7	2.957240000	1.117782000	-0.134224000
6	1.980176000	2.059920000	-0.047978000
6	2.629438000	-0.158060000	0.016569000
6	2.375778000	3.419717000	-0.171180000
6	0.596265000	1.749150000	0.168986000
6	1.286060000	-0.562339000	0.235892000
6	3.736160000	-1.152066000	-0.051175000
6	1.456854000	4.435159000	-0.046906000
1	3.427566000	3.615309000	-0.351346000
6	-0.316567000	2.824847000	0.330677000
6	0.250145000	0.357016000	0.267589000
1	1.055466000	-1.614066000	0.364591000
6	3.505389000	-2.511916000	-0.314604000
6	0.102032000	4.133881000	0.224423000
1	1.771623000	5.470740000	-0.136385000
1	-1.349809000	2.612033000	0.575211000
6	-1.117291000	-0.165330000	0.402476000
6	4.563723000	-3.418156000	-0.367861000
1	2.498872000	-2.868833000	-0.507422000
6	6.115387000	-1.630834000	0.096538000
1	-0.612004000	4.940444000	0.362068000
1	-1.186683000	-1.092118000	0.969876000
6	-2.230334000	0.313107000	-0.190240000
6	5.872460000	-2.982732000	-0.158419000
1	4.364467000	-4.464530000	-0.580412000
1	7.131368000	-1.282287000	0.258847000
1	-2.141360000	1.178602000	-0.842235000
6	-3.580026000	-0.253786000	-0.102429000
1	6.696311000	-3.689408000	-0.197690000
6	-3.949238000	-1.230297000	0.843758000
6	-4.565865000	0.197684000	-0.999701000
6	-5.238625000	-1.748569000	0.880561000
1	-3.224701000	-1.579633000	1.572133000
6	-5.861994000	-0.310506000	-0.977237000
1	-4.306631000	0.956043000	-1.733334000
6	-6.177520000	-1.281622000	-0.035273000
1	-5.529566000	-2.497314000	1.609188000
1	-6.621561000	0.032662000	-1.670900000

Table S1: Cartesian coordinates of ligand **2a** in the gas phase.

9	-7.429582000	-1.780674000	0.000677000
6	5.060062000	-0.724826000	0.146236000
1	5.237384000	0.327306000	0.337062000

77	0.167380000	-0.248842000	1.001674000
6	0.348848000	2.479590000	-0.936039000
6	-1.300013000	2.407775000	0.728054000
6	1.323663000	1.806167000	-1.713177000
6	0.062789000	3.850158000	-1.238382000
6	-1.602749000	3.775108000	0.494755000
6	1.990175000	2.449545000	-2.734363000
1	1.524144000	0.770141000	-1.486172000
6	0.761178000	4.478193000	-2.299607000
6	-0.944938000	4.518531000	-0.461566000
1	-2.326448000	4.262351000	1.134629000
6	1.711035000	3.798807000	-3.032913000
1	2.729640000	1.907278000	-3.316530000
1	0.525814000	5.505907000	-2.553547000
1	2.232671000	4.297477000	-3.844322000
6	-1.994404000	1.617668000	1.747832000
6	-3.146264000	2.095945000	2.404381000
6	-1.447008000	0.341284000	2.058452000
6	-3.765553000	1.340641000	3.389894000
1	-3.575004000	3.056742000	2.135751000
6	-2.095504000	-0.390464000	3.073869000
6	-3.226385000	0.094264000	3.727864000
1	-4.654915000	1.714215000	3.889002000
1	-1.703108000	-1.358438000	3.364190000
1	-3.693841000	-0.503924000	4.506773000
7	-0.319174000	1.787191000	0.050669000
6	-1.238966000	5.943243000	-0.655769000
1	-0.407082000	6.566136000	-0.973601000
6	-2.450180000	6.507803000	-0.472009000
1	-3.287263000	5.856027000	-0.225743000
6	-2.793430000	7.926250000	-0.602268000
6	-1.830021000	8.946670000	-0.733996000
6	-4.150356000	8.301045000	-0.589306000
6	-2.203534000	10.279428000	-0.863445000
1	-0.773355000	8.699546000	-0.720512000
6	-4.542102000	9.631342000	-0.716655000
1	-4.910889000	7.532396000	-0.481752000
6	-3.558256000	10.602913000	-0.854747000

Table S2: Cartesian coordinates of complex **4a** in the gas phase.

1	-1.466623000	11.069318000	-0.960971000
1	-5.587028000	9.921606000	-0.709039000
7	2.170998000	-0.801653000	0.020249000
6	2.435342000	-1.685423000	-1.003775000
6	3.201247000	-0.273169000	0.703190000
6	1.357254000	-2.199054000	-1.765437000
6	3.768075000	-2.075084000	-1.356223000
6	4.539815000	-0.654010000	0.423726000
6	2.865497000	0.669762000	1.772683000
6	1.576890000	-3.052084000	-2.826023000
1	0.358199000	-1.898176000	-1.488976000
6	3.958093000	-2.945584000	-2.458258000
6	4.855636000	-1.540464000	-0.583387000
1	5.329441000	-0.281150000	1.062252000
6	3.855071000	1.404085000	2.457477000
6	1.487980000	0.805584000	2.104062000
6	2.888051000	-3.430651000	-3.180275000
1	0.731738000	-3.428049000	-3.395334000
1	4.966378000	-3.217047000	-2.751143000
6	6.244209000	-1.945032000	-0.833320000
6	3.511952000	2.264616000	3.490188000
1	4.900112000	1.318194000	2.175523000
6	1.180213000	1.678043000	3.167644000
1	3.055515000	-4.094172000	-4.023393000
1	6.392514000	-2.955820000	-1.203713000
6	7.317388000	-1.151244000	-0.638474000
6	2.164943000	2.391023000	3.848126000
1	4.279759000	2.829570000	4.010695000
1	0.147672000	1.797392000	3.474997000
1	7.142282000	-0.119358000	-0.337234000
6	8.726815000	-1.506132000	-0.823005000
1	1.881961000	3.052425000	4.663919000
6	9.172160000	-2.827455000	-1.029355000
6	9.694480000	-0.484124000	-0.788911000
6	10.520254000	-3.114491000	-1.210701000
1	8.458792000	-3.645275000	-1.034363000
6	11.048902000	-0.754025000	-0.967616000
1	9.375601000	0.541497000	-0.623893000
6	11.441319000	-2.070185000	-1.179256000
1	10.869142000	-4.129680000	-1.366026000

1	11.795423000	0.032313000	-0.943883000
7	-1.337146000	-1.644359000	-0.035212000
6	-2.223342000	-1.383660000	-1.057326000
6	-1.434952000	-2.809725000	0.626486000
6	-2.031765000	-0.222367000	-1.845697000
6	-3.300889000	-2.270215000	-1.389818000
6	-2.497566000	-3.711092000	0.361687000
6	-0.427419000	-3.064483000	1.658608000
6	-2.841764000	0.046379000	-2.928187000
1	-1.218143000	0.436169000	-1.581514000
6	-4.095153000	-1.976174000	-2.526883000
6	-3.472537000	-3.446970000	-0.578576000
1	-2.589019000	-4.600168000	0.973674000
6	-0.300545000	-4.322033000	2.282349000
6	0.421448000	-1.978054000	2.011901000
6	-3.875965000	-0.843169000	-3.282537000
1	-2.665027000	0.938360000	-3.522239000
1	-4.861768000	-2.680369000	-2.825086000
6	-4.604659000	-4.377853000	-0.667346000
6	0.649704000	-4.528431000	3.272164000
1	-0.933340000	-5.152462000	1.983168000
6	1.367047000	-2.223438000	3.027702000
1	-4.488688000	-0.647123000	-4.157415000
1	-4.362516000	-5.401965000	-0.387802000
6	-5.891097000	-4.065675000	-0.930765000
6	1.480628000	-3.466388000	3.647166000
1	0.745774000	-5.501381000	3.745194000
1	2.025526000	-1.422820000	3.345010000
1	-6.146770000	-3.023717000	-1.107620000
6	-7.029834000	-4.988867000	-0.950072000
1	2.223545000	-3.611244000	4.428287000
6	-6.891325000	-6.391317000	-0.933382000
6	-8.332785000	-4.457390000	-0.994820000
6	-8.002896000	-7.226299000	-0.943558000
1	-5.902425000	-6.838283000	-0.926430000
6	-9.457044000	-5.279148000	-1.005269000
1	-8.464075000	-3.378879000	-1.014346000
6	-9.273178000	-6.656238000	-0.977017000
1	-7.902496000	-8.306260000	-0.934205000
1	-10.461517000	-4.871339000	-1.035531000

9	12.749077000	-2.347163000	-1.351219000
9	-3.922120000	11.894933000	-0.976522000
9	-10.351809000	-7.464502000	-0.990483000

Compd.	R	R'	% Yield	Colour
2a	4-H	-F	42	Yellow solid
2b	4-F	-F	38	Yellow solid
2c	4-Cl	-F	48	Yellow solid
2d	4-OCH ₃	-F	48	Brilliant Yellow solid
3a	4-H	-OCH ₃	67	Yellow Oil
3b	4-F	-OCH ₃	42	Brilliant Yellow solid
3c	4-Cl	-OCH ₃	41	White solid
3d	4-OCH ₃	-OCH ₃	47	Bright Yellow solid
4a	4-H	-F	27	Brown solid
4b	4-F	-F	30	Brown Solid
4c	4-Cl	-F	25	Pink Solid
4d	4-OCH ₃	-F	28	Dark Brown solid
5a	4-H	-OCH ₃	53	Brown solid
5b	4-F	-OCH ₃	57	Brown solid
5c	4-Cl	-OCH ₃	42	Brown solid
5d	4-OCH ₃	-OCH ₃	45	Dark Brown solid

Table S3: Summary of Physico-chemical properties of ligands (**2a-d**) and (**3a-d**) and complexes (**4a-d**) and (**5a-d**).

	Abs.	$(\varepsilon) \times 10^4$	λ_{em}	λ_{em}	$\lambda_{em}(nm)$	Quantum	Quantum	Quantum	Stokes Shift ^d
	λ_{max}	$Mol^{-1} cm^{-1}$	(nm) ^b	(nm)	CH ₃ OH	Yield $(\Phi)^{c}$	Yield (Φ)	Yield (Φ)	(CHCl ₃)
	(nm) ^a		CHCl ₃	DMF		CUCL	DMF	CH ₃ OH	
						CHCI3			
2a	265,	0.42, 0.29	449	409	449	0.23	0.11	0.23	184, 114
	335								
2b	278,	0.78, 0.25	454	411	439	0.27	0.14	0.27	176, 117
	337								
2c	267,	0.66, 0.25	454	406	462	0.30	0.27	0.30	187, 126
	328								
2d	293,	0.57, 0.45	478	442	482	0.16	0.15	0.16	185, 140
	338								
3a	261.	0.52, 0.24	465	452	450	0.31	0.14	0.30	204, 125
	340	,							- , -
21	262	0.28 0.17	470	120	190	0.45	0.14	0.22	209 116
30	202, 354	0.26, 0.17	470	430	400	0.43	0.14	0.25	208, 110
	554								
3c	266,	0.43, 0.35	460	454	440	0.23	0.06	0.47	193, 111
	348								
3d	278,	0.51, 0.19	455	389	470	0.40	0.35	0.25	177, 117
	338								
1	1		1	1	1				1

Table S4: Summary of photophysical data of ligands (2a-d) and (3a-d).

^a Absorption spectra, ^bemission spectra, ^cluminescence quantum yields (Φ) and ^dStokes-shifts were measured relative to chloroform solutions at 298 K. Wavelengths of excitation light are in the range of 350 – 385 nm.

	Abs. $\lambda_{max} (nm)^a$	$(\varepsilon) \times 10^4 \text{ Mol}^{-1} \text{ cm}^{-1}$	$\lambda_{em} (nm)^{b}$ CH ₃ OH	Quantum Yield $(\Phi)^{c} CH_{3}OH$	$E_{ m ox}({ m V})^{ m d}$	$E_{\rm re}({ m V})^{ m e}$
4 a	258, 335, 396	1.65, 0.55, 0.13	499	0.59	0.41, 0.81	-0. 63
4b	260, 329, 392	1.90, 0.70, 0.11	530	0.47	0.22, 0.41, 0.76	-0.64
4 c	265, 342	2.17, 0.43	489	0.70	0.21, 0.42, 0.76	-0.54, -0.73
4d	277, 340, 398	2.43, 0.62, 0.23	470	0.56	0.20, 0.41, 0.81	-0.67, -0.82
5a	258, 275, 336	0.71, 053, 0.27	500	0.62	0.17, 0.45, 0.77	-0.89
5b	260, 280, 324	1.53, 1.07, 0.60	530	0.57	0.42, 0.75	-0.57
5c	264, 324, 381	1.71, 0.62, 0.16	489	0.50	0.15, 0.42, 0.80	- 0.54, - 0.79
5d	284, 349, 380	1.11, 0.55, 0.61	545	0.58	0.20, 0.43, 0.78	-0.62

Table S5: Summary of photophysical and electrochemical data of $[Ir(4a-d)_3]$ and $[Ir(5a-d)_3]$.

^a Absorption spectra, ^bemission spectra, ^cluminescence quantum yields (Φ) were measured in methanol solutions at 298 K. Wavelengths of excitation light are in the range of 350 – 450 nm. ^{d&e}Electrochemical data versus Fc⁺/Fc (Fc is Ferrocene) as internal standard.

Fig. S1: Cyclic voltammograms of $[Ir(4a-d)_3]$ showing the quasi-reversible oxidation potential against ferrocene/ferrocenium.

Fig. S2: Cyclic voltammograms of $[Ir(4a-d)_3]$ showing the reversible reduction potential against ferrocene/ferrocenium.

Fig. S3: Cyclic voltammograms of $[Ir(5a-d)_3]$ showing the quasi-reversible oxidation potential against ferrocene/ferrocenium.

Fig. S4: Cyclic voltammograms of $[Ir(5a-d)_3]$ showing the reversible reduction potential against ferrocene/ferrocenium.