yarn against further fabric shearing, and the sliding between filaments would be minimal due to
high normal forces.

By taking Figure 10 into consideration, the total potential energy of the system in an imaginary
deviated mode is:
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۔ۖەۖ
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Term 2Term 1

(5)

where θ is the angle of rods with respect to the plane of initial mode, ∆ is the compaction of the slide
springs, and P is the compressive forces exerted on the sliding springs. In Equation (5), term 1 and
term 2 are in turn the strain energy of the system, negative of the work done by the internal forces,
and the potential energy of the external forces, negative of work done by external forces [19]. Since the
bars in the equivalent structure are assumed as rigid (merely as the cores of the sliding springs), there
exists no term of strain energy for these members. Owing to the conservation of energy in the system,
the equilibrium of the PWCPE structure in the initial mode is:{

∂L
∂θ = 0 ⇒ Ktθ − P(w0 − ∆) sin θ = 0 ⇒ θ = 0

∂L
∂∆ = 0 ⇒ K∆− P cos θ = 0 ⇒ ∆ = P

K
(6)
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On account of the fact that the PWCPE structure is a system with multiple degrees of freedom,
the minimum of total potential energy L (θ, ∆) can be obtained with the aid of the Hessian matrix.
If the matrix is positive definite, then the equilibrium mode of the structure does not intend to deviate
to an adjacent equilibrium state—the Lagrange-Dirichlet theorem [20]. However, if the matrix is either
negative definite or is not a sign definite, the equilibrium mode of the structure opts to deviate to an
adjacent equilibrium mode—the first Lyapunov theorem [20]. Hence, it is inferred that the instant at
which the Hessian matrix of the structure changes its sign from positive definite to negative definite,
may be considered as the onset of equilibrium mode deviation. The determinant of Hessian matrix for
the PWCPE structure is:

H =

∣∣∣∣∣
[

4Kt − 4P(w0 − ∆) cos θ 4P sin θ

4P sin θ 4K

]∣∣∣∣∣ θ = 0
∆ = P

K

, (7)

The instant at which deviation in deformation mode occurs is defined by H = 0. By considering
Equations (3) and (4), it is evident that Kt depends on ∆ and A. Hence, we have:

H =

∣∣∣∣∣
[

4A(w0 − ∆)2 − 4P(w0 − ∆) cos θ 4P sin θ

4P sin θ 4K

]∣∣∣∣∣ θ = 0
∆ = P

K

= 0, (8)

Substituting ∆ by P/K and θ by zero, a quadratic equation with respect to the compressive loads
is found, whose roots identify the critical compressive load Pcr:(

1 +
A
K

)
P2 − (2Aw0 + Kw0)P + KAw2

0 = 0, (9)

Hence,

Pcr =
2Aw0 + Kw0 ± Kw0

2
(

1 + A
K

) (10)

Only the minus sign of Equation (10) should be considered since the least critical value of the
force is of importance in the instability analysis. Hence, the Hessian matrix changes sign from positive
definite to negative definite when:

Pcr =
AKw0

A + K
(11)

Considering Equation (6), the critical yarn compaction, ∆cr, can be determined as:
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∆cr =
Pcr

K
=

Aw0

A + K
=

2Qb

(
T

Qb

) 3
2 w0

2Qb

(
T

Qb

) 3
2
+ K

((
S
√

T
Qb

2

)
− tanh

(
S
√

T
Qb

2

)) (12)

Finally, referring to Figure 3 and the discussion presented in Section 2, the shear angle at which
wrinkling occurs—the critical shear angle—is:

γWrinkling = cos−1
(

w0 + t− ∆cr

l

)
(13)

This implies that as the shear deformation grows, at some point the distance between the
adjacent parallel yarns reaches the thickness of the interlacing yarn, where locking begins Equation (1);
subsequently, the adjacent parallel yarns start compacting each other up to ∆cr when eventually
wrinkle sets in Equation (13). It should be mentioned that in this analytical model, the compaction
of the yarns in the thickness direction, which is substantially less than that in the width direction,
is ignored.

4. Experimental Evaluation

4.1. Geometric Characterization

A commercially available PWCP made of carbon fiber was acquired from APC Composite Inc.
(Livermore, CA, USA). The geometric specifications of the fabric were obtained using a Nikon optical
microscope (Nikon, Tokyo, Japan). For the geometric characterization of yarns, six measurements at
different locations of the fabric were made, and the measured values were averaged, as indicated in
Figure 11.
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perpendicular to the longitudinal axis of the yarn. Subsequently, the thickness of the yarn was 
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To measure the yarn width and the spacing between two adjacent parallel yarns, the PWCP sample
was laid under the microscope, and the measurements were taken. However, measuring the thickness
of the yarn was not as straightforward. Six yarns were dipped into PDMS, which is a transparent
and soft thermoset polymer. After curing the polymer, a section-cut was passed perpendicular to
the longitudinal axis of the yarn. Subsequently, the thickness of the yarn was measured under the
microscope (Figure 11).

4.2. Meso-Mechanical Characterization of the Fabric

Mechanical properties of the yarns comprising flexural rigidity along with lateral compaction
stiffness of yarns—in the width direction—needed to be experimentally measured. There are some
studies targeting characterization of the effective flexural rigidity of the yarns in the longitudinal



Materials 2017, 10, 1184 11 of 16

direction [17,21], whereas measuring the lateral compaction stiffness of yarns has not received much
attention in the literature.

4.2.1. Effective Flexural Rigidity of Yarn in Longitudinal Direction (Qb)

There exists a common test method for determining the effective bending rigidity of a yarn.
The experiment is based on Peirce’s cantilever testing procedure, in which a yarn bends under its own
weight [17,21]. Figure 12 illustrates the experimental set-up used in this study. Five measurements
were taken, and the averaged value for the effective bending rigidity of the yarn was found to be
2.75 N·mm2.
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4.2.2. Effective Lateral Stiffness of Yarn (K)

Direct Method

The first approach for determining the lateral stiffness of a yarn would be to directly measure the
lateral force-lateral displacement of a single yarn—or a stack of yarns—using a compression test, as
described in [2]. To do so, an experimental set-up was prepared. An aluminum fixture was designed
and fabricated to transform the tensile force provided by a KES-G1 tensile machine (Kato Tech, Kyoto,
Japan) to a compressive force. Moreover, a punch, made of brass, was utilized to apply a compressive
force to the yarns. Two loose tapes were attached to the yarn stack to mimic the effect of yarn
interlacement (Figure 13).
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Compressive force was applied to the stack of yarns, and subsequently, the force-displacement
curve for a single yarn was extracted based on the procedure given in [2]. Figure 14 shows the
force-displacement curve obtained for a single yarn. As can be seen, the graph shows two distinct
trends, first of which is related to the elastoplastic behavior of the yarn in which the filaments slide
over each other. The amount of energy dissipated by this mechanism is negligible when compared to
the second part of the response in which the filaments are laterally under compression. Despite the fact
that the second part of the graph has a non-linear behavior with fluctuations, the R-squared (coefficient
of determination) of the fitted line was found to be 0.93. Hence, for the tested fabric, considering an
equivalent linear behavior for the compression of yarn, the slope of the fitted line (10.6 N/mm) was
used to estimate K.
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Inverse Method

Another practical approach for determining K is to use an inverse method based on a bias
extension test. Launay et al. [10] introduced an equation that relates the tensile load to the shear load
per unit length (Fshear). By measuring the BET shear load per unit length, the increment of the work
done on the fabric element (dWshear) through shear stress can be obtained as:

dWshear = (dV)× τshear × (dγ) (15)

where dV is the volume of fabric element. Hence, the work done on this element from the onset of
locking to wrinkling is given by:

(Wshear)Locking-to-wrinkling = S2t
∫ γwrinkling

γlocking

τsheardγ = S2
∫ γWrinkling

γLocking

Fshear × dγ (16)

If we assume that the shear work from locking to wrinkling mainly causes the transverse
compaction of the yarns in the fabric element, for the PWCPE we can write:

(Wshear)Locking-to-wrinkling = 4× (
1
2

K∆2) (17)

The value of ∆ at wrinkling onset is ∆cr and can be determined from Equation (13). Then,

K =
1

2
(

w0 + t− l cos
(

γwrinkling

))2 ×
(
(Wshear)locking-to-wrinkling

)
(18)

where (Wshear)locking-to-wrinkling may be obtained from the area under force-displacement of the BET.
The value obtained for K using this method is 11.53 N/mm. Although the value of K extracted using
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the inverse method is comparable to that of the direct measurement approach, the characterization
challenge in the inverse method is deemed to be substantially less, though more subjective. To minimize
modeling error, an average value between the direct and inverse approaches was eventually used for
the final lateral compaction stiffness of yarn (Table 1). In addition to these two approaches, a micro-level
FE simulation may be considered in future studies as a viable alternative.

Table 1. Summary of the measured geometric and mechanical characteristics of the PWCP.

Yarn
Material

Geometric Characteristics Mechanical Characteristics

w0
(mm)

S
(mm)

l
(mm)

t
(mm)

Flexural Rigidity—Qb
(N·mm2)

Lateral Stiffness—K
(N/mm)

Carbon fiber 1.4 4.1 2.05 0.355 2.75 11.06

4.3. Bias Extension Test for Validating the Analytical Wrinkle Model

By substituting the geometric and mechanical properties of the fabric—as presented in
Table 1—into Equations (1) and (13), the locking and critical (wrinkling) shear angles of the woven
fabric were determined to be 31.1◦ and 40.9◦, respectively. To evaluate the validity of the proposed
equations, a BET was carried out (Figure 15). Three repeats were conducted, and in each repeat,
the shear angle of the fabric was recorded using a digital camera mounted in front of the test set-up.
Figure 16 shows the values for the measured shear angles corresponding to locking and wrinkling
versus those calculated from the analytical approach. The experimental results revealed an acceptable
agreement with the analytical predictions, and the difference is expected to decrease further if one
relaxes the assumptions made in deriving Kt.
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5. Concluding Remarks

A mesoscopic study on wrinkling of the PWCPs in the BET was presented based on an instability
analysis point of view. By considering the mechanism of wrinkle formation in mesoscale, an equivalent
structure mimicking the behavior of a representative PWCP element in the post-locking stage was
proposed. The stability of the equivalent structure was assessed using the principle of minimum total
potential energy. The onset of instability in the equivalent structure, which is coincident with the onset
of wrinkling in the PWCP, was analytically determined. The proposed Equations (12) and (13) imply
that a number of parameters influence the extent of the critical shear angle of the PWCPs: the lateral
compaction stiffness of yarns (K), tension along yarns (T), effective flexural rigidity of yarns (Qb),
initial yarn width (w0), initial yarn thickness (t), the yarn length in the representative PWCP element
(S), and the initial distance between the central axes of the adjacent parallel yarns (l). The analytical
model introduced in this paper may be helpful for the following applications.

Fabric Design for Superior Wrinkling Behavior: Occurrence of wrinkling in the course of the
draping of the PWCPs is currently a major concern and can be of the types illustrated in Figure 1.
Among the different types, wrinkling due to large in-plane shear deformation is deemed critical in
draping around parts with sharp corners. The presented model may be considered as a first step
toward better analytically comprehending the mechanics of wrinkle formation in the PWCPs due to
large shear deformation. One of the main merits of the approach is incorporating both the geometric
and the mechanical characteristics of the preform. Since the model comprises of mesoscale parameters
of the PWCPs, it opens a window toward analyzing the impact of sub-scale contributing parameters
on the shear wrinkling behavior of the woven composites. More specifically, upon a parametric study
(sensitivity analysis) of the mesoscale specifications of different preforms, optimum PWCPs can be
analytically designed/selected to offer superior resistance to wrinkling during forming.

Minimum Tensioning of Yarns during the Forming Process: Determining the minimum tension
along yarns to evade wrinkling is one of the most practical challenges [22], and the proposed model
has the potential to determine this minimum tension. Equation (13) explicitly reveals how the critical
shear angle can be affected by adjusting tension along yarns. Referring to Equation (4), it is evident that
A is increased if tension along yarns T is ramped up. By taking Equation (12) into account, ∆cr becomes
larger by the growth of T, inferring that wrinkling can be postponed or even fully avoided. Substituting
the values of the parameters of a given PWCP and the rough approximation of the expected maximum
shear angle into Equation (13), e.g., using available kinematics based draping software, the minimum
tension required along yarns to avoid shear wrinkling is obtainable. This cost-effective solution would
be useful for the industrial optimization of forming processes of large PWCP parts. In the current
study, a linear behavior of yarns under tension was presumed, while for more precise predictions,
a model based on a non-linear behavior of the yarns under tension can be developed.
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Abbreviations

γLocking Locking angle Pcr
Critical lateral compressive force
between yarns

w0 Initial yarn width Qb Effective flexural rigidity

t Yarn thickness YS/2
Deflection of the yarn as a beam at
its mid-span

l
Initial distance between the central
axis of the adjacent parallel yarns

F An arbitrary vertical force

Kt Stiffness of rotation springs T Tension along the yarn

K Lateral stiffness of yarns S
Length of yarn in the representative
PWCP element

P
Quasi-static compressive force
between yarns

w Instantaneous width of yarn

∆
Compaction of the yarn due to
lateral compressive force

A Lumped parameter notation

θ
Angle of rods with respect to the
plane of fabric

L(θ, ∆) Total potential energy of the system

H Hessian matrix ∆cr Critical yarn compaction

γWrinkling Wrinkling angle x
Distance from the constraint to any
arbitrary point on the yarn

y(x)
Deflection of the yarn
corresponding to x

q Weight per length of the yarn

L’ Length of the yarn in banding test Fshear Shear force

dWshear
Increment of the work done on the
fabric element

τshear Shear stress

dV Volume of fabric element
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