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Abstract: We present a novel approach for gradient based maximization of phononic band gaps.
The approach is a geometry projection method combining parametric shape optimization with
density based topology optimization. By this approach, we obtain, in a two dimension setting,
cellular structures exhibiting relative and normalized band gaps of more than 8 and 1.6, respectively.
The controlling parameter is the minimal strut size, which also corresponds with the obtained stiffness
of the structure. The resulting design principle is manually interpreted into a three dimensional
structure from which cellular metal samples are fabricated by selective electron beam melting.
Frequency response diagrams experimentally verify the numerically determined phononic band
gaps of the structures. The resulting structures have band gaps down to the audible frequency range,
qualifying the structures for an application in noise isolation.

Keywords: phononic band gap; additive manufacturing; selective electron beam melting;
cellular materials; metamaterials; topology optimization; parametric shape optimization;
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1. Introduction

In the last 25 years since their emergence, materials with phononic band gap (PBG) are gaining
more interest among scientists. A PBG describes a frequency band where mechanical waves are not
transmitted through a material. For applying the concept of PBGs in real life, the need for design
methods to precisely predict the resulting PBG frequency range arises. Furthermore, for a possible
application as a sound isolator or filter, the PBG must lie within the audible frequency range of 20 Hz
to 20 kHz [1].

PBGs can occur in many kinds of composite structures. Phononic crystals, named based on the
previously discovered photonic crystals, are periodic binary composites and were the first structures
identified to have a PBG [1]. These composites consist of periodic inclusions that act as scatterers
and a matrix with a large mismatch in elastic constants compared to the inclusions [2]. While the
first numerical proof of this concept goes back to 1993 [3], the first experimentally observed PBG in
a phononic crystal was documented in 1995 and a complete PBG was first documented in 1998 [4,5].
A complete PBG is defined as a band gap that is independent of wave polarization or travel direction [1].
Only a few years later, a new type of PBG material where the wave length is much smaller than the
lattice constant of the periodic array was discovered. These are called sonic crystals and are a type
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of acoustic metamaterial that relies on locally resonant structures in order to form a PBG in very low
frequencies [6,7]. A good description of these and additional PBG material types is given in [8].

A wide range of different approaches on how to design band gap structures has been realized
in the past. Most of these are 2D structures, e.g., planar grid structures with tunable non-structural
masses [9,10], tetragonal and hexagonal chiral lattices [11,12], auxetic inverted honeycombs [13],
or modified honeycomb lattices [14]. In three dimensions, cubic lattices with spherical holes [15,16],
sinusoidal beams [17], octahedrons using inertial amplification mechanisms [18], and cubic lattices
found by eigenmode analysis of regular lattices [19] are some examples for the geometry of PBG
materials. Research following the eigenmode approach showed that sinusoidal strut lattices, e.g.,
from eigenmode shapes of regular cubic unit cells, have favorable PBG properties [20,21]. It was also
found that the eigenmode shape with the most favorable PBG properties shows auxetic behaviour in
all Cartesian coordinate directions [19].

PBGs have been also designed by mathematical programming. In the landmark paper [22],
Sigmund and Jensen proposed a density based topology optimization approach to optimize for PBGs.
A periodic bi-material design with a stiff inclusion within a weaker but existing matrix material is
assumed (see Figure 1a and the corresponding band gap in Figure 1b). We discuss and extend the
approach in Section 2.2. The band gap of the design in Figure 1a can easily be enlarged by increasing
the contrast of stiffness and mass between the solid inclusion and the matrix material. The nonphysical
extreme case is solid material placed freely within air with obviously no transmission at all.

For practical reasons, a connected lattice design is desired without a weak matrix material to
carry the solid structure. While density based topology optimization, from [23,24], can efficiently be
applied for the design of lattice structures, the combination of PBG maximization and concurrent
connectivity/stiffness constraints is difficult to realize, see Figure 1c. PBG optimization problems are
very sensitive with respect to intermediate materials [25]. To this end, far less efficient gradient free
optimization has been applied for PBG optimization of connected structures [26–28]. With reformulated
connectivity constraints, the realization of connected PBG optimization by gradient based topology
optimization was successfully shown [29].

Considering the issue of nonphysical design and unconnected structures is crucial for the
optimization process, we propose a novel optimization approach with a reduced design space where
both issues are under full control of the problem formulation but not any more subject for the optimizer
to change. This basically means that there is a rigorous formulation for the minimal strut thickness.

In this research, we present novel PBG structures obtained by our new optimization approach.
As the optimization of 3D PBG structures with our approach is not yet available, we deduce common
design patterns from the 2D optimization results and extend them to create a novel 3D lattice design.
Samples from these new unit cells are fabricated from metal powder by selective electron beam melting.
The numerical results are compared to experimental results from a transmission experiment.
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Figure 1. (a) The periodic 2D design is an interpretation of the optimal design obtained in [22]. The solid
inclusion is modeled by multiplying the local material with a pseudo density value ρ = 1 (black)
while the weak matrix material is modeled by multiplying the material with ρ = 0.1 (dark gray);
(b) shows the dispersion relation corresponding to (a); (c) To get rid of the weak matrix material in (a),
the lower bound of the pseudo density is reduced to 1× 10−9 (white), corresponding to air. Without
a soft matrix material to carry the solid mass, a structural connection for the periodic structure is
necessary. The figure shows the obtained optimization result with concurrent stiffness constraints for
the structure. The different levels of grayness correspond to graded stiffness of the material which is
not manufacturable. See the discussion in Section 2.2.

2. Methods

2.1. Dispersion Relation

Dispersion describes the phenomenon that the relation of the phase velocity vp of a wave in a
medium and its frequency ω is no longer linear. Therefore, the dispersion relation relates the wave
vector k to the frequency ω and the phase velocity vp as follows [30].

vp(ω) =
ω

k(ω)
(1)

According to the Bloch theorem, the wave propagation behavior of a periodic lattice can be fully
described by just analyzing its unit cell [12,31]. The relation of k and the phase velocity vp is a linear
eigenvalue problem that has to be solved for all possible values of k in order to fully characterize
the unit cell. The path on which the values of ω have to be calculated is given by the first Brillouin
zone, which is the Wigner-Seitz cell of the reciprocal lattice [31]. The first Brillouin zone can be further
reduced to the irreducible Brillouin zone (IBZ), whose complete path along its vertices is used to
calculate the dispersion relation. In a quadratic lattice this path is Γ–X–M–Γ; in a cubic lattice the path
is extended by one additional point to Γ–X–M–R–Γ (see Figure 2). By calculating the eigenvalues of ω

for values of k along this path, we get the dispersion relation, as can be seen in Figure 1b. The regions
without any possible ω in any direction of k are called complete band gaps and are from here on
referred to simply as PBG, see also Figure 1b.
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Figure 2. Brillouin zones (red) and irreducible Brillouin zones (IBZ, blue) for the (a) two-dimensional
case and (b) three-dimensional case.

The 2D dispersion relations are obtained by an in-house academic software, while 3D dispersion
relations are calculated with the commercial finite element software COMSOL MULTIPHYSICS 5.3.
A strut thickness of 0.5 mm was assumed for the 3D structures based on the estimated mechanically
active diameter of the actual samples (see Section 2.3). Material parameters for Ti-6Al-4V
(ρ = 4420 kg m−3, E = 114 GPa, nu = 0.33) for the 3D simulations are taken from the included materials
library. Floquet-periodicity is applied to the opposing strut ends of the unit cell.

2.2. Gradient Based Structural Optimization

Structural optimization has become widely accepted as a design tool in academic research and
industry. Two prominent classes are topology and shape optimization. Density based topology
optimization allows the creation of an arbitrary number of holes with arbitrary shapes. Thus,
very complex designs of high performance can develop through the optimization process while
typically not much preparatory work is necessary to set up the optimization problem including the
definition and initial design of the design domain. The idea of topology optimization is to introduce
pseudo density variables ρe ∈ (0, 1] with cell index e for each mesh cell to scale the local material
element-wise constant from solid material (1) to void (a very small value) [23,24], see also Figure 1.

By extending the density based PBG problem [22] to a solid and void (ρmin = 1× 10−9) problem
and adding a stiffness condition [32] to obtain connectivity, we obtain the solution shown in Figure 1c.
The black region is to be interpreted as solid material, the white region with ρmin is to be interpreted
as void. However, the regions with intermediate pseudo density (also called gray regions) have no
straight physical interpretation and therefore the design has no practical value. Having potentially
non-interpretable designs due to intermediate pseudo density is one of the drawbacks of density based
topology optimization. For the majority of common applications there are approaches to overcome this
issue (e.g., Heaviside projection based approaches [33,34]). However, for the present problem we were
not able to apply the Heaviside projection successfully. Heaviside projection is based on a smoothed
step function where the smoothing parameter is gradually increased towards a steeper function by
means of successive optimization problems starting from the previous result. In our experiments,
the optimizer was not able satisfy the PBG and stiffness constraints concurrently when the smoothing
parameter was increased to moderate value. This might be due to an increasing non-differentiability
in combination with the per se difficult nonlinear constraints.

To this end, we developed a parametric shape optimization approach which allows us to explicitly
formulate the connectivity requirement as given, with no design freedom at hand for the optimizer
to remove the connectivity for the sake of PBG maximization. To overcome classical issues of shape
optimization like remeshing, we project the geometry on a pseudo density field as in density based
topology optimization. With this projection we have full control on the grayness of the interface.
We present the details of the method itself in [35] but give a brief introduction in the following.
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The principal idea of geometry projection can be also found in [36,37], where a set of geometric
primitives is moved and scaled.

2.2.1. Shape Mapping

We start with the introduction of the design variables. Consider a simple horizontal structure as
depicted in Figure 3a. There are center variables a1, . . . , a6. These variables are the vertical positions
of the points ai with 1 ≤ i ≤ 6. The horizontal components of ai are fixed. Associated to the center
variables ai are the profile variables wi. The structure is constructed by the points pi and p

i
where

the vertical positions are constructed as pi = ai + wi and p
i
= ai − wi. The horizontal distribution of

the variables is directly connected to the finite element discretization. The surface of the structure is a
linear interpolation of the points pi and p

i
.

This example demonstrates that there is a mandatory vertical connection given by design.
We just need to make sure that the horizontal structure does not become too thin by design bounds
wi ≥W∗− (13). Even with a given minimal thickness, the optimizer could try to weaken the horizontal
stiffness by designing a zigzagged structure. This is prevented by local linear slope constraints (9) and
curvature constraints (10) and (11). See also Section 3.1 for further details.

The structure is now mapped to a pseudo density field ρ where a pseudo density value ρe is assigned
to each finite element cell. When a cell is completely covered by the structure, the pseudo density
value is one, if it is not covered by the structure the value is very small (here 1× 10−6) to represent
void. Partially covered elements are explained below. For the finite element analysis the local stiffness
and mass matrices are scaled by the pseudo density value. The parametrization by of the stiffness and
mass matrix by pseudo density is exactly the standard density based topology optimization approach,
also known as SIMP model, see [24]. This leads to the state problem formulation (7). Also the
established sensitivity analysis of functions with respect to ρ can be reused. The only necessary step
is to have a differentiable mapping from the center variables a and profile variables w to the pseudo
density field ρ.

To this end, the boundary of the structure is smoothed by a hyperbolic tangent function, see Figure 3b,

tβ(a(x1), w(x1), x2, β) =


1− 1

eβ(x2−a(x1)+w(x1)) + 1
if x2 ≤ a(x1)

1
eβ(x2−a(x1)−w(x1)) + 1

else
(2)

Here β is the smoothing parameter and a(x1) and w(w1) are linearly interpolated between the
neighboring discrete variables from the set of vectors a and w. A single pseudo density value is
obtained by the mapping function, see (8),

Te(a, w, β) = ρmin + (1− ρmin)
∫

Ωe
tβ(a(x1), w(x1), x2, β) d(x1, x2) (3)

The integration in (3) is performed numerically. Finite element cells only partially covered by
the structure result in an intermediate pseudo density, also called gray cells. Due to the smoothing by
tβ also the neighboring cells might be gray, depending on β. For our results shown in Figure 4 and
Section 3.1 the resolution of the finite element mesh is sufficiently fine and β is large enough to make
sure that the smoothed boundary is of no issue (numerically validated by a binary design).
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Figure 3. (a) An exemplary horizontal structure constructed by the shape variables a1, . . . a6 for the
height of the center nodes and profile variables w1, . . . w6; (b) The discrete structure is smoothed by the
tanh based function tβ (2). The parameters a(x1) and w(x1) are obtained by linear interpolations of the
discrete design variables, see (a). The smoothing function corresponds to the vertical cross section of
the horizontal structure in (a).
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Figure 4. An exemplary result of the phononic band gap optimization is shown: (a) Shape variables
(coarsened for presentation) of a square symmetric design; (b) The structures are mapped to high
contrast pseudo density with a very small gray interface; (c) Repeated design.

2.2.2. PBG Problem Formulation

For the PBG problem, the left side of the lower horizontal strut (blue in Figure 4a) is parametrized
by vertical center positions ai and profile variables wi. To respect the square symmetry requirement for
reduced Bloch-Floquet analysis on the IBZ zone, the left part of the blue structure is vertically mirrored.
The full blue structure is horizontally mirrored to the green structure. The red and cyan structures are
obtained by diagonal mirroring.

Overlapping of structures is realized by summing their pseudo density values, however, we
still require the resulting pseudo density to not be larger than one. For gradient based optimization
min(∑ structures, 1) needs to be differentiable. For the sake of brevity we refer to [35] for the specific
choice and an elaborately discussion of the issue.

We can combine the sensitivity of PBG optimization with respect to pseudo density as in [22] via
chain rule with the sensitivity of the linear interpolation of the values, the smooth structure mapping
tβ, the integration Te and the smoothing of the overlapping. We formulate the following optimization
problem which can be solved by any first order optimization algorithm (we choose SNOPT (Sparse
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Nonlinear OPTimizer, a commercial software package for solving large-scale nonlinear optimization
problems) [38])

max
a,w,α,γ

2 γ

α
(4)

s.t. ωjl ≤ α− γ, 1 ≤ j ≤ 6, 1 ≤ l ≤ 3 (5)

ωjl ≥ α + γ, 1 ≤ j ≤ 6, 4 ≤ l ≤ 12 (6)(
K(kj, ρ)−ω2

jl M(ρ)
)

Φjl = 0, 1 ≤ j ≤ 6, 1 ≤ l ≤ 12 (7)

ρe = Te(a, w, β) (8)

|ai − ai+1| ≤ 1.1/N (9)

|ai−1 − 2 ai + ai+1| ≤ c*/N (10)

|wi−1 − 2 wi + wi+1| ≤ c*/N (11)

ai ∈ [0, 0.5], 1 ≤ i ≤ N/2 (12)

wi ∈ [W−*, 0.2], 1 ≤ i ≤ N/2 (13)

The problem formulation includes the state problems (7), which are to be fulfilled implicitly,
which means to be solved within each iteration to provide eigenfrequencies ωjl and eigenmodes Φjl .
To this end, (7) needs to be solved 72 times within each iteration; for six wave vectors kj to sample the
IBZ, we obtain the first 12 eigenfrequencies ωjl and eigenmodes Φjl for each wave vector.

The optimization problem is formulated in terms of vectors of shape variables a and w and two
auxiliary variables α and γ. The center frequency of the gap is expressed as α and the width of the gap
by 2 γ. The cost function (4) maximizes the normalized band gap (size of the gap divided by center
frequency). The auxiliary variables are found such that the first three eigenfrequencies are below
the lower gap (5) for all wave vectors and all higher eigenfrequencies are above the upper gap (6).
With this formulation, we try to cope with two well known non-smoothness issues of eigenfrequency
optimization: multiple eigenfrequencies and mode switching (both can be seen in Figure 1b).

We assume a regular discretization of a quadratic 1 m × 1 m finite element (FE) mesh by N2

rectangles (here N = 200). Each of the N2 corresponding pseudo densities ρe depends on the shape
variables a, w and smoothness parameter β via the mapping Te (8), see Section 2.2.1. Like the state
Equations (7), the mapping is implicit and not provided explicitly in form of equality constraints to
the optimizer.

The Equations (9)–(11) regularize the problem. By regularization, the design space is limited,
either to exclude undesired designs and/or to prevent that the optimization algorithm gets locked
in poor local optima. With our specific design parametrization, we get strict control of the design.
The regularization constraints are local constraints. There are approximately N/2 linear constraints
for each constraint formulation above. By (9) the slope of the center line of the strut is controlled.
The horizontal spacing from ai to ai+1 is 1/N. Restricting the maximal vertical difference to 1.1/N
allows just a little more than a 45◦ ascent or descent. We can restrict the minimal structural thickness to√

2 W∗− (The minimal thickness (twice the profile variable w) of a horizontal structure is 2 W∗−, for a 45◦

angle the minimal thickness reduces to 1/
√

2), otherwise the optimizer would form a very thin highly
oscillating vertical connection of low stiffness. However, even with the slope constraints, the optimizer
could form a zigzag shape. With curvature constraints on both the center line (10) and profile (11) we
control the radius of shape features.

In (12), we restrict the horizontal structure to the lower left square and in (13) the design space for
the corresponding profiles is set with a lower bound W∗− as driving parameter and a sufficiently large
upper value. For the sake of clarity, we omit the symmetry mirror operations explained above and
shown in Figure 4a and refer to [35].
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2.3. Sample Fabrication and Measurement Setup

The selective electron beam melting (SEBM) process enables the production of very complex
parts, such as cellular metals [39]. It has been shown that the process is suited to fabricate cellular
auxetic structures with the ability to control relative density [40–43]. Furthermore, phononic band gap
structures were produced by SEBM and the existence of the complete PBGs was already experimentally
verified [21,44].

The cellular metal samples were fabricated by SEBM, a powder-based additive manufacturing
technique that utilizes an electron beam for melting powder particles into a dense part in a
layer-by-layer fashion [39]. The SEBM machine used for producing the samples is an ARCAM AB Q10
and the powder is Ti-6Al-4V with a particle size distribution between 45 µm and 105 µm. All samples
have been fabricated with the same machine parameters, consequently producing the same strut
thicknesses. The structures produced by SEBM have an inherent surface roughness because of the
surrounding powder that gets partially molten and sticks to the surface of the parts. Based on
experience with the parameter set, we expect the samples to be dense (less than 0.5 % porosity) and
therefore interaction effects with pores are negligible.

The 2D optimization results described in Section 3.1 were used to identify principles to create an
improved 3D unit cell geometry. The overall design concept was to use cuboid masses and connect
them with weakened struts, in this case of sinusoidal shape inspired by previous works [19,20]. In these
works, struts that were rotated outwards by 45° proved as favorable configuration for strut-based unit
cells. The straight struts with 90° bends from the optimization results are unfavorable for the SEBM
process, as the melt lines differ widely depending on the orientation (horizontal or vertical). This could
lead to different strut thicknesses, while the sinusoidal shape can guarantee a relatively constant melt
line length regardless of the orientation. Thus, the combination of the masses emerging from the 2D
optimization with the already known sinusoidal struts is a promising approach.

The unit cell is constructed in CAD (computer aided design) and consists of sinusoidal struts
with varying amplitudes in the center surrounded by cubes touching at the node points of the struts
(see Figure 5a). The samples are 5× 5× 10 periodic arrays of the 12 mm cubic unit cell as depicted
in Figure 5b. The node distance of the struts is 6 mm and the cubes have an edge length of 3 mm,
which, in turn, results in 6 mm edge lengths in the periodic arrangement. Additionally, on the ends
of the long vertices of the array, two thin walls are placed as mounting points for the piezoelectric
plates (see transmission measurement setup described in Section 3.2). The samples with the four
different amplitudes of 0 mm, 1 mm, 1.5 mm and 2 mm can be seen in Figure 5c–f. Here, the amplitude
is defined as the distance between the imaginary line connecting two strut points and the deflected
strut as viewed from one of the main directions. Naturally, an amplitude of zero leads to straight struts.
The cubes and the sinusoidal struts were built with different parameters during the SEBM process
(see Table 1).

Table 1. Parameters used on the ARCAM AB Q10 machine for melting the sinusoidal struts and the
cubes attached to the corners of the strut unit cell.

Parameter Struts Cubes

Current I 5 mA 12 mA
Voltage V 60 kV 60 kV

Scan speed vB 1.5 m s−1 10 m s−1

Line energy EL 0.2 J mm−1 0.072 J mm−1

Line offset Lo f f - 100 µm
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(a) 3D CAD view of the unit cells (b) View of a sample

(c) Front view A = 0 mm sample (d) Front view A = 1 mm sample

(e) Front view A = 1.5 mm sample (f) Front view A = 2 mm sample

Figure 5. (a) CAD view of the four unit cells with Amplitudes of 0 mm, 1 mm, 1.5 mm and 2 mm.
The unit cell size is 12 mm; (b) Scenographic view of a sample. The piezoceramic actor attached to the
surface of the sample is visible; (c) Front view of the 5× 5× 10 unit cell sample with an amplitude of
0 mm; (d) 1 mm; (e) 1.5 mm and (f) 2 mm.

The measurement setup is the same as described in [21]. Elastic waves are excited and measured
by a piezoelectric actor and sensor, respectively. The sensors/actors are glued on both sides of
the sample where a thin wall was built (see Figure 5b). A frequency generator is connected to the
piezoelectric actor and creates a sinusoidal wave signal that results in a mechanical deformation in
the plate, thus creating elastic waves in the sample. The transmitted signal as well as the incoming
signal are measured at the piezoelectric sensor on the opposing side of the sample and at the side
where the frequency generator is connected, respectively. For every frequency step, 64 signals are
averaged into one and a Gaussian filter is applied to the resulting curve to eliminate sharp peaks from
the signal. The magnitude of the transmission T is characterized by the maximum voltage amplitude



Materials 2017, 10, 1125 10 of 15

Uout at the sensor and the maximum excitation voltage amplitude Uin as T = Uout/Uin for every
measured frequency.

3. Results

3.1. Optimized Unit Cells

The optimization problem (4)–(13) is difficult to solve, especially due to the non-smoothness of
the PBG optimization. There are three parameters in the problem, namely, a smoothing parameter β

controlling the grayness of the interface, a curvature bound c* for the shape variables, and the minimal
profile value W−*. The start design for the optimization are always straight orthogonal struts, which
do not exhibit a band gap. The FEM discretization is 200× 200 with first order quadrilaterals. There is
a chance that the optimizer gets stuck in a local optimum and we use the parameters β ∈ [250, 350]
and c* ∈ [0.02, 0.14] similar to a random shots approach. Indeed, we found a common design principle
for all parameters. The obtained PBG width depends only on the minimal profile variable W−* but is
independent on β and c*.

Note that we rescale geometrical and material parameters to improve numerical stability for the
optimization. Absolute frequency values for 2D optimization designs are therefore to be considered
with care.

In Figure 6a,b the widths of the optimized PBGs are shown with respect to the minimal
profile variable bound W−*. This corresponds to a minimal bar thickness of

√
2 W−* and indirectly

corresponds with the stiffness of the structure, which is shown in Figure 6c ranging from 1 to 9% of the
material’s Young’s modulus. The resulting volume fraction ranges from 50 to 60%. Note that solely
maximizing the Young’s modulus of an orthotropic structure results in 33% of the stiffness of solid
material for a volume fraction of 60% (2D optimization of material properties can be performed online
at http://eamc080.eam.uni-erlangen.de/iTop/). Figure 6c also shows that the resulting Poisson’s ratio
is slightly negative for sufficiently large minimal feature size. Note that our shape mapping approach
would also allow to add the Young’s modulus and Poisson’s ratio to the problem formulation in
terms of constraints or subject to maximization/minimization. Selected designs and their dispersion
diagrams are shown in Figure 7.
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Figure 6. Results of the optimization problem (4)–(13) performed for a wide range of minimal
profile widths W−* (13). See also Figure 7. (a) Absolute band gap; (b) Dimensionless band gap;
(c) Observed properties.
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(a) W−* = 0.02, β = 300, c*= 0.1
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(b) W−* = 0.04, β =250, c* = 0.11
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(c) W−* = 0.06, β = 350, c* = 0.09
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(d) W−* = 0.08, β =250, c* = 0.1

Figure 7. Selected designs obtained by optimization. Note the common design principle. The obtained
relative band gaps for (a–d) are 8.32, 4.30, 2.16 and 1.40, respectively, the normalized band gaps are
1.61, 1.37, 1.04 and 0.85, see also Figure 6b. Additionally, the design for W−*= 0.085 is shown in
Figure 4a. Due to the scaling of the numerical model, the actual frequency values are not comparable
to real materials.

3.2. Transmission Measurements

The results of the transmission measurements are shown in Figure 8. The transmission is only
measured along one wave direction (Γ →X), even though the numerical dispersion relations show
that the designs exhibit PBG behaviour in arbitrary directions. In general, the frequency response
diagrams show a low transmission in areas where PBGs were determined numerically. The gray areas
indicate PBGs from the numerical dispersion relations of the 3D unit cells as described in Section 2.1,
while frequency ranges of consistently low transmission value indicate the experimentally obtained
PBGs. In all samples, a relatively low transmission of 0.01 can be seen in the non-PBG areas. Reasons for
the low transmission are the sensitivity of the setup, the adhesive joint of the piezoceramic plates and
dampening of the material itself. The sample with straight struts in Figure 8a shows the lower bound
of the first measured PBG at 55 kHz to 60 kHz in the transmission plot, while the dispersion relation
resulted in the first PBG starting at 65 kHz. The signal is strongly oscillating below the first PBG and
remains at a low transmission above. The dispersion relation results indicate a pass band around
125 kHz that is not reflected in the transmission spectrum.

The other three samples show a different behavior than the first. All three samples have
pronounced PBGs in a low frequency range inside the audible frequencies (lower PBG boundaries
from numerical dispersion relations: 18 kHz, 12 kHz and 10 kHz for the amplitudes 1.0 mm, 1.5 mm
and 2.0 mm, respectively). The transmission diagrams show clear drops in transmission at these
frequencies. Following the first PBG, the transmission rises back to a higher level for all three samples.
The second PBG of the samples with 1.5 mm and 2 mm amplitude has a width of approximately 40 kHz
as can be seen in both transmission diagram and dispersion relation. The 1 mm amplitude sample has
three narrow PBGs below the large band gap of almost 40 kHz. While the samples with the largest
amplitudes show good agreement of numerical and experimental data in the second PBG, the sample
with 1 mm amplitude shows a narrower experimental PBG.



Materials 2017, 10, 1125 12 of 15

After the second PBG, the sample with 1 mm amplitude behaves differently compared to the
other two samples. It has two very narrow PBGs at 95 kHz and 115 kHz. A pass band of only 0.5 kHz
is then followed by a large PBG. The experimental frequency response shows transmission in the
frequency range of 75 kHz to 110 kHz which is wider than the pass band indicated by the numerical
results. From 110 kHz the frequency response shows a PBG matching to the numerical results.

The samples with the largest amplitudes only show four PBGs in the considered frequency range.
The third and the fourth experimentally determined PBG are not as distinguishable as the first two.
Nevertheless, both samples show transmission drops around the PBG frequencies indicated by the
numerical data.
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0 25 50 75 100 125 150

10−5

10−4

10−3

10−2

10−1

100

T
ra
n
sm

is
si
o
n

(b) A = 1.0 mm
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(c) A = 1.5 mm
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(d) A = 2.0 mm

Figure 8. Transmission measurement results for unit cell amplitudes of (a) 0 mm; (b) 1 mm; (c) 1.5 mm
and (d) 2 mm. PBGs calculated from dispersion relations of the respective unit cells are marked as gray
bands. PBGs with widths of less than 1 kHz are omitted.

4. Discussion

We have presented a novel modeling for structural optimization that combines features of
parametric shape optimization with density based topology optimization. We have successfully
applied this approach for a 2D gradient based optimization of PBG structures. A numerical study was
performed with a minimal feature size as parameter. The structures where also evaluated numerically
to obtain material properties Young’s modulus and Poisson’s ratio where a slight auxetic behaviour
could be observed. PBG structures have been designed in the literature manually by gradient free
and gradient based optimization, but usually the corresponding stiffness of the structures is not given.
Under the assumption of a reciprocally connection of PBG width and stiffness, the results in literature
are therefore difficult to compare. However, the authors believe that the presented results are of
unmatched performance. The results reveal a simple, common design principle independent on the
parametrization of the optimization problem. Note that we designed our optimization approach
intentionally with a rather limited design space to cope with the issues of PBG optimization. Hence,
for a different design space competitive alternative designs might exist.

In this work, we successfully transferred the concept of connected masses from the 2D
optimization results to a 3D design with connections adapted from earlier studies. Ti-6Al-4V samples
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were manufactured by selective electron beam melting and tested in a frequency response measurement
setup. The obtained frequency response diagrams show reasonable agreement with the numerically
obtained PBGs from dispersion relations. The biggest factor for deviations that has to be considered is
the difficult-to-measure mechanically active strut diameter of the coarse metal struts. Even computer
tomography measurements in the past have shown very high standard deviations in strut diameters,
rendering an exact determination impossible [21]. Therefore, the initial estimations for the strut
thickness of the samples can be considered a good approximation.

While past studies have shown that cubic lattices with straight struts do not show PBGs [20],
the presented structure with straight struts and added masses does have a PBG. This can be attributed
to the masses acting as inertial elements connected by the much weaker and more elastic struts.
Sinusoidal struts, however, have more favorable PBG properties. In the three samples with sinusoidal
struts and added masses, PBGs inside the audible frequency range were achieved, possibly enabling
applications in high-frequency noise isolation. For lower frequencies, the structures would have to
become increasingly bigger and therefore more unfeasible.

In future work, we will extend the optimization to obtain 3D designs directly. Additionally,
we will seek structures with band gaps in the lower audible frequency range without changing the
unit cell size.
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