
materials

Article

Input Forces Estimation for Nonlinear Systems by
Applying a Square-Root Cubature Kalman Filter

Xuegang Song 1, Yuexin Zhang 2 and Dakai Liang 1,*
1 State Key Laboratory of Mechanics and Control of Mechanical Structures,

Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
sxg37068219890209@126.com

2 Key Laboratory of Micro-Inertial Instrument and Advanced Navigation Technology,
Ministry of Education, School of Instrument Science and Engineering, Southeast University,
Nanjing 210096, China; smileyuexin@163.com

* Correspondence: bx1501029@nuaa.edu.cn

Received: 29 August 2017; Accepted: 3 October 2017; Published: 10 October 2017

Abstract: This work presents a novel inverse algorithm to estimate time-varying input forces in
nonlinear beam systems. With the system parameters determined, the input forces can be estimated in
real-time from dynamic responses, which can be used for structural health monitoring. In the process
of input forces estimation, the Runge-Kutta fourth-order algorithm was employed to discretize the
state equations; a square-root cubature Kalman filter (SRCKF) was employed to suppress white noise;
the residual innovation sequences, a priori state estimate, gain matrix, and innovation covariance
generated by SRCKF were employed to estimate the magnitude and location of input forces by using
a nonlinear estimator. The nonlinear estimator was based on the least squares method. Numerical
simulations of a large deflection beam and an experiment of a linear beam constrained by a nonlinear
spring were employed. The results demonstrated accuracy of the nonlinear algorithm.

Keywords: input forces estimation; nonlinear algorithm; square-root cubature Kalman filter;
nonlinear estimator

1. Introduction

Advanced structural health monitoring is generally regarded as a vital technology for the next
generation of aeronautical and space systems [1]. This technology is aimed at preventing catastrophic
structural failures and is comprised of three facets: (a) determination of stresses and deformations of
structural components; (b) estimating input forces; and (c) detection of critical damage mechanisms
such as cracking, delamination, and corrosion. Estimating dynamic input forces of engineering
structures accurately has great significance for structural health monitoring, fatigue analysis and
life estimation, and is regarded as the premise of structural design and optimization. Damage
tolerance considerations determine the design of composite components, and forces occurring in
service conditions can induce non-visible damages in structures. Besides, additional uncertainties may
arise, as structural architectures behave in complex ways under the action of thermo-mechanical forces.
By knowing forces distribution, we can adjust structure layout and enhance material performance
to ensure safety. Moreover, the presence of damage can modify load paths in difficulty predictable
ways. By knowing force distribution, we can also assess damage as there is usually structural damage
in the location of the forces mutation. In engineering applications, input forces are quite hard or
even impossible to be measured directly. Some examples are the measurements of airplane wing
deflection, blade shape changes of windmill or helicopters, tool-tip displacement of line boring
machines, etc. In these cases, it is helpful to use attached sensors to measure the responses of
structures. Estimating dynamic input forces by using responses of structures is an inverse problem.
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In mathematics, inverse problems are typically ill-posed and are difficult to solve. For inverse problems,
a little measurement errors can cause large estimation errors. So input forces estimation method is the
key to improve accuracy.

In summary, input forces estimation algorithms [2–7] can be divided into time domain algorithms
and frequency domain algorithms. Time domain algorithms are much more valuable than frequency
domain algorithms, as time domain algorithms can accomplish estimation in real-time. In dealing
with nonlinear beam systems, there is real-time change in the stiffness matrix, which means that
frequency domain algorithms cannot be used at this situation. In the process of the input forces
estimation, suppressing noise is the key to improve accuracy, as small measurement errors can cause
large estimation errors in inverse problems. For most practical engineering applications, noises can
be simplified as white Gaussian noise. This means that the method of suppressing white Gaussian
noise need to be studied first. Ma et al. [8,9] proposed a method to estimate input forces of linear beam
systems by combining Kalman filter with a recursive method. In his work, Kalman filter was used to
suppress noise, and residual innovation sequences, a priori state estimate, and innovation covariance
generated by Kalman filter were used to estimate input forces by using a least-squares method.
However, these studies were associated with linear beam systems, and estimating dynamic input
forces of nonlinear beam systems have not been studied. As nonlinear beam systems are widely used
in engineering applications, this work focus on estimating input forces for nonlinear beam systems.

In the work, with the system parameters determined, the magnitude and location of input forces
in nonlinear systems can be estimated by using SRCKF and a nonlinear estimator. The nonlinear
estimator is based on least squares method. According to the second order dynamic system and
measuring principle, the state equations and measurement equations of the state-space model are
established. The Runge-Kutta fourth-order algorithm is employed to discrete the state equations.
SRCKF is used to suppress noise, and the residual innovation sequences, a priori state estimate,
gain matrix and innovation covariance generated by SRCKF are employed to estimate the magnitude
and location of input forces by using a nonlinear estimator. To verify the effectiveness of this estimation
method, numerical simulations of a large deflection beam and experiment of a linear beam constrained
by a nonlinear spring are employed.

2. Problem Formulation

There are three steps to estimate the location and magnitude of input forces. First, the state
equation and measurement equation of the state-space model are discretized by using a Runge-Kutta
method. Second, SRCKF is used to suppress white noise. Finally, residual innovation sequences,
a priori state estimate, gain matrix and innovation covariance generated by SRCKF are used to estimate
the location and magnitude of input forces.

2.1. Discretization of a Nonlinear System

In the paper, the dynamic parameters of nonlinear beam structure were known, and we could then
construct the state-space model. With unknown parameters of structure in engineering applications,
we could estimate dynamic and static parameters of state-space models according to Refs. [10–13].
The Runge-Kutta methods are widely used to discrete continuous-time system, and the most
well-known member Runge-Kutta fourth-order algorithm (RK4) has the advantages of high precision,
convergence and stability. Therefore, RK4 is employed by the paper. The nonlinear, continuous-time
model can be described by:

.
X(t) = f0[X(t), F(t), t] + w(t) (1)

.
Z(t) = h0[X(t), t] + v(t) (2)

where state vector X(t) = [position; velocity] and observation vector Z(t) represent measured dynamic
responses; vector F(t) = [0; F]; f0(·) and h0(·) are nonlinear functions with respect to X, F and t; F is the
forces vector; w(t) and v(t) represent continuous-time white noise processes.
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For a step-size ∆T > 0 and an initial value Xk−1, the state Equation (1) can be discrete as follows:

Xk = Xk−1 +
∆T
6

(b1 + 2× b2 + 2× b3 + b4)

for k = 1, 2, 3, 4, . . . , using: 
b1 = f0[Xk−1, Fk−1, tk−1]

b2 = f0[Xk−1 +
b1
2 , Fk−1, tk−1 +

∆T
2 ]

b3 = f0[Xk−1 +
b2
2 , Fk−1, tk−1 +

∆T
2 ]

b4 = f0[Xk−1 + b3, Fk−1, tk−1 + ∆T]

Here, Xk is the state approximation, and the value Xk is determined by the value of Xk−1 plus
the weighted average of the increments (b1, b2, b3, and b4), where each increment is the product of the
sample interval.

The discrete model is described by:{
Xk = f (Xk−1, Fk−1) + wk
Zk = h(Xk) + vk

(3)

E[wk] = 0, E
[
wkwT

l
]
= Qδkl , Q = Qw I2n∗2n, where vector wk represents the process white

noise, Q represents covariance matrix and δkl is the Kronecker deltas. E[vk] = 0, E
[
vkvT

l
]
= Rδkl ,

R = Rv I2n∗2n, where vector vk represents the measurement white noise, R represents the noise
covariance matrix, Rv = σ2, σ is the standard deviation of the measurement noise. The vectors wk and
vk are mutually uncorrelated.

2.2. Square-Root Cubature Kalman Filter [14,15]

2.2.1. Initialization

Initialization the Filter by Setting Initiate State and Square Root of Covariance Matrix.

x̂0|0 = E[x0] (4)

S0|0 = chol[(x0 − x̂0|0)(x0 − x̂0|0)
T ] (5)

The initial value S0|0 of the square-root factor of the error covariance matrix can be computed by
the Cholesky decomposition, where chol[·] is the Cholesky factorization.

2.2.2. Time Update

(1) Calculate the cubature points:

Xi,k/k = Sk/kξi + x̂k/k, i = 1, 2, . . . , m (6)

where x̂k/k is the prior estimated state. ξi =
√

m
2 [1]i, [1]i is the ith column of the matrix [I (−1)I].

(2) Calculate the propagated cubature points:

X∗i,k+1/k = fk(Xi,k/k), i = 1, 2, . . . , m (7)

(3) Calculate the predicted state:

x̂k+1/k =
1
m

m

∑
i=1

X∗i,k+1/k (8)
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(4) Calculate the square-root factor of prediction error covariance:

Sk+1/k = tria
([

X∗k+1/k, SQ,k
])

where SQ,k is obtained by Cholesky factorization for Qk = SQ,kST
Q,K. tria(·) is a matrix triangularization

algorithm which can generate a lower triangular matrix:

X∗k+1/k =
1√
m

[
X∗1,k+1/k − x̂k+1/k, X∗2,k+1/k − x̂k+1/k, · · · , X∗m,k+1/k − x̂k+1/k

]
(9)

2.2.3. Measurement Update

(1) Calculate the cubature points:

Xi,k+1/k = Sk+1/kξi + x̂k+1/k, i = 1, 2, · · · , m (10)

(2) Calculate the propagated cubature points:

Yi,k+1/k = hk+1(Xi,k+1/k), i = 1, 2, · · · , m (11)

(3) Calculate the predicted state:

ẑk+1/k =
1
m

m

∑
i=1

Yi,k+1/k (12)

(4) Calculate the square-root of the innovation covariance matrix:

Szz.k+1/k = tria([Yk+1/k, SR,k+1]) (13)

Yk+1/k = 1√
m

[
Y1,k+1/k − ẑk+1/k, Y2,k+1/k − ẑk+1/k, · · · , Ym,k+1/k − ẑk+1/k

]
, SR,k+1 is obtained by

Cholesky factorization for Rk+1 = SR,k+1ST
R,k+1 and Rk+1 is the noise covariance matrix. tria(·) is

a matrix triangularization algorithm which can generate a lower triangular matrix.
(5) Calculate the innovation covariance matrix:

Pzz,k+1/k = Szz,k+1/kST
zz,k+1/k (14)

(6) Calculate the cross-covariance matrix:

Pxz,k+1/k = Xk+1/kYT
k+1/k (15)

where
Xk+1/k =

1√
m
[X1,k+1/k − x̂k+1/k, X2,k+1/k − x̂k+1/k, · · · , Xm,k+1/k − x̂k+1/k]

(7) Calculate the Kalman gain:

Kk+1 =
(

Pxz,k+1/k/ST
zz,k+1/k

)
/Szz,k+1/k (16)

(8) Calculate the updated state:

Zk+1 = zk+1 − x̂k+1/k (17)

x̂k+1/k+1 = x̂k+1/k + Kk+1Z(k + 1) (18)
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(9) Calculate the square-root factor of the corresponding error covariance:

Sk+1/k+1 = tria([Xk+1/k − Kk+1 ×Yk+1/k, Kk+1SR,k+1]) (19)

tria(·) is a matrix triangularization algorithm which can generate a lower triangular matrix.

2.3. The Nonlinear Estimator

By applying residual innovation sequences, a priori state estimate, gain matrix and innovation
covariance generated by SRCKF, input forces can be estimated by using a nonlinear estimator from the
response values (displacement, velocity, or acceleration). The inverse estimation method consists of
two parts: SRCKF with no input forces terms, and a nonlinear estimator. In the nonlinear estimator,
the first-order Taylor series expansion is used to arrive at the estimated state value x̂k/k−1, and a least
squares method is used to estimate forces. The detailed derivation of the nonlinear estimator can be
found in Appendix A. The simple equations of the nonlinear estimator are as follows:

Φk = ∂ f (X̂k/k−1)/∂X (20)

Γk = ∂ f (X̂k/k−1)/∂F (21)

Hk = ∂h(X̂k/k−1)/∂X (22)

Bs(k) = Hk[Φk Ms(k− 1) + I]Γk (23)

Ms(k) = [I − Kk Hk][Φk Ms(k− 1) + I] (24)

Kb(k) = γ−1Pb(k− 1)Bs
T(k)[Bs(k)γ−1Pb(k− 1)Bs

T(k) + Pzz,k/k−1]
−1

(25)

Pb(k) = [1− Kb(b)Bs(k)]γ−1Pb(k− 1) (26)

F̂(k) = F̂(k− 1) + Kb(k)[Zk − Bs(k)F̂(k− 1)] (27)

where f (·) and h(·) represent nonlinear functions of the discrete system, Pzz,k/k−1 represents the
innovation covariance matrix, Kk represents the gain matrix, Bs(k) and Ms(k) represent the sensitivity
matrices, Zk represents the innovation matrix, Kb(k) represents the correction gain for updating
F̂(k), Pb(k) represents the error covariance, F̂(k) represents the estimated input vector, and γ is
a fading factor.

The procedures for the nonlinear method are summarized as Figure 1.Materials 2017, 10, 1162  6 of 19 
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3. Numerical Simulations and Discussions

3.1. Simulation Model

In structural dynamic analysis, the slender beam may exhibit geometrically nonlinear behaviors
when it undergo large deformation. In the paper, a large deformation beam is picked as the model,
and the equation of motion can be described as follows:

M
..
X + C

.
X + K(X)X = F (28)

where M is the mass matrix, C the damping matrix, K the stiffness matrix, X the displacement vector,
and F the equivalent nodal force vector.

M =
N

∑
i=1

Me K =
N

∑
i=1

Ke Ke = KL
e + KN

e

It is assumed that the beam element is two-dimensional and each node has three degrees of
freedom (two translational and one rotational). Beam element is shown as Figure 2.
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According to Refs. [16–18], the element linear stiffness matrix Ke
L, nonlinear stiffness matrix Ke

N
and consistent mass matrix Me can be expressed in the form:

Ke
L = EI

L3



AL2/I 0 0 −AL2/I 0 0
12 6L 0 −12 6L

4L2 0 −6L 2L2

AL2/I 0 0
Symmetric 12 −6L

4L2



Ke
N = EA(u4−u1)

L2



0 01 0 0 0 0
6/5 L/10 0 −6/5 L/10

2L2/15 0 −L/10 −L2/30
0 0 0

Symmetric 6/5 −L/10
2L2/15



Me = ρAL
420



140 0 0 70 0 0
156 22L 0 54 −13L

4L2 0 13L −3L2

140 0 0
Symmetric 156 −22L

4L2


where ρ is mass density, A is the area of cross-section, L is the beam element length, E is Young’s
modulus of elasticity, I is the moment of inertia of the cross-section, and u1 u4 are the axial deformation
of the first node and second node.
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In converting the second order dynamic system to the state-space model, the state equation and
measurement equation can be written as:

.
Y(t) = f (Y(t)) + BF(t) (29)

Z(t) = HY(t) (30)

where:

Y(t) =

[
X(t)
.

X(t)

]
,

B =

[
0n×n

M−1

]

The state value is Y(t) = [Y1(t), Y2(t), . . . , Y3n−1(t), Y3n(t)]
T , and the forces value F(t) =

[F1, F2, F3, . . . , F3n]
T . f (·) is a nonlinear function with respect to Y. H is a measurement matrix and Z(t)

represents the measurement values vector.
Equations (29) and (30) are discretized using RK4, and the discrete model can be described by:{

Yk = f (Yk−1, Fk−1) + wk
Zk = h(Yk) + vk

(31)

Yk is a state vector; Zk is a measurement values vector; f (·) and h(·) are nonlinear functions. E[wk] = 0,
E
[
wkwT

l
]
= Qδkl , Q = Qw I2n∗2n, where vector wk represents the process white noise, Q represents

the covariance matrix, and δkl is the Kronecker deltas. E[vk] = 0, E
[
vkvT

l
]
= Rδkl , R = Rv I2n∗2n,

where vector vk represents the measurement's white noise, R represents the noise covariance matrix,
Rv = σ2, and σ is the standard deviation of the measurement noise. The vectors wk and vk are
mutually uncorrelated.

Considering a five-element beam, the parameters of the beam are: Elastic modulus E = 7.2×
1010 (N/m2); density ρ = 2.7× 103 (kg/m3); beam length l = 1 m; cross section S = 0.1 m× 0.01 m;
sampling interval ∆T = 0.001 s. The system responses (displacements and rotations) are obtained
by RK4, and the responses with white noise are employed as the measured dynamic responses.
Thus, the magnitude and location of input forces can be estimated in real-time from dynamic responses
(displacements and rotations).

The initial parameters of the estimation system are generally listed as follows: x0 = 030×1,
P1 = I30×30, P2 = 030×30, Ms = 200× I30×30, Pb = 200× I30×30, γ = 0.69. To verify the effectiveness
of this estimation method, the root-mean-square error (RMSE) method is used to measure the errors
between the estimated forces F̂i and the exact forces Fi. The RMSE is computed as follows:

RMSE =

√
n

∑
i=1

(Fi − F̂i)
2/n (32)

3.2. Simulation Results

(1) For the large deflection beam model, a sinusoidal input force, a rectangular input force,
and a triangular input force are estimated, respectively. Figures 3–8 plot the results of magnitude
estimation. For the method proposed in the paper, the forces of total degrees of freedom can be
estimated, so we can estimate the location of force if single force is applied. In the simulation, force is
applied at the sixth degree of freedom with a total of 15 degrees of freedom. The results of estimation
of 15 forces at 15 degrees of freedom are plotted at Figures 9–11.

(2) The performance (the mean errors and RMSE values) of estimation method with Qw at 1× 10−4,
1 × 10−6 and σ at a constant 1 × 10−8 are presented in Table 1.
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Table 1. Estimation performance of three types forces with varying Qw (σ = 1 × 10−8).

Force Type Sinusoidal Rectangular Triangular

Qw 1 × 10−4 1 × 10−6 1 × 10−4 1 × 10−6 1 × 10−4 1 × 10−6

Mean (10−4) 9.61 1.72 60.1 50.1 25.5 16.4
RMSE (%) 0.46 0.43 6.61 5.41 5.27 3.62

3.3. Discussions of the Simulations

(1) The SRCKF is famous for strong stability and higher precision, and only needs recent
measurement data and the previous estimated value to estimate input forces, and so the proposed
method could save computer memory, reduce computational burdens, and improve system robustness.

(2) Figures 5–8 show that the estimated input forces rapidly converge to exact input forces with
non-zero initial state, but with a large initial estimation errors. Table 1 show that the estimation
performance of the sinusoidal input force are better than that of the rectangular input force and
triangular input force, and this is because abrupt changes of input force will cause large errors.
Figures 4, 6 and 8 show that the system have good stability with large system noise and measurement
noise. From Figures 9–11, we can conclude that the location estimation of forces have a good
performance. For three types of forces, the estimation performance of the sinusoidal input force
and the triangular input force are better than that of the rectangular input force.

(3) The results in Table 1 show that the proposed estimation method has good capabilities to
suppress noise. The mean errors for sinusoidal input force, rectangular input force and triangular
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input force are close to zero. The RMSE values for sinusoidal input force, rectangular input force,
and triangular input force are less than 0.46%, 6.61%, and 5.27%, respectively.

4. Experiment and Results

4.1. Experimental Model and Measurement Principle

Considering a cantilever with a nonlinear spring stalled at the end node, the finite element
model and the FBG (Fiber Bragg Grating) sensing network are shown in Figure 12. In the experiment,
the strain values of FBG sensor network were used as observed values. The parameters of the beam are:
Elastic modulus E = 6.89× 1010 (N/m2); Density ρ = 2.69× 103 (kg/m3); Beam length l = 0.48 m;
Cross section S = 0.03 m× 0.003 m. The performance of the nonlinear spring is plotted in Figure 13.
There were six measuring points of FBG on the beam along its center line which were employed to
record the beam’s surface strain simultaneously. The distance between two consecutive sensors was
about 9.15 cm.
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The relationship between wavelength shift of FBG sensors and strain values is showed in
Equation (33). Supposing with no temperature change, the strain value can be computed by measuring
the wavelength change according to Equation (34):

∆λ = λ[(1− Pe)ε + (a + ξ)∆T] (33)
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ε =
1
Pe

∆λ

λ
(34)

where ∆λ is the wavelength shift, ε is the axial strain, α is the thermal expansion coefficient, ξ is
the thermo-optical coefficient, ∆T is the temperature change, and Pe is the effective photo-elastic
coefficient [19–21].

For a Euler-Bernoulli beam with n-element, the relationship between strain values and nodal
degrees of freedom can be described as follows:



ε1

ε2
...
...
ε2n−1

ε2n


=



B1

B2

B3

B4
. . .

. . .
B2n−1

B2n





w1

θ1

w2

θ2
...
wn−1

θn−1

wn

θn


(35)

where δ = [wi, θi,wj, θj]
T , B(ξ) = 1

l2 [−6 + 12ξ, l(−4 + 6ξ), 6− 12ξ, l(−2 + 6ξ)]× h
2 . B(ξ) is the shape

function; l is the length of the beam element; ξ = x/l, x is the location of the FBG in element; h is the
thickness of the beam; w is nodal displacement; θ is nodal rotation. [ε1, ε2, · · · ε2n]

T is strain values
vector. For the experiment with six FBG sensors pasted on beam, observation matrix can be describes
as follow:

H =



B1

B2

B3

B4

B5

B6


(36)

4.2. Experimental Procedure and Results

The layout of experiment is plotted in Figure 14. FBG (Fiber Bragg Grating) interrogation
system (SM130 (SonMicro Elektronik, Mersin, Turkey)) is used for measuring the dynamic strains,
and an electrodynamics shaker is employed for the excitation. Input force is applied at the beam end,
and the magnitude and location of input force are estimated by FBG sensor network. In the experiment,
a force sensor is stalled between the exciter and beam end, and the measured force is used as an exact
value to verify the practicability of the proposed method. In the process, a NI cDAQ-9174 module
(National Instruments Corporation, Austin, TX, USA) and LABVIEW software (National Instruments
Corporation, Austin, TX, USA) were used to acquire the signal. The sampling frequency was set as
100 Hz, and the experimental time is was two seconds. The results of input force estimation were
plotted in Figure 15.
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4.3. Discussions

(1) Experimental results showed that the estimated input forces had a little amplitude error.
The amplitude error was mainly produced by insufficient number of sensors. In engineering applications,
distributed optical fiber sensors network can solve the deficiency of sensors installation, where the
distance between two consecutive sensors can be less than 1 cm.

(2) The proposed estimation method required the statistical characteristics of noise to be known,
as well as an accurate system model. In practice, sometimes the statistical characteristics of noise are
unknown, and the system model is inaccurate. In addition, the nonlinear system is easily affected
by the model uncertainties in the actual operating environment. For these deficiencies, we employed
an adaptive algorithm to estimate the time-varying noise statistics and model uncertainties.

5. Conclusions

A real-time nonlinear method for estimating input forces is presented in this work. The method
used SRCKF to suppress noise and a nonlinear estimator to estimate input forces. Simulations of the
large deflection beam system and experiment of a linear beam constrained by a nonlinear spring were
applied. Simulation results showed that the mean errors and RMSE values of three types of input
forces subjected to the above noise were satisfied. Experimental results showed that the estimated
input forces had a little amplitude error, and the estimation method had good stability.
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Appendix A

Following the nonlinear discrete system as given in:

Xk = f (Xk−1, Fk−1) + wk (A1)

Zk = h(Xk) + vk (A2)

where w(k) and v(k) are white noise sequences, E[wkwj] = Qkδk,j, E[vkvj] = σk
2δk,j.

The posteriori state estimate without the exciting force:

Xk = f (Xk−1) + Kk[Zk − h( f (Xk−1))]

= f (Xk−1)− Kkh( f (Xk−1)) + KkZk
(A3)

The posteriori state estimate with the exciting force:

X̂k = f (X̂k−1, Fk−1) + Kk[Zk − h( f (X̂k−1, Fk−1))]

= f (X̂k−1, Fk−1)− Kkh( f (X̂k−1, Fk−1)) + KkZk
= f (X̂k−1, 0) + ΓkFk−1 + KkZk − Kkh( f (X̂k−1, 0) + ΓkFk−1)

= f (X̂k−1, 0) + ΓkFk−1 + KkZk − Kk(h( f (X̂k−1, 0)) + ΦkΓkFk−1)

(A4)

where Kk is got from SRCKF, and:

Φk = ∂ f (X̂(k
∣∣k− 1))/∂X Γk = ∂ f (X̂(k

∣∣k− 1))/∂F Hk = ∂h(X̂(k
∣∣k− 1))/∂X

Define the difference of the two posteriori state estimate as follows:

∆Xk = X̂k − Xk
= (I − Kk Hk)Φk(X̂k−1 − Xk−1)+(I − Kk Hk)ΓkFk−1

(A5)

Assume the exciting force begin with the time tn, then:

1 k < n. X̂k−1 − Xk−1 = 0. Fk−1 = 0, so ∆Xk = 0

2 k = n. X̂k−1 − Xk−1 = 0.Fk−1 = 0, so ∆Xk = 0

3 k > n. X̂k−1 − Xk−1 = ∆Xk−1

so
∆Xk = (I − Kk Hk)Φk(X̂k−1 − Xk−1) + (I − Kk Hk)ΓkFk−1

= (I − Kk Hk)(Φk∆Xk−1 + ΓkFk−1)
(A6)

In summary, we get:

∆Xk =

{
0 k ≤ n
(I − Kk Hk)(Φk∆Xk−1 + ΓkFk−1) k > n

(A7)
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At the time tn+1, Equation (A7) becomes:

∆Xn+1 = (I − Kn+1Hn+1)(Φn+1∆Xn + Γn+1Fn) (A8)

From (A7) we know that ∆Xn = 0, so Equation (A8) becomes:

∆Xn+1 = (I − Kn+1Hn+1)Γn+1Fn (A9)

Define:
Mn+1 = I − Kn+1Hn+1

Then Equation (A9) becomes:
∆Xn+1 = Mn+1Γn+1Fn (A10)

From Equations (A7) and (A10), for k > n, we have:

∆Xk = (I − Kk Hk)(Φk∆Xk−1 + ΓkFk−1) (A11)

Ignoring Φk∆Xk−1, and Equation (A11) becomes:

∆Xk = MkΓkFk−1 (A12)

From Equations (A12) and (A11), we have:

MkΓkFk−1 = (I − Kk Hk)(Φk∆Xk−1 + ΓkFk−1)

= (I − Kk Hk)Φk Mk−1Γk−1Fk−2 + (I − Kk Hk)ΓkFk−1

Assume Fk−1 = Fk−2, then:

Mk = (I − Kk Hk)(Φk Mk−1 + I) (A13)

From Equations (A12) and (A13), we have:

X̂k = Xk + MkΓkFk−1 (A14)

where:

Mk =

{
0 k ≤ n
(I − Kk Hk)(Φk Mk−1 + I) k > n

The observed value of the residual sequence with exciting force can be described as:

Ẑk = Zk − h( f (X̂k−1, Fk−1)) (A15)

The observed value of the residual sequence without exciting force can be described as:

Zk = Zk − h( f (Xk−1)) (A16)

For different values of k, we have:

1 k < n. Fk−1 = 0,Zk = Ẑk

2 k = n. Fk−1 = 0,Zk = Ẑk

3 k > n. Fk−1 6= 0, Zk 6= Ẑk
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Zk − Ẑk = HkΦk(X̂k−1 − Xk−1) + HkΓkF
= Hk(Φk Mk−1 + I)ΓkF

In summary, we get:

Zk =

{
Ẑk k ≤ n
Ẑk + BkF k > n

(A17)

where:
Bk = Hk(Φk Mk−1 + I)Γk

For k = n + 1, n + 2, . . . , n + l. we have:

Y = ψF + ε (A18)

where:

Y(N) =


Zn+1

Zn+2
...
Zn+l

ε(N) =


Ẑn+1

Ẑn+2
...
Ẑn+l

ψ(N) =


B(n + 1)
B(n + 2)
...
B(n + l)

 =


Hn+1Γn+1

Hn+2(Φn+2Mn+1 + I)Γn+2
...
Hn+l(Φn+l Mn+l−1 + I)Γn+l



Mn+l =

{
0 l = 0
(I − Kn+l Hn+l)[Φn+l Mn+l−1 + I] l > 0

Assume E[ẑ(k)ẑT(k)] = s(k), s(k) is got from UKF. ε(N) is a disturbance vector, and its variance
is given by:

Σ(N) =


s(n + 1) 0 . . . 0

0 s(n + 2) . . . 0
. . .

0 0 · · · s(n + l)

 (A19)

From Equation (A18), we can get:

F̂(N) =
[
ψT(N)Σ−1(N)ψ(N)

]−1
ψT(N)Σ−1(N)Y(N) (A20)

And error covariance matrix is:

Pb(N) = E
{[

F− F̂(N)
][

F− F̂(N)
]T
}

=
[
ψT(N)Σ−1(N)ψ(N)

]−1 (A21)

Including forgetting factor γ, from (A19), we get:

Σ−1(N) =


s−1(n + 1)γl−1 0 . . . 0

0 s−1(n + 2)γl−2 . . . 0
. . .

0 0 · · · s−1(n + l)

 (A22)

For k = n + 1, from Equations (A17), (A18) and (A22), we have:

Z(N + 1) = B(N + 1)F + Ẑ(N + 1) (A23)

Y(N + 1) = ψ(N + 1)F(N + 1) + ε(N + 1) (A24)
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Σ−1(N + 1) =

[
γΣ−1(N) 0

0 s−1(N + 1)

]
(A25)

where:

Y(N + 1) =

[
Y(N)

Z(N + 1)

]
ψ(N + 1) =

[
ψ(N)

B(N + 1)

]
ε(N + 1) =

[
ε(N)

Ẑ(N + 1)

]

From Equations (A20) and (A21), we have:

F̂(N + 1) =
[
ψT(N + 1)Σ−1(N + 1)ψ(N + 1)

]−1 ∗ ψT(N + 1)Σ−1(N + 1)Y(N + 1)

=
[
γψT(N)Σ−1(N)ψ(N) + BT(N + 1)s−1(N + 1)B(N + 1)

]−1 ∗
[
γψT(N)Σ−1(N)Y(N) + BT(N + 1)s−1(N + 1)Z(N + 1)

] (A26)

Pb(N + 1) =
[
ψT(N + 1)Σ−1(N + 1)ψ(N + 1)

]−1

=
[
γPb

−1(N) + BT(N + 1)s−1(N + 1)B(N + 1)
]−1 (A27)

Substituting Equation (A21) into Equation (A27), we have:

Pb(N + 1) = γ−1Pb(N)− γ−1Pb(N)BT(N + 1) ∗
[
B(N + 1)γ−1Pb(N)BT(N + 1) + s(N + 1)

]−1 ∗B(N + 1)γ−1Pb(N) (A28)

Substituting Equation (A20) into Equation (A26), we have:

F̂(N + 1) = F̂(N) + γ−1Pb(N)BT(N + 1)s−1(N + 1)Z(N + 1)− γ−1Pb(N)BT(N + 1)∗[[
B(N + 1)γ−1Pb(N)BT(N + 1) + s(N + 1)

]−1B(N + 1)
][

F̂(N) + γ−1Pb(N)BT(N + 1)s−1(N + 1)Z(N + 1)
] (A29)

We insert the following term between BT(N + 1) and s−1(N + 1), and we will get the outcomes:[
B(N + 1)γ−1Pb(N)BT(N + 1) + s(N + 1)

]−1
∗
[
B(N + 1)γ−1Pb(N)BT(N + 1) + s(N + 1)

]
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