Supplementary Materials: Metal-Organic Framework of Lanthanoid Dinuclear Clusters Undergoes Slow Magnetic Relaxation

Hikaru Iwami, Ryo Nakanishi, Yoji Horii, Keiichi Katoh, Brian K. Breedlove and Masahiro Yamashita

Figure S1. ¹H NMR spectrum of 2,4,6-tri-*p*-tolyl-1,3,5-triazine in CDCl₃ at 500 MHz on a Bruker AV-500 spectrometer.

Figure S2. ¹H NMR spectrum of 4,4',4"-s-triazine-2,4,6-triyl-tribenzoic acid (H₃TATB) in CDCl₃ at 500 MHz on a Bruker AV-500 spectrometer.

Wavenumber / cm⁻¹

Figure S3. IR spectrum of H₃TATB.

(a)

(b)

Figure S4. Obtained transparent crystals of (a) 1 and (b) 2.

Figure S5. ORTEP drawing of asymmetric unit of **1** with thermal ellipsoid of 50% probability. Hydrogen atoms are omitted for clarity.

Figure S6. ORTEP drawing of asymmetric unit of **2** with thermal ellipsoid of 50% probability. Hydrogen atoms are omitted for clarity.

Figure S7. Drawings of (**a**) Tb(III) dinuclear clusters in **2**; and (**b**) their Tb-Tb distances. The unit of length is Å.

Compounds	1 [Dy(TATB)(DMF)2]	2 [Tb(TATB)(DMF)2]
Formula	C30H26N5O8Dy	C30H26N5O8Tb
Formula mass/g·mol⁻¹	747.06	743.48
T/K	110	110
Crystal system	monoclinic	monoclinic
Space group	C2/c	C2/c
a/Å	33.138(10)	33.137(7)
b/Å	9.893(3)	9.7145(17)
c/Å	26.959(8)	27.314(6)
$\alpha / ^{\circ}$	90	90
β/°	106.751(5)	107.642(3)
$\gamma/^{\circ}$	90	90
V/Å ³	8463(4)	8379(3)
Ζ	8	8
$R_1 [I > 2s(I)]^a$	0.0476	0.0461
ωR_2 (all) ^b	0.1328	0.1237
GoF on F^2	1.011	1.098
CCDC number	151,5211	1,516,111

Table S1. Crystal structure parameters for 1 and 2.

Figure S8. Frequency dependences of the (**a**) χ' and (**b**) χ'' AC magnetic susceptibilities of **1** in an *H*_{DC} of 0 Oe. The measurements were performed in an *H*_{AC} of 3 Oe and *T* range of 10–1.85 K.

Figure S9. Temperature dependences of the χ' and χ'' AC magnetic susceptibilities of **2** in *H*_{DC} of (**a**) 0 and (**b**) 3000 Oe. The measurements were performed in an *H*_{AC} of 3 Oe and *T* range of 10–1.85 K.

The Generalized Debye Model (Equations (S1) and (S2))

$$\chi'(\omega) = \chi_{\rm S} + (\chi_{\rm T} - \chi_{\rm S}) \frac{1 + (\omega\tau)^{1-\alpha} \sin(\pi\alpha/2)}{1 + 2(\omega\tau)^{1-\alpha} \sin(\pi\alpha/2) + (\omega\tau)^{2-2\alpha}}$$
(S1)

$$\chi''(\omega) = (\chi_{\rm T} - \chi_{\rm S}) \frac{(\omega\tau)^{1-\alpha} \cos(\pi\alpha/2)}{1 + 2(\omega\tau)^{1-\alpha} \sin(\pi\alpha/2) + (\omega\tau)^{2-2\alpha}}$$
(S2)

where χ_s is the adiabatic susceptibility, χ_T is the isothermal susceptibility, $\omega = 2\pi v$, (v is the frequency) is the angular frequency, τ is the magnetization relaxation time, and α is the quantitative parameter for the width of the τ distribution.

Figure S11. Field dependence of the magnetization of 1 at 1.8 K. Slight hysteresis was observed.