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Abstract: Stem-cell-based therapies require a high number (106–109) of cells, therefore in vitro
expansion is needed because of the initially low amount of stem cells obtainable from human
tissues. Standard protocols for stem cell expansion are currently based on chemically-defined culture
media and animal-derived feeder-cell layers, which expose cells to additives and to xenogeneic
compounds, resulting in potential issues when used in clinics. The two-photon laser polymerization
technique enables three-dimensional micro-structures to be fabricated, which we named synthetic
nichoids. Here we review our activity on the technological improvements in manufacturing
biomimetic synthetic nichoids and, in particular on the optimization of the laser-material interaction
to increase the patterned area and the percentage of cell culture surface covered by such synthetic
nichoids, from a low initial value of 10% up to 88% with an optimized micromachining time.
These results establish two-photon laser polymerization as a promising tool to fabricate substrates for
stem cell expansion, without any chemical supplement and in feeder-free conditions for potential
therapeutic uses.

Keywords: two-photon laser polymerization; microfabrication; synthetic nichoids; stem cell expansion;
pluripotency maintenance; biomimetics

1. Introduction

1.1. Rationale Underlying Industrial-Scale Expansion of Stem Cells and Limitation of Feeder-Cell Layers and
Exogenous Conditioning

Stem cell-based therapies represent the most challenging and, potentially, the most successful
applications for stem cells (SCs) [1]. Multipotent adult stem cells, including mesenchymal stem cells
(MSCs) and adipose stem cells, are likely to be important sources for such therapies both because
of the ease of access and the autologous derivation, which involves a low risk of infection and low
immunoresponse from the host [2,3]. In addition, induced pluripotent stem cells (iPSCs), which can be
obtained from the genetic reprogramming of somatic cells to their pluripotent stage and then induced
towards a specific cell phenotype [2,4], represent a further promising source because they allow ethical
issues related to embryonic stem cells (ESCs) to be overcome. However, several limitations need to be
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overcome prior to the successful exploitation of SC-based therapies in clinics. For example, the low
efficiency of iPSC reprogramming [5] and the average number of cells needed for cell therapies and
regenerative strategies is typically in the order of 106 to 109 cells, whereas the number of SCs from
4 mL-bone-marrow aspirate is around 700 cells [6]. Therefore, a (minimal) in vitro cell manipulation,
including expansion in order to achieve high cell densities by ensuring either multi/pluripotency
maintenance or differentiation towards the correct lineage to meet clinical demands is necessary.

In this context, efforts have focused on optimized culture media with a well-defined composition.
Such media include additives and small molecules that inhibit signaling pathways associated with cell
death and differentiation. For example, Valamehr and colleagues [7] reported the maintenance of a
homogeneous population of undifferentiated human iPSCs by supplementing the standard culture
media with “SMC4” containing the cell pathway inhibitors Glycogen Synthase Kinase 3, MAPK/ERK
Kinase, Rho-Associated Protein Kinase, and Transcription Growth Factor-beta. The same research
group derived a culture medium, namely a fate maintenance medium, containing SMC4 and leukemia
inhibitory factor (LIF), and basic Fibroblast Growth Factor (bFGF) [8]. They reported that (mouse) ESCs
had a lower expression of genes related to three germ layers differentiated with respect to those cells
expanded on conventional feeder layers. Another example relevant to the development of protocols of
chemically-defined media for the maintenance and expansion of (mouse) ESCs consisted in growing
cells in suspension as spheroids in LIF-bFGF-conditioned medium to ensure long-term pluripotency
and very few differentiated cells [9].

Examples of commercially available chemically-defined media for a feeder-free (FF) culture of
human iPSCs are PluriSTEM (Merck Millipore, Darmstadt, Germany), StemPro (Invitrogen, Carlsbad,
CA, USA), mTeSR1 (STEMCELL Technologies, Vancouver, BC, Canada), Pluripro (Cell Guidance
Systems, St. Louis, MO, USA), Stemline (Sigma, St. Louis, MO, USA), and Essential-8 (Invitrogen,
Carlsbad, CA, USA) [10]. Despite all the advantages in terms of expansion efficiency, the long-term
clinical side-effects on human beings in the case of SC transplantation needs to be assessed in
advance. For example, LIF has been proven to increase cancer expansion and metastasis in human
osteosarcoma and carcinoma, enhancing the phosphorylation of signal transducers and activators
of transcription-3 [11], as well as mediating the proinvasive activation of stromal fibroblasts [12].
In addition, such culture media typically may contain animal-derived components, (e.g., fetal bovine
serum and/or bovine serum albumin) to enhance SC growth. The serum composition as well as the
presence of differentiation factors are generally undefined, so that the serum lots need to be screened
and certified for SC use, resulting in high direct/indirect costs [9]. For these reasons, serum-free and
additive-free culture conditions are preferable.

For human pluripotent stem cells, an animal feeder cell layer (e.g., mouse embryonic fibroblasts)
is usually employed to support cell adhesion, survival, and self-renewal [3,13]. However, the biological
products secreted by such xenogeneic feeder-cells are also a source of pathogens and mycoplasma
contaminations which might induce an acute immune response in the host upon SC transplantation.
To prevent such issues, human feeder cell layers have been introduced, such as recombinant E8
fragments of laminin isoforms [14], recombinant human laminin 511 [15,16], and clinical grade human
foreskin fibroblasts [17,18]. Nevertheless, there are still several drawbacks related to the cost, the high
lab-to-lab variability, high batch variability, as well as a limited scalability. An additional issue is the
persistence of viral and non-viral infections from allogenic materials, the complexity in the maintenance
of cells, the isolation and separation of a pure population of SCs with respect to feeder-cells. Finally,
feeder-cells release a not-well defined variety of factors which may affect the interpretation of the
biological results [3] and lead to safety issues when the SCs are transplanted. An example of FF culture
consists in different extracellular matrix (ECM) extracts such as Matrigel® [19] derived from mouse
sarcoma cell basement membrane. Matrigel® is currently the gold standard among ECM culture
substrates for expanding SCs in feeder-free conditions. Nevertheless, exposure to animal-derived
pathogens, xenogeneic components, and immunogenic epitopes would make these cells unsafe for
clinical applications in humans [3]. Recently, a serum- and xeno-free substrate composed of conditioned
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medium from human dermal fibroblasts for long-term expansion of human ESCs and human iPSCs
has been reported, named “RoGel” [20]. Despite decreasing the risk of animal-derived pathogen
contamination, this system may have limitations, including high batch variability, costs, and the
risks associated with human-derived pathogens and allogenic epitopes which severely limit potential
therapeutic applications in humans.

Besides, the development of well-defined culture media, feeder-free and xeno-free substrates
for cell expansion in vitro, researchers have focused on culture substrates that mimic at least one
of the features of the physiological microenvironment surrounding cells. Increasing evidence has
shown that, despite their extensive usage, conventional substrates such as culture polystyrene or
glass dishes do not resemble the in vivo milieu. Thus, all the complex interactions that occur in vivo
are impaired [21–23]. Various strategies have been developed to overcome these limitations and
improve substrates for cell culture [13]. In order to recreate feeder free substrates for expansion and
pluripotency maintenance of human stem cells, Park and colleagues developed a chemically-defined
coating (i.e., polydopamine-mediated oligovitronectin) for conventional polystyrene culture plates,
thereby promoting human ESC self-renewal and pluripotency maintenance [24]. Another approach
is to mimic the physical and mechanical features of the natural microenvironment, including the
nanotopography and the three-dimensional (3-D) geometry of such substrates [25–27]. A “smart”
3-D substrate, may be able to instruct cells towards the right fate, limiting and, whenever possible,
avoiding any medium additive or supplement and/or xenogeneic-factor. There would be enormous
benefits in terms of safety and risk mitigation during in vitro manipulation, thus leading to a potential
industrial-scale expansion of cells for therapeutic purposes [10].

1.2. State of the Art in the Use of 3-D Substrates for the Expansion of Stem Cells

Several studies have proposed natural and synthetic polymers to recreate 3-D culture conditions,
such as gelatin [28], collagen-I [29], fibronectin [30], Polyethylene-glycol (PEG) [31], Poli-L-Glycolic
Acid [32,33], hyaluronic acid [34], vitronectin [35], poly(N-isopropylacrylamide)-PEG [36,37],
and carboxymethyl-hexanoyl chitosan [38] in the form of hydrogels, nanofiber scaffolds and other
3-D structures [21,26]. These studies have shown that SCs could maintain a proliferative and
undifferentiated state only by exploiting the biophysical cues offered by the surrounding environment.
Besides established fabrication processes (e.g., solvent casting-particulate leaching, gas foaming,
electrospinning, and fiber bonding), rapid prototyping methods (e.g., 3-D printing, fused deposition
modelling, selective laser sintering, and electron beam lithography) have been increasingly used
in scaffold fabrication because of the high resolution that can be achieved [39]. However these
techniques, based on a layer-by-layer approach, require the use of (multiple) masks, and the complex
3-D architectures are difficult to manufacture [40]. A recent work proposed a fabrication method that
produces poly(ε-caprolactone) (PCL) nanofibers over a large culture surface, by pressing the PCL
substrate against a femtosecond laser fabricated glass mold to study the effects of the mechanics on
cell fate [41].

1.3. State of the Art in the Use of 2PP for the Nanofabrication of Substrates for Cell Culture

An alternative scaffolding fabrication method is two-photon laser polymerization (2PP), a direct
laser writing technique with three-dimensional (3-D) capabilities and a spatial resolution down to
100 nm [42–44]. 2PP employs a photosensitized resist, where simultaneous absorption of two photons
from a near-infrared ultrashort laser pulse triggers a photochemical process which results in
the cross-linking of monomers and oligomers. The two-photon absorption mechanism enables
selective polymerization in a small volume around the focus, known as volume element or voxel.
This enables sub-diffraction limited resolution in both the lateral and axial directions as well
as 3-D fabrication capabilities at different depths by adjusting the laser focus with little or no
collateral effects. Examples of photopolymers used in 2PP are organically modified ceramics, epoxides
(e.g., SU-8), and acrylic monomers whose biocompatibility has been assessed [40,45]. Recent studies
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have shown that 3-D geometries can be manufactured by 2PP in PEG-diacrylate, poly lactic acid
(PLA) and PLA-poly-ε-caprolactone copolymer [46–48]. In our previous work, we manufactured
3-D “structurally” biomimetic synthetic niches for MSC culture [49–52]. Evidence of spontaneous
lineage commitment was observed in the monolayer culture surrounding the structural niches, but not
inside the niches, thus suggesting that structural niches were able to direct SC homing, proliferation,
and multipotency maintenance. However, the quantitative biological measurements were inevitably
diluted because of the limited percentage (10%) of cell culture surface covered by the structural
niches [52].

In this paper, we review our activity on the technological improvements in manufacturing the
3-D “structurally” biomimetic synthetic niche system for SC culture. In particular, more than on the
biological results, we focus here on the optimization of the laser-material interaction that we performed
in the last years to increase the patterned area and the percentage of cell culture surface covered by
such 3-D synthetic niches, reaching the most recent result of 88% surface coverage with an optimized
micromachining time. The aim of this study is to obtain a greater number of cells experiencing the 3-D
microenvironment provided by the increased number of niches and, therefore to obtain quantitative,
reliable, biological data to conclusively demonstrate the effect of the 3-D architecture on the SC fate.

2. Materials and Methods

2.1. Description of Photosensitive Material and Photo-Initiator

Synthetic niches were directly fabricated by 2PP in the commercially available SZ2080
photoresist, composed of a sol-gel-synthetized silicon (S)-zirconium (Z) hybrid inorganic-organic
resin (hereafter called SZ2080) (Maria Farsari, IELS-FORTH, Heraklion, Greece) [53]. The main
components of SZ2080 are methacryloxypropil trimethoxysilane and zirconium propoxide with the
addition of 1% concentration of Irg photoiniziator (Irgacure 369, 2-Benzyl-2-dimethylamino-1-(4-
morpholinophenyl)-butanone-1) [50]. SZ2080 has many advantages, such as biocompatibility [45,49],
chemical and electrochemical inertia, long-term stability, good optical transmission, and mechanical
stability after polymerization due to low shrinkage compared to other commercial photoresists [45].

2.2. The Laser Fabrication Set-Up

Synthetic niches were directly written onto circular glass cover slips with a 150-µm thickness and
12-mm diameter (Bio-Optica, Milan, Italy). Initially, we used a home-built Ti:Sapphire femtosecond
laser (87 MHz repetition rate, 40 fs pulse duration, up to 400 mW average power) and a 3-D piezo
positioning system (P-611.3 NanoCube, Physik Instrumente, Karlsruhe, Germany) with a travel
range of 100 µm in each direction. Subsequently, we changed both the femtosecond laser and the
positioning system. We used a home-built cavity-dumped Yb:KYW mode-locked system with a
1030 nm wavelength, generating pulses with 300-fs duration, energy up to 1 µJ and 1-MHz repetition
rate, corresponding to 1 W of average power. The laser beam was focused on samples with a
1.4 numerical aperture 100× oil immersion objective (Plan-Apochromat, Carl Zeiss, Oberkochen,
Germany). A power control stage, consisting of a polarizing beam splitter and a rotating waveplate,
was used to tune the laser output power, while a mechanical shutter (LS Series, Uniblitz Electronics,
Rochester, NY, USA), was used to switch the laser beam impinging on the sample on and off.
A computer-controlled three-axis brushless motion stage (ANT130, Aerotech, Hanover, MD, USA) was
used to control the position of the sample with respect to the laser focus in the two plane dimensions
(X and Y), and to move the vertical position of the laser focus (Z) with respect to the sample plane,
via specific motion controller software (Automation 3200 CNC Operation Interface, Aerotech, Hanover,
MD, USA). This fabrication system has a very high precision and resolution down to ≈5 nm, maximum
displacement in the order of tens of cm, and a very high speed up to 150 mm·s−1. Its characteristics
are thus ideal for patterning large areas through 2PP. A two-axis stage moves the sample in the X-Y
plane, while a third axis, moving the focusing objective, scans along the Z direction. The system
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controller enables the three axes to move simultaneously, thus enabling 3-D writing at a constant speed.
A gimbal mechanical system (Gimbal Mounts GM100/M, Thorlabs Inc., Newton, NJ, USA) fixed to
the X-Y motion stages, was used to tilt the sample and to set it perpendicular with respect to the laser
beam. A CMOS camera (DCC1545M, Thorlabs Scientific Imaging (TSI), Austin, TX, USA) and a beam
splitter were used to visualize on computer software (uEye Cockpit, 4.71, IDS Imaging Development
Systems GmbH, Obersulm, Germany) the image of the working field, back-lit by a red-light LED.
The on-line vision of the polymerized lines enabled the structure fabrication to be accurately positioned
in X-Y and Z. Prior to laser exposure, the SZ2080 photoresist was manually placed on glass coverslips
baked at 105 ◦C (ramp starting from room temperature) for 1 h. Samples with the photoresist were
mounted on a parallelepiped metallic custom-made holder and exposed to the laser in order to identify
the microstructures by 2PP. To remove the unpolymerized regions, the samples were immersed in a
50% (v/v) 3-pentanone, 50% (v/v) isopropyl alcohol solution (Sigma-Aldrich, St. Louis, MO, USA).
The fabricated 3-D niche substrates were then imaged first by optical microscopy (Eclipse ME600,
Nikon, Tokyo, Japan), and then by scanning electron microscopy (SEM, Phenom Pro, Phenom World,
Eindhoven, The Netherlands). All SEM observations were carried out at 5 kV.

2.3. Description of the Up-Scaling Techniques

In order to obtain quantitative and reliable biological data to assess the effect of the 3-D architecture
on the stem cell fate, we increased the surface of the culture substrate covered by the 3-D synthetic
niches to obtain a greater number of cells experiencing the 3-D microenvironment provided by the
niches. We thus adopted the following strategy. Firstly, we initially optimized the fabrication process of
the elementary 3-D niches, which we named ‘nichoids’. Each nichoid was 30 µm high and 90 × 90 µm in
transverse dimensions, and consisted of a lattice of interconnected lines, with a graded spacing between
10 and 30 µm transversely and a uniform spacing of 15 µm vertically. Each nichoid was surrounded by
four outer confinement walls formed by horizontal lines spaced by 5 µm, resulting in gaps of 1 µm
(Figure 1a,b). Secondly, the nichoids were arranged at the vertexes of an equilateral triangle with
200 µm sides (Figure 1d) [49]. Then, to increase the substrate coverage to the whole slide surface,
the nichoids were arranged at the vertexes and at the center of a hexagon with a 300 µm side (Figure 1e)
and the total number of elementary nichoids was increased to 367 µm [49,52]. However, the increased
number of nichoids led to an increased manufacturing time, thus the manufacturing parameters
(laser power and scan speed) needed to be optimized (see Section 3.1). This last configuration however
covered only a 10% fraction of the cell culture surface with nichoids, resulting in a large percentage
of SCs experiencing the 2-D environment of the glass slide surface. Thus, to further increase the
coverage, we designed a very large scaffold that covered a circular area with a 3 mm radius, composed
of continuously-packed nichoids (CPN) with about 3500 elements, where each nichoid shared its
external walls with the adjacent ones (Figure 1f).

Despite the large surface covered with this approach, there were several drawbacks, including the
low structural stability (see Section 3.2). To overcome these issues, we fractionated the large scaffolds
into submatrixes with 5 × 5 nichoids (Figure 1c) with a small spacing of 30 µm between adjacent
matrixes, resulting in a fractionated supermatrix of nichoids (FSN) including 218 matrixes (Figure 1g).
In this last configuration, the entire structure was reinforced by an external 4-µm high base wall,
which anchored the structure to the underlying glass surface and forced the cells to enter the nichoids
from the top. In addition, to ensure the robustness of the structures, the pillars were reinforced by a
double scan irradiation with a lateral shift of 0.5 µm. To prevent mechanical damage to the shutter,
due to frequent opening and closing, our control software quickly relocated the laser focus inside the
glass substrate to avoid photopolymerization when positioning the writing beam in the X-Y plane.
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Figure 1. The nichoid culture substrate. (a) CAD of the nichoid elementary unit; (b) Cross-section
of the nichoid; (c) CAD of the matrix of nichoids, consisting of 5 × 5 elementary nichoids. Scale-up
approach: (d) the culture substrate composed of three elementary nichoids; (e) The substrate composed
of approximately 367 elementary nichoids; (f) The culture substrate covered with continuously-packed
nichoids (CPN), resulting in 3500 adjacent elementary nichoids; (g) The culture substrate covered with
a fractionated supermatrix of nichoids (FSN) including 218 matrixes at a distance of 30 µm.

3. Results and Discussion

3.1. Parameter Optimization of 2PP-Engineered Elementary Nichoids

Up-scaling the synthetic nichoid culture system to obtain more nichoid-cultured SCs that could be
compatible with clinical demands had various limitations, including the long machining time required
to fabricate an elementary nichoid. Initially, we were only able to manufacture a few (e.g., three)
elementary nichoids for each culture substrate. Using the Ti:Sapphire laser and the piezo positioning
system, we were limited to a processing speed of 10 µm·s−1, thus requiring a long manufacturing time
of 30 min per nichoid (Table 1, column A).

Table 1. Technical parameters regarding the various nichoid layouts and upscaling processes.
A = three elementary nichoids, B = 367 elementary nichoids, C = continuously-packed nichoids
(CPN), D = fractionated supermatrix of nichoids (FSN).

Parameters A B C D

Total machining time 1.5 h 3 h 17 h 12 h
Power–scan speed (mW–mm·s−1) 15 1–0.01 12 2–1.5 12 2–1 13 2–3
Elementary nichoid writing time 30 min 30 s 18 s 7 s

Surface of cell culture (mm2) 0.24 28.27 28.27 50.26
% of surface covered by the nichoids 10% 10% 100% 88%

Number of nichoids 3 367 3500 5450
Estimated nichoid-cultured cells/sample 60 8000 7 × 104 10.9 × 104

1 Ti:Sapphire laser. 2 Yb:KYW laser.

To speed up the fabrication, we used a different femtosecond laser and translation stages
(see Section 2.2). In this new configuration we were able to work in new processing conditions with
writing speeds increased by two orders of magnitude, thus fabricating an elementary nichoid in about
30 s (Table 1, column B). In these new processing windows, we optimized the laser manufacturing
parameters (laser power and scan speed) to identify the processing windows that would provide
stable structures (Table 2). We tested several combinations of laser power and scan speed ranging from
12–15 mW and 1–10 mm·s−1, respectively.
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Table 2. Optimization of the scan speed (mm·s−1) and laser power (mW) resulting in the process window
for the microfabrication of niches. STABLE = structurally stable niches; UNSTABLE = structurally
unstable niches; DAMAGED = structurally damaged niches; Ø = no polymerization occurred.

Scan Speed (mm·s−1) Power (mW) 12 13 14 15

1 STABLE DAMAGED DAMAGED DAMAGED
2 STABLE DAMAGED DAMAGED DAMAGED
3 UNSTABLE STABLE STABLE DAMAGED
4 UNSTABLE STABLE STABLE STABLE
5 UNSTABLE STABLE STABLE STABLE
6 UNSTABLE UNSTABLE STABLE STABLE
7 Ø UNSTABLE STABLE STABLE
8 Ø UNSTABLE UNSTABLE UNSTABLE
9 Ø Ø UNSTABLE UNSTABLE
10 Ø Ø UNSTABLE UNSTABLE

As shown in Table 2, for a high average laser power, the fabricated structures were visibly
damaged, with interrupted or warped polymeric lines (DAMAGED in Table 2). Conversely, for high
scan speeds, the amount of energy per unit of time delivered to the material was too low so that 2PP did
not occur (Ø in Table 2). Some of the tested writing parameters led to unstable microstructures which
partially or completely collapsed (UNSTABLE in Table 2, Figure 2), while others resulted in stable
nichoids (STABLE in Table 2, Figure 3), thus enabling us to identify several useful combinations of
fabrication parameters. However the reproducibility in the fabrication of the structures decreased with
the increasing scan speed when fabricating a large number of structures for a long time. In addition,
it is worth noting that 2PP is a threshold nonlinear phenomenon. Indeed, the radical polymerization
in the resist may occur only if the irradiated energy per focal volume is above a certain threshold and
below a damage threshold. This explains why both laser average power and scan speed influence the
damage/non-polymerization of the photosensitive material. Examples of non-optimized fabrication
outcomes are shown in Figure 2.

Referring to the initial configurations with few elementary nichoids (Figure 1d,e), the main
drawbacks were the long micromachining time and the detachment and misalignment of grids
which led to a structural collapse of the nichoids and, thus, an inability to accurately control the
3-D microgeometry (Figure 2a,b).
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Figure 2. SEM images of the micro-fabrication before the optimization. Instability and deformation on
(a) three elementary nichoids; (b) on the substrate composed of 367 elementary nichoids; (c) Collapse of
the culture substrate covered with continuously-packed nichoids (CPN), more likely due to cavitation
phenomena and vibration during the manufacturing process; (d) Instability issues in the culture
substrate covered with a fractionated supermatrix of nichoids (FSN), including 218 matrixes at a
distance of 30 µm.

A mathematical model was developed [54] to predict the dependence of the transversal diameter
d and the height h of the polymerized voxel on the average laser power P and the exposure time t:

d = K × [ln(P2 × t × Eth
−1)]1/2 (1)

h = K × [(P2 × t × Eth
−1)] (2)

where Eth is the threshold energy for the 2PP process and K is a constant that depends on the properties
of the material and the experimental setup. However, this model requires the empirical determination
of the parameter K, and its predictive ability lies within a narrow and specific processing window
(i.e., above the 2PP threshold energy and below the damage threshold) [55]. In this work, we used a trial
and error procedure, which was systematic, simple, and enabled us to quickly obtain reliable results.

3.2. Increasing the Percentage of Glass Surface Covered by the Nichoids

Using the optimized parameters, we were able to structurally fabricate stable nichoids with a
reduced machining time. The first configurations with elementary nichoids arranged in a triangular
layout (relative distance 200 µm) (Figure 1d) and in hexagonal distribution (300 µm side) (Figure 1e)
resulted in a good architectural stability and an optimal control of the 3-D geometry of the nichoids
(Figure 3a,b respectively).
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Having reduced the elementary nichoid manufacturing time to 30 s, we were able to fabricate
almost 400 nichoids onto the whole glass slide, covering approximately 10% of the cell culture surface
in 3 h (Table 1, column B). Considering a typical occupation of about 20 cells/nichoid [49], we could
theoretically obtain around 8000 nichoid-cultured cells per sample in this configuration (Table 1,
column B).

Despite such technological improvements, the percentage surface coverage of the 3-D structures
was still too low, so that biological measurements were inevitably diluted by the cells deposited
on the flat glass surface surrounding the elementary nichoids, which did not experience the 3-D
nichoid environment. Thus, in order to decrease the 2-D unpatterned surface between the nichoids,
we designed a continuous scaffold CPN (Figures 1f and 3c) by fabricating longer and continuous
lines instead of fabricating the nichoids one by one. This new design reduced the manufacturing time
for an elementary nichoid to 18 s. Therefore, by using the following parameters 12 mW–1 mm·s−1,
we fabricated almost 3500 adjacent nichoids in a machining time of 17 h, covering 100% of the treated
culture surface (Table 1, column C). However, the CPN structure (Figure 1f) also showed structural
instabilities (Figure 2c). In fact, even a single defect inside the structure has negative effects on the
stability of the whole scaffold because of its packed configuration. Moreover, a manufacturing time
of 17 h was incompatible with a potential industrial exploitation, and it was difficult to remove the
unexposed photoresist from the internal lattice of the nichoids as the solvent can only be accessed from
the top. Therefore, although this configuration produced very nice samples (Figure 3c) which could
theoretically provide 70,000 nichoid-cultured cells (Table 1, column C), these drawbacks caused us to
abandon the CPN design. To overcome the above issues, we developed the FSN configuration with
168 matrixes, each composed of 5 × 5 nichoids, spaced by 80 µm [56]. With this layout, the residual
tensions due to the volumetric shrinkage and local defects in the microstructures did not affect the
whole 3-D architecture. This was due to the 80 µm spacing that made each matrix a stand-alone entity,
not subject to the problems of the neighboring matrixes. Initially, the FSN structure was fabricated
in 12 h of machining time with the following parameters 12 mW, 1.5 mm·s−1 [56]. Then, by further
increasing the fabrication speed to 3 mm·s−1, with a laser power of 13 mW, we were able to reduce
the fabrication time for an elementary nichoid to 7 s (Table 1, column D). This was possible because,
by tracing longer continuous lines, the translation stages have more time to accelerate, thus reaching
a higher velocity. In order to increase the number of nichoids, we reduced the distance between
the matrixes of nichoids to 30 µm. Thus, thanks to these technological improvements, we were able
to fabricate culture substrates by including more nichoid matrixes (i.e., 218) (Figure 1g) than the
previous 168 matrixes in the first FSN configuration [56] with the same machining time of 12 h (Table 1,
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column D). The results were also very good in terms of structural stability and precise control on
the 3-D geometry of the 2PP structures (Figure 3d). We were able to extend the laser-treated surface
of cell culture from a circle with a 3-mm radius to one with a 4-mm radius. Thus, this last FSN
configuration enabled us to cover up to the 88% of the surface of cell culture with the nichoids and
to obtain an estimated number of 10.90 × 104 cells experiencing the nichoid environment (Table 1,
column D). The larger number of nichoid-cultured cells will enable us to achieve a more homogeneous
cell population and thus obtain a more reliable sample for further quantitative analyses including the
investigation of gene expression. However, this latter configuration also initially had some instability
issues due to focus variations onto the non-perfectly planar glass surface. We observed differences in
the Z-position of the glass surface ranging between 6 µm to 10 µm from the center to the edges of the
substrate, which were not negligible with respect to the structure height (30 µm) and thus caused the
nichoids to detach from the glass samples or collapse on themselves (Figure 2d). We pre-characterized
the sample surface and modified our control software by implementing a point-by-point compensation
of the focus in the vertical direction to balance out the glass concavity. In addition, we increased
the structure height and initiated the irradiation deeper inside the glass by 8 µm, to ensure that
the manufactured blocks anchored on the substrate surface. All these actions enabled us to achieve
stable structures (Figure 3d). The optimal processing window was rather narrow and was sensitive to
uncontrolled variations in the laser characteristics (pulse duration, wavelength, and spot size) and in
the photosensitive resin (different batches, ageing). Therefore, after the initial optimization, we had
to periodically re-optimize the processing window by finding optimal values that changed slightly
but always came close to the ones here presented. Finally, to confirm the cell adhesion on all the
nichoid culture substrates, human bone marrow-derived MSCs were seeded and stained with DAPI
(Figure 4a–d) [49,50].
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Figure 4. Fluorescence images of cell-populated niche substrates. (a) Elementary nichoids patterned
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(300 µm side); (c,d) The culture substrate covered with a fractionated supermatrix of nichoids (FSN),
including 218 matrixes at a distance of 30 µm. Nuclei are stained in DAPI (blue).
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3.3. Comparison with Results from the Literature

Cells in our engineered nichoids can adhere to a 3-D environment, experiencing a high
surface-to-volume ratio (Figure 4a–d), can be easily extracted/detached by standard culture protocols
(e.g., trypsin detachment), and can be imaged both live and fixed by (inverted) optical and
confocal microscopes. In fact, the nichoids were laser written directly on standard glass coverslips
(150 µm-thick). There are studies in the literature dealing with 3-D culture systems for SC expansion,
including gelatin [28], collagen-I [29], fibronectin [30], Polyethylene-glycol (PEG) [31], Poli-L-Glycolic
Acid [32,33], hyaluronic acid [34], vitronectin [35], poly(N-isopropylacrylamide)-PEG [36,37],
and carboxymethyl-hexanoyl chitosan [38] in the form of hydrogels, nanofiber scaffolds, and other
3-D structures [21,26]. However, since cells were typically embedded in packed cross-linked matrices,
imaging them by optical microscopy or collecting viable cells either for further analysis or for
potential therapeutic applications would be difficult and, in some cases, almost impossible. In addition,
our nichoid-based culture substrate is made of a chemically stable and biocompatible photoresist,
so that cell-material surface interactions can be neglected.

The evidence of multipotency maintenance without any chemical supplements reported in [52]
was attributed to the interaction between cells and the 3-D nichoid structure. This is an interesting
issue from an industrial and clinical perspective, because of the minimization of cell manipulation
and associated risks for the host. This is a great advantage over the most recent literature in which
chemical exogenous factors were used for this purpose [8,9]. Finally, the FSN culture substrate was
demonstrated to preserve the pluripotency of mouse ESCs without either soluble factors (i.e., LIF) or a
feeder layer [56]. These results are in agreement with other studies in which 3-D polymer-based scaffold
systems for stem cell culture made up of biodegradable matrices have been used [3,20,33], but with
the advantages previously outlined. A recent work proposed a fabrication method that produces poly
(ε-caprolactone) (PCL) nanofibers over a large culture surface, by pressing the PCL substrate against a
femtosecond laser fabricated glass mold [41]. The authors reported pluripotency maintenance and cell
detachment by trypsin. However, the low geometrical control of the microstructured surface did not
allow a fine study of the effects of the mechanical stimuli exerted on the cells. Indeed, cells grow along
the bent nanofibers, instead of being inside a regular 3-D scaffold matrix.

3.4. Future Prospectives

3.4.1. Further Reduction in the Machining Time

2PP is intrinsically a serial micro-fabrication technique. In order to massively increase the
production of samples for industrial applications, a simple optimization of laser manufacturing
parameters would not be effective because of the speed and acceleration limitations of the current
high-precision translation stages. We observed that at higher scan speeds, the machining time was
not proportionally reduced due to the significant fraction of time occupied by repositioning the focus
between writing steps, which is already performed at the highest speed. A solution to improve the
production rate might consist in a soft lithography technique to replicate microscopic structures,
namely micro transfer molding (µTM) [57]. However, the internal network of the structures would be
irreversibly damaged when extracted from the mold. There are studies in the literature dealing with
the resolution of this problem, such as membrane-assisted micro-transfer molding (MA-µTM) [58],
but the high complexity of 3-D geometry of the nichoids limits the use of this technique.

To further decrease the micro-machining time and increase the culture surface covered by nichoids,
an attractive solution consists in parallel processing, in which multiple foci are created from a single
laser beam, using optical systems such as a microarray of lenses [59], a holographic spatial light
modulator, and digital micro-mirrors [60]. With these systems, the multiple spots created would
be focused into the same objective, allowing the polymerization of multiple lines simultaneously,
and decreasing the fabrication time by a factor equal to the number of spots. All the spots would
be localized within the field of view of the objective, which in our case is larger than one nichoid,
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and translating the sample, lines of any length could be polymerized. Another interesting method to
decrease the fabrication time could be to integrate a galvanometer scanning mirror system which uses
moving magnets for fast and precise positioning of mirrors for the deflection of laser beams, leading to
a rapid and accurate scanning of the spot in the focal plane. Closed-loop galvanometer systems have a
frequency response up to 10 kHz, and can provide a constant velocity of beam deflection and fast-step
response times in the 100 µs range [61]. This could bypass the problem of the limited acceleration of the
stages and thus reduce the machining time, while maintaining the same high resolution of our current
2PP apparatus. Galvanometer mirrors are routinely used for beam scanning in the focal plane in high
speed confocal microscopy, in combination with high numerical aperture objectives. The drawback of
this approach would be the limited field of view of our high numerical aperture objective that would
compel us to stitch different parts together to fabricate structures of several hundreds of micrometers,
and the impossibility of galvanometric scanners to trace vertical lines (along the Z-axis) unless coupled
with mechanical stages or piezoelectric systems for the vertical displacement. Indeed, galvanometric
scanners allow the focus position only in the X-Y plane.

3.4.2. Decreasing Cell Adhesion in the Nichoid Surroundings

So far, we have neglected the fact that the surface of the glass substrate is not completely treated by
the laser writing process. In fact, as shown in Figure 1f,g, an annular untreated region is left at the edge
of the substrate. This region is not structured to enable the sample to be fixed to the holder during the
irradiation process, and afterwards to enable sample manipulation with tweezers without damaging
the scaffolds. To avoid cell adhesion to this surface, before culturing the cells, we applied a PDMS ring
with the same shape. This operation is however rather complicated as the ring is positioned manually
with the risk of ruining the edges of the scaffolds. In the future, we plan to reduce the fraction of the
cells not experiencing the 3-D nichoid environment using substrate glasses with a hydrophobic coating.
These substrates will prevent cell adhesion not only on the external annular region, but on the whole
flat substrate, thus favoring homing and 3-D suspension of the cells in the nichoid microstructures.

4. Conclusions

In this work, we have reviewed our activity on the upscaling of 2PP-fabricated 3-D substrates
for the expansion of stem cells, by increasing the surface coverage and reducing the machining
time. We have discussed how, by suitably tailoring the irradiation parameters, we could reduce the
fabrication time of a single nichoid from 30 min to 7 s, achieving the most recent result of 88% of the
surface of cell culture covered by nichoids. This result will enable the majority of the stem cells to grow
in the 3-D scaffold. We thus expect to obtain more evident biological data to confirm our previous
hypothesis that a truly 3-D culture substrate, allowing 3-D isotropic cell adhesion, can drive stem cell
responses to allow cell multi/pluripotency without supplementing any chemical media and/or feeder.
We plan to further improve our culture system by increasing the surface patterned with nichoids
by a parallelization of the manufacturing process, and by removing the 2-D areas by depositing a
non-fouling (e.g., hydrophobic) coating.

If successful, this system could be used for the expansion of patient-specific stem cells for clinical
treatments, such as customized cell therapies for degenerative diseases such as Alzheimer’s and
Parkinson’s diseases.
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