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Abstract: This study investigated the effects of Ti content and vacuum annealing on the microstructure
evolution of TixFeCoNi (x = 0, 0.5, and 1) thin films and the underlying mechanisms. The as-deposited
thin film transformed from an FCC (face center cubic) structure at x = 0 into an amorphous structure
at x = 1, which can be explained by determining topological instability and a hard ball model.
After annealing was performed at 1000 ◦C for 30 min, the films presented a layered structure
comprising metal solid solutions and oxygen-deficient oxides, which can be major attributed to
oxygen traces in the vacuum furnace. Different Ti contents provided various phase separation and
layered structures. The underlying mechanism is mainly related to the competition among possible
oxides in terms of free energy production at 1000 ◦C.
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1. Introduction

A very low resistivity (30 µΩ·cm) of the TiFeCoNiOx thin film is observed in our previous
study [1], and it is observed during the test of oxidation resistance of the thin films. This phenomenon
is caused by the different activities with oxygen, Ti has higher affinity with oxygen than the other
elements. Therefore, Ti migrates to the surface and forms a TiO-rich oxide, the other elements
form a FeCoNi-rich alloy which provides a very good conductivity. A similar phenomenon is also
observed in AlFeCoNiOx oxide film, because aluminum also has a very high affinity with oxygen [2].
However, the resistivity of CrFeCoNiOx oxide film is not as low as the oxide films of TiFeCoNiOx and
AlFeCoNiOx because of its activity with oxygen. Also, the lowest resistivity of every oxide film is
achieved after 1000 ◦C for 30 min vacuum annealing; after that, the resistivity increases with increasing
the annealing time. This decreasing of resistivity of these thin films contributes to the recrystallization
and deficient oxidation. This phenomenon is very interesting for academic research.

The parent study investigated the phase transformations and deficient oxides through vacuum
annealing. The mechanism of partial oxidation is an important factor to understand the origin of low
resistivity. In this study, thin films with various quantities of Ti, such as TixFeCoNi (x = 0, 0.5, 1.0),
were designed and prepared through sputter deposition and subsequent vacuum annealing to reveal
the mechanism of the partial oxidation of TixFeCoNi film during vacuum annealing.

2. Experimental Procedures

FeCoNi (designated as Ti0), Ti0.5FeCoNi (Ti0.5), and TiFeCoNi (Ti1.0) alloy targets with a diameter
of 2 inches were prepared from high-purity Ti, Fe, Co, and Ni via vacuum arc melting and machining.
The chemical compositions of the TixFeCoNi targets listed in Table 1 were determined using an energy
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dispersive spectrometer (EDS) of a field emission scanning electron microscope (SEM, JEOL JSM-6335,
JEOL Ltd., Tokyo, Japan) operated at 15 kV. The substrate used for deposition was a SiO2/Si wafer,
whose 0.3 µm thick SiO2 layer was formed by heat treatment at 1000 ◦C for 24 h. The SiO2 layer
served as a barrier to prevent the diffusion of Si from the substrate to the film during high-temperature
annealing. TixFeCoNi thin films were deposited on the SiO2/Si substrates by using a direct current (DC)
sputtering system, without bias and temperature control. The substrates were placed approximately
11 cm from the target on the center of a substrate table which was rotated at a speed of 5 rpm. Prior to
deposition, both the substrate and target were independently sputter cleaned by means of a shutter
placed between them. It was performed at 100 W and the flow rate of Ar was 30 standard cubic
centimeter per min (sccm). The background and working pressures were 5 × 10−5 and 2 × 10−3 torr,
respectively. The deposition power was 100 W and the deposition rate was 133 Å/min. Some of the
deposited samples were further annealed in a vacuum tube furnace at 1000 ◦C for 30 min.

Table 1. Chemical compositions of the TixFeCoNi targets analyzed by SEM/EDS.

Targets
Compositions (at %)

Ti Fe Co Ni

Ti0 - 32 34 34
Ti0.5 12 28 30 30
Ti1 23 25 26 26

The crystallographic structures of the TixFeCoNi films were examined using glancing angle
incidence (2◦) X-ray diffractometer (XRD, Rigaku TTRAX III, Rigagu Ltd., Tokyo, Japan) with Cu Kα1

radiation (λ = 0.15406 nm) generated at 50 kV and 300 mA. The microstructures and compositions of
the thin films were further investigated in detail by utilizing a field emission transmission electron
microscope (TEM, FEI Tecnai S-Twin, Thermo Fisher Scientific, Waltham, MA, USA) equipped with
an EDS.

3. Results and Discussion

Figure 1a,b show the typical cross-section SEM images of as-deposited and as-annealed TixFeCoNi
thin films, respectively. All of these three alloy thin films had a similar micrograph under as-deposited
or as-annealed state. The as-deposited thin film has a columnar structure, shown in Figure 1a. However,
each single column was not a single grain. TEM observation described below proved that the FeCoNi
alloy thin film had a nano-grained structure. This nano-grained structure would become an amorphous
structure after the Ti-content increased; the TiFeCoNi alloy thin film thus had a fully amorphous
structure. The microstructures of these thin films become to a coarse-grained one after vacuum
annealing at 1000 ◦C for 30 min, shown in Figure 1b; and different phases were formed after annealing
because of diffusion of atoms and oxidation.
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Figure 2 presents the XRD patterns and the crystallographic structures of TixFeCoNi thin films
in as-deposited and as-annealed states. The FCC peaks indicate that the as-deposited Ti0 and Ti0.5

films present a single FCC structure with a nano-crystalline structure, which is confirmed in the
latter section of the TEM analysis; while the broad peak shows that the Ti1.0 film has an amorphous
structure. The formation of an FCC structure through the as-deposited Ti0 film is reasonable
because Fe, Co, and Ni atoms can substitute one another due to their similar atomic sizes, valences,
and electronegativities [3]. Intensity decreases with Ti content because of the large atomic size of
Ti. Thus, large lattice distortion and subsequent diffuse scattering are induced. An increase in the
half-height width of the main FCC peak corresponds to a decrease in grain size that can be attributed to
the reduced atom migration and grain growth when large Ti atoms are incorporated. The amorphous
structure of the Ti1.0 film can be explained by the hard ball model proposed by Kao et al. [4]. The radii
of Fe, Co, Ni, and Ti are 1.27, 1.25, 1.25, and 1.46 Å, respectively [3]. The average atomic radius
of Ti1.0 is 1.3075 Å, and the atomic size fluctuation is between +11.7% and −4.4%. An amorphous
structure is expected because the low size fluctuation of −4.4% does not satisfy the least size deviation
requirement of ±7.2% for the merging of the second and third atomic shells for a short-range-order
amorphous structure and±6.2% for the merging of the fourth and fifth shells for a medium-range-order
amorphous one. Table 2 lists the chemical compositions of the as-deposited thin films analyzed by
SEM/EDS. Also all of the as-deposited thin films contained 7–8 at % oxygen which was from the
deposition process.
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Table 2. Chemical compositions of as-deposited TixFeCoNi thin films (SEM/EDS).

Thin Film
Composition (at %)

O Ti Fe Co Ni

Ti0 7 ± 1 - 27 ± 2 33 ± 1 32 ± 1
Ti0.5 7 ± 1 11 ± 1 25 ± 1 30 ± 1 27 ± 1
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Figure 2b reveals new diffraction peaks in the XRD patterns of the films subjected to vacuum
annealing. The Ti0 film presents the FeCoNi peaks and FeCo-rich oxide peaks that correspond
to the FCC structures with lattice constants of 3.55 and 8.38 Å, respectively. The Ti0.5 film yields
FeCoNi-rich, rutile-TiOx, and FeTi-rich oxide peaks. FeCoNi-rich peaks show an FCC structure with
a lattice constant of 3.59 Å. Rutile peaks have a TiOx structure (JCPDS: 76-0321) with lattice constants
of a = 4.59 Å and c = 2.95 Å. FeTi-rich oxide peaks have a HCP structure with lattice constants of
a = 5.09 Å and c = 14.06 Å, which are similar to FeTiO3 (JCPDS: 79-1838). The Ti1.0 film presents
FeCoNi-rich, FeCo-rich oxide, and rutile peaks. The FeCoNi-rich and FeCo-rich oxide peaks indicate
an FCC structure with lattice constants of 3.57 and 8.75 Å, respectively. However, the rutile peaks
correspond to the TiOx structure (JCPDS: 76-0321) with lattice constants of a = 4.609 Å and c = 2.963 Å.
Overall, the as-annealed thin films retained an FCC and FeCoNi-based metal phase and formed oxides.

Figure 3a–c present the TEM bright field (BF) images and the corresponding selection area
diffraction patterns (SAD) of the cross-sectional microstructures of the as-deposited Ti0, Ti0.5, and Ti1.0

thin films with a columnar structure and void striations (white area) along the column boundaries [5].
The voids were unavoidable because of the shadow effect associated with oblique deposition at room
temperature and without an applied bias voltage. Without atom mobility and ion bombardment
enhanced by high temperature and bias bombardment, eliminating the formation of voids during
deposition is difficult. Additionally, the ring patterns of these thin films indicates that the Ti0 and Ti0.5

alloy thin films have nano-crystalline structures, and Ti1 alloy thin film has an amorphous structure.
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Figure 4 illustrates the structure of stacked layers after annealing is conducted at 1000 ◦C
for 30 min. The variations in the composition along the vertical axis (through thickness) of the
layered structures are revealed by the line scan. The compositions at the four selected positions
from the surface to the SiO2 interfacial layer are listed in the inserted tables, and the composition
sequences for different films are as follows: (1) Ti0 film, Fe6.6Co31.6Ni0.9O60.9 → Fe26.4Co9.8Ni1.3O62.5

→ Fe2.0Ni20.7Co74.4O2.9 → Fe26.8Co1.7Si10.1O61.4; (2) Ti0.5 film, Ti0.3Fe14.3Co13.5Ni1.6Si0.7O69.6 →
Fe15.1Ni36.7Co40.3Si1.1O6.8 → Ti0.1Fe7.8Ni30.7Co54.5Si1.2O5.7 → Ti25.8Fe2.6Co8.9Ni2.2Si0.6O59.9; and (3) Ti1.0

film, Ti0.5Fe30.6Co11.6Ni1.4Si0.4O55.5 → Ti39.3Fe4.8Co0.5Ni0.4Si1.3O53.7 → Ti0.3Fe8.7Co35.3Ni51.8Si0.6O3.3 →
Ti45.4Fe0.3Co0.6Ni0.8Si0.6O52.3. The oxygen content of the fully-oxidized Me2O3 (60 at % O) and MeO2 (66.67
at % O) suggests that some of the oxides that form with the residual FeCoNi-rich metal are deficient in
oxygen because the oxygen source is insufficient to oxidize the films completely. This oxygen deficiency
accounts for the high conductivity of the as-annealed films because more oxygen vacancies can provide
more electron carriers to enhance electrical conductivity.
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The layered structure with different phases can be explained from the perspectives of
thermodynamics and kinetics. The formation of this structure can be attributed to two factors.
(1) Chemical affinity competition or stronger affinity in metal–oxygen pairs, such as SiO and TiO,
is preferred to form oxides [6,7]. At 1000 ◦C, the free energies of the formation follow the increasing
order of TiO < SiO < FeO < CoO < NiO (Figure 5); (2) Diffusion rate competition due to the decreasing
order of O > Fe > Co > Ni > Ti [8] involves the formation of Fe and Co atoms with high diffusion
rates on the top layer, although Ti atoms likely form oxides. The free energies in Figure 5 have been
calculated at different temperatures by using Equations (1)–(3) [7]

∆Ht = ∆H0 + 2.303aT logT + b × 10−3T2 + c × 105T−1 (1)

∆St = −a − 2.303aT logT − 2b × 10−3T + c × 105T−2 − I (2)

∆Ft = ∆H − T∆S (3)

where ∆Ft is the free energy of formation, ∆St is the entropy of formation, ∆H is the enthalpy of
formation, and a, b, and I are constants [7].
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and Si) oxides.

Figure 6 presents a schematic of atom migration, diffusion pathways, and reactions during
annealing to explain the formation of the layered structure. Figure 6a illustrates the deposition of
TixFeCoNi thin films via DC sputtering, resulting in the uniform deposition of constituent atoms on the
SiO2/Si substrate. Figure 6b shows that oxygen transfers from the chamber at a pressure of 1 × 10−2

torr and from the SiO2/Si substrate under heat treatment at 1000 ◦C for 30 min. Figure 6c displays
the Ti0 thin film, in which Fe and Co atoms preferentially react with oxygen to form the top FeCo-rich
oxide layer, and with oxygen from the interface layer adjacent to the SiO2 to form FeSi-rich oxide
layers. Fe–O is even stronger than Co–O. Thus, FeCoNi-rich solid solution phase (Ni > Co > Fe in
concentration) formed as the middle layer. By contrast, the bonding energy of Ti–O is stronger than
those of Ti–Fe, Ti–Co, Ti–Ni, Fe–O, Ni–O, and Co–O in the Ti-containing thin film. Figure 6d shows
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that this strong affinity causes Ti atoms to migrate into the oxygen-rich region of the thin films during
annealing. Thus, the Ti oxide Ti25.8Fe2.6Co8.9Ni2.2Si0.6O59.9 forms near the SiO2 layer in the Ti0.5 thin
film. However, the Ti and Fe contents in the as-deposited Ti0.5 film are 14.3 and 28.6 at %, respectively.
The high concentration of Fe (2.6 at %) in Ti oxide suggests that the second-strongest Fe–O bonding
can compete with Ti for oxygen when Fe content is relatively high. The FeCoNi-rich metal phase with
a large depletion of Ti develops in the middle (see compositions at f and g in Figure 4b). For the Ti1.0

film, in which the Ti content is twice as that of the Ti0.5 film, TiFe-rich oxide is further produced with
FeCo-rich oxide on the top layer (at i and j in Figure 4c). In addition, nearly pure Ti oxide with high Ti
content but negligible Fe content (0.3 at %) grows with the Ti-depleted and FeCoNi-rich metal phase at
the bottom (at k in Figure 4c).
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state to the post-annealed state: (a) DC sputtering deposition of thin film on Si substrate; (b) oxygen
coming from the vacuum chamber and SiO2 substrate during vacuum annealing; (c) diffusion pathways
and layer formation in Ti0 film during annealing; and (d) diffusion pathways and layer formation in
Ti0.5 and Ti1.0 films during annealing.
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4. Conclusions

The influence of Ti content and vacuum annealing on the microstructure of TixFeCoNi thin films
was investigated. The as-deposited Ti0 and Ti0.5 films presented a nano-crystalline FCC structure,
while the as-deposited Ti1.0 possessed an X-ray amorphous structure, which can be explained by
determining topological instability and by using a hard ball model. The films comprised a layered
structure because of phase separation into metal solid solutions and oxygen-deficient oxides after
vacuum annealing at 1000 ◦C for 30 min. Different Ti contents provided various phase separation and
layered structures. The mechanism was mainly related to the competition among possible oxides in
terms of free energy production at 1000 ◦C.
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