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Abstract: Membrane-covered Express2TM Monorail® stents composed of chitosan (CH) 
blended with polyethylene oxide (PEO) in 70:30% wt (CH-PEO) were coated with a 
monolayer of hyaluronic acid (HA). This significantly improved the resistance to platelet 
adhesion and demonstrated excellent mechanical properties, resisting the harsh conditions 
during stent crimping and subsequent inflation. CH-PEO/HA membrane was then 
combined with a paclitaxel (Pac) delivery system via three different approaches for 
comparison of release profiles of Pac. The activity of Pac in these systems was confirmed 
since its presence in the membrane significantly decreased cell viability of U937 
macrophages. Presented results are promising for applications requiring different release 
patterns of hydrophobic drugs. 
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1. Introduction 
 

Restenosis is an inflammatory response that may involve thrombus formation causing the re-
narrowing of a coronary artery. It occurs within 3 – 6 months in 40 – 50% of patients who have had 
angioplasty. This incidence was reduced to 20% with the use of bare metal stent implantation 
procedures, along with the administration of anti-proliferative, anti-migratory and anti-inflammatory 
drugs [1-3]. Consequently, drug-eluting stents (DES) have emerged as a more controlled and effective 
solution to inhibit the development of in-stent restenosis [4-6]. Stents coated with anti-proliferative and 
anti-inflammatory drugs such as paclitaxel, sirolimus, actinomycin D and tacrolimus acting as 
inhibitors of cell migration and cell cycle progression are currently under evaluation in several clinical 
trials [6, 7]. Among these drugs, paclitaxel (Pac) has been proven to be one of the most promising 
agents for the treatment of neo-intimal hyperplasia [7, 8]. Pac-eluting stents with the trade name of 
Taxus® Express2TM from Boston Scientific have received European and FDA approval and are 
currently used in most stenting procedures [8]. Nonetheless, the well-controlled and effective delivery 
of Pac remains a challenge. An intact drug-carrying membrane deems necessary for the functionality 
of the DES and the incorporation of drugs in a biodegradable polymer as a membrane coating has been 
suggested [9, 10]. In a previous work, we have introduced a membrane-covered stent using a blend of 
chitosan (CH), a natural polysaccharide and polyethylene oxide (PEO) as membrane material [11]. CH 
is a linear cationic polymer of D-glucosamine obtained by alkaline N-deacetylation of chitin that has 
been extensively studied in recent years [12]. Due to inter- and intra-molecular hydrogen bonding, CH 
features excellent film forming properties and high mechanical strength suitable for membrane 
formation [12]. CH matrices of various geometries, pore sizes and orientations can be formed either 
alone or after blending with various macromolecules such as PEO, a synthetic and neutral water-
soluble polymer [12, 13]. The permeability of solutes through the membranes prepared by blending 
CH with PEO is much higher than that through CH alone [14, 15]. Therefore, CH-PEO appears to be 
suitable for improving the permeability of toxic metabolites and reducing thrombogenicity. Amiji et al. 
demonstrated that the permeability coefficient of urea increased from 5.47 × 10-5 cm2·min-1 in CH to 
9.89 × 10-5 cm2·min-1 in CH-PEO membranes [15]. PEO has also been shown to effectively increase 
the blood compatibility of polymeric materials including CH [15]. Biomaterials grafted with PEO are 
able to resist plasma protein adsorption and platelet adhesion predominately by a steric repulsion 
mechanism [16]. To reduce plasma protein adsorption, platelet adhesion and activation, and thrombus 
development, the surface of CH membranes can be modified by the electrostatic interaction of cationic 
CH and anionic polysaccharides such as hyaluronic acid (HA) [11, 17]. Drug-eluting membranes 
consisting of chitosan/hyaluronan multi-layers show promising properties for use as a stent coating 
material [11, 17-20]. HA is a high molecular weight glycosaminoglycan found in the extracellular 
matrix of arterial smooth muscle cells and endothelial cells and have shown good blood compatibility 
[21]. A number of strategies for the modification of HA mainly through the carboxyl and hydroxyl 
groups have been developed including esterification and carbodiimide chemistry [18, 22]. HA has 
been used to cover stents via cross-linking with N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide 
(EDC) leading to a reduced inflammatory response compared to un-coated stainless steel stents in pig 
coronary arteries [23]. Additionally, it significantly reduced platelet deposition by 55% after 2 hours of 
blood exposure in exteriorized arteriovenous shunts in baboons [21].   
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PEO membranes in phosphate-buffered ethanol:water (40:60 v/v) solution. The solvent 
was exchanged regularly to maintain sink conditions. Three different amounts of Pac (0.24, 
0.51 and 0.60 mg) were incorporated (n=3).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The release was observed over a period of 65 hours. In vitro release of physically incorporated Pac 
from CH-PEO/HA membranes showed that 0.233 mg ± 0.014 mg, 0.522 mg ± 0.036 mg and 0.586 mg 
± 0.025 mg of Pac was released within 65 hours for 0.24 mg, 0.51 mg and 0.60 mg, respectively. The 
release of drugs from matrix systems can be described with the Higuchi equation [26]. The basic 
equation of the Higuchi model is: 

tccDcAM SSt )2( 0 −=            for c0 > cS        (1) 

where Mt is the cumulative absolute amount of drug released at time t, A is the surface area of the 
controlled release device exposed to the release medium, c0 and cS are the initial drug concentration, 
and the solubility of the drug in the polymer, respectively, and D is the drug diffusivity in the polymer 
carrier [26, 30]. This model considers diffusion as the dominating mechanism for drug release with the 
proportionality between the cumulative amount of released drug and the square root of time is an 
indicator for diffusion controlled drug release systems. The slope K, the axis intercept a and the 
squared coefficient of correlation R2 from linear regression were calculated according to equation (2): 

atK
M
M t +=

∞

       (2) 

where M∞ is the total cumulative amount of drug released at infinite time t and K is a constant 
characterizing the design variables of the system [30]. Table 1 illustrates the resulting values from 
linear regression based on equation (2). A plot of released Pac against the square root of time showed 
good linearity for all experiments.  
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In vitro release of Pac from microspheres embedded into CH-PEO/HA membranes showed that 
0.264 mg ± 0.008 mg and 0.328 mg ± 0.008 mg of Pac was released within 216 hours for the 8.0 mg 
and 9.5 mg experiment respectively, which is 61.7 % and 64.6 % of the initially incorporated drug in 
each case. Table 2 demonstrates the linear regression results based on equation (2) for the release of 
Pac from microspheres embedded into the CH-PEO/HA membrane. Negative axis intercepts are 
attributed again to a lag effect particularly occurring when hydrophobic drugs are released into an 
aqueous medium [31].  
 

Table 2. Slope K, axis intercept a, squared coefficient of correlation R2 and the plot from 
equation (2) for the release of Pac (over time in hours) from microspheres embedded into 
CH-PEO/HA membranes in phosphate-buffered ethanol:water (40:60 v/v) solution. 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

The calculated squared coefficients of correlation R2 from the release of Pac out of microspheres 
embedded into the membrane were lower if compared to the release of physically incorporated Pac. 
The used PLGA polymer for the preparation of microspheres is cleaved into shorter chain alcohols and 
acids upon contact with water [33]. The Higuchi equation is based on a diffusion controlled system 
[26, 30] and thus polymer degradation contribution to the release mechanism of Pac from PLGA-
microspheres explains the lower K values in this system if compared to the coefficients found for the 
release of physically incorporated paclitaxel. The difference in the reported values is not amplified in 
the release profile due to the variation in the release time. The use of PLGA offers various important 
advantages over other controlled release systems, such as (a) the possibility to control the release rate 
over a period of days or months, (b) good biocompatibility and (c) complete biodegradability [33]. 
PLGA based microparticles are known to be bulk eroding, because water penetration into the system is 
much faster than the subsequent polymer chain cleavage [33]. The eroding microspheres have to 
remain in the membrane during degradation to avoid flushing of particles into the bloodstream. 
Compared to the release of physically incorporated Pac, the drug release from microspheres resulted in 
significantly slower release. Furthermore, cell culture tests confirmed the activity of low amounts of 

Sample K a R2 
8.0 mg spheres 0.08 -0.056 0.9881 
9.5 mg spheres 0.09 -0.060 0.9941 
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released Pac from HA-Pac monolayers suggesting the reduction of drug loading for the release of Pac 
from both, physically incorporated drug into the membranes and Pac-loaded microspheres embedded 
into the membrane.  
 
2.4. Thrombogenecity 
 

Blending CH with PEO improved the resistance to platelet adhesion (2.27 ± 0.16 106 platelets/cm2 
vs. 1.92 ± 0.15 106 platelets/cm2 for CH and CH-PEO respectively), as shown in Figure 11.  
 

Figure 11. Platelet adhesion on different surfaces: Chitosan (CH), chitosan-PEO blend 
(CH-PEO), and chitosan-PEO blend coated with a monolayer of hyaluronan (CH-
PEO/HA). Pure CH was used as control; * indicates statistical significance with  
p<0.002, n=3. 

 
 
 
 
 
 
 
  
 
 
 
 
 

 
Further improvement was achieved by coating the CH-PEO membrane with a monolayer of HA 

which led to a significantly reduced platelet adhesion compared to CH alone (1.25 ± 0.17 106 versus 
2.27 ± 0.16 106 for CH, p<0.002). Hydrogels are highly hydrated (>95% w/w) and exhibit smooth 
surfaces counteracting cell attachment [34]. Additionally, recent studies have indicated that the high 
anionicity of native long chain HA poorly interact with cells in vitro and show poor platelet binding 
characteristics which is likely due to their extreme hydrophilicity and anionic surface charge. It seems 
that the surface functional groups of HA and their charge characteristics play an important role in 
platelet adhesion [34].  
 
3. Experimental Section 

 
Sodium Hyaluronate (HA) and chitosan (CH: HMW, degree of deacetylation: 85 %), poly(lactic-

co-glycolic acid) (PLGA; L:G molar ratio:75:25, MW: 90,000-126,000), polyvinylalcohol (PVA; MW: 
50,000-85,000), phosphate buffered saline (PBS), dicyclohexylcarbodiimide (DCC), polyethylene 
oxide (PEO) (MW: 1,000,000), sodium chlorine, succinic anhydride, ethylenediamine and methylene 
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chlorine (biotech grade) were all purchased from Sigma-Aldrich and used as supplied. 1-(3-Dimethyl-
aminopropyl)-3-ethylcarbodiimide (EDC) was obtained from Alfa Aesar (MA, USA) and N-
hydroxysuccinimide (NHS) was obtained from Fluka (Steinheim, Germany). All media and cells were 
purchased from HyClone, Logan, UT, USA. Express2TM Monorail® from Boston Scientific (MA, 
USA) and Paclitaxel were kindly provided by Dr. Luc Bilodeau from the Montreal Heart Institute 
(Montréal, QC, Canada). 
 
3.1. Preparation of hyaluronan (HA) ester prodrug of paclitaxel (Pac) 
 

The HA ester prodrug of Pac (HA-Pac) was prepared in three steps as reported elsewhere [18, 25]. 
Briefly, 2’-Succinyltaxol was prepared and Pac was linked to HA via a labile succinate ester linkage 
[25]. Subsequently the 2’-succinyltaxol was converted into an activated ester using carbodiimide 
coupling chemistry with N-hydroxysuccinimide (NHS) and dicyclohexylcarbodiimide (DCC). The 
activated ester was linked to an amine modified HA. The last purification steps in the synthesis of HA-
Pac were dialysis of the HA-Pac solution against acetone/water (70:30) and water (membrane tubing, 
molecular weight cut-off 50000). Pac loading was determined by UV absorbance (λmax= 227 nm, ε = 
2.8 × 104) in 80:20 CH3CN:H2O. 
 
3.2. CH-PEO membrane formation 
 

CH-PEO blend was used for film preparation and for the membrane-covered stent. CH was 
dissolved in 0.1 M aqueous acetic acid (2% w/w) and then filtered. PEO dissolved in glacial acetic 
acid was then added to the CH solution to form a CH/PEO blend with a ratio of 70:30 by weight. The 
blend was degassed and either used for the formation of films or for the preparation of the membrane 
covered stent. The dried material was washed with 0.1 N NaOH to de-protonate the ammonium 
functions of the CH. Subsequently, the membrane was washed thoroughly with PBS buffer and finally 
with 0.14 M aqueous NaCl. Microsphere-containing membranes were prepared by suspending the 
microspheres into the CH-PEO blend. All further steps were carried out as mentioned with CH-PEO 
membrane formation. 
 
3.3. Membrane-covered stent preparation 
 

The membrane-covered stent preparation was carried out according to a modified procedure 
reported by Thierry et al. [11]. CH-PEO (70:30) blend solution was used for an Express2TM Monorail® 
stent system. The stent was mounted on an inflated rotating balloon catheter and the degassed CH-PEO 
solution was applied onto it. Following overnight drying, the balloon was deflated and the stent was 
immersed into a 0.1 N NaOH solution.  
 
3.4. Self-assembled monolayer coatings: membrane-HA and membrane HA-Pac preparation 
 

A solution of sodium hyaluronate (1 mg/mL in 0.14 M aqueous NaCl) and a solution of the HA 
prodrug of paclitaxel (HA-Pac 1 mg/mL in 0.14 M aqueous NaCl) were prepared separately. Ultrapure 
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water (UPW) was used in all experiments (18.2 MΩ cm2; MilliQ system, Millipore). The monolayer 
build-up was accomplished by applying the polymer solution (HA or HA-Pac) onto the CH-PEO 
substrates. The adsorption time was 5 minutes followed by a washing step with 0.14 M NaCl. 
 
3.5. Membrane assessment during inflation 
 

The membrane-covered stent was hand-crimped onto the balloon catheter [Express2TM Monorail® 
stent system on 5F Guide Catheter/minimum I.D. (0.059″/1.47 mm)]. To simulate the friction 
generated during the application of a stent via a balloon catheter inside a blood vessel and to assess the 
membrane integrity during inflation of the CH-PEO/HA covered stent inside the 2mm tube, the 
procedure was monitored with a microscope through a quartz cuvette which was attached to the tubing. 
The cuvette and the tube were filled with PBS buffer solution and the inflation was carried out at 37°C.  
 
3.6. Preparation of microspheres 
 

PLGA microspheres were formulated according to the o/w-solvent evaporation method. 1 mL of 
PLGA solution (50 mg/mL) with 10 % paclitaxel (w/w) in methylene chloride was poured into an 
aqueous PVA solution (4% w/v, 10 mL). After stirring, the formed emulsion was treated with 
ultrasound for 5 minutes and subsequently transferred into a 500 mL round bottom flask. The organic 
phase was removed under reduced pressure. The remaining spheres were centrifuged for 5 min at 345g 
and the PVA supernatant was removed carefully. The spheres were re-suspended in UPW and ultra-
sonicated for 5 minutes. Centrifugation, exchange of the supernatant with UPW and sonication were 
repeated three times to remove the PVA. The microspheres were dried then by lyophilization. Particle 
size measurements were carried out using dynamic light scattering (DLS) via a low angle laser light-
scattering device (Malvern Instruments HPPS). 
 
3.7. SEM analysis 
 

Un-coated and CH-PEO/HA membrane-coated Express2TM stents were sputtered with an ultra-thin 
layer of Au-Pd. Microscopic imaging using a Field Emission Gun Scanning Electron Microscope 
(FEGSEM; Hitachi model S-4700) at an accelerating voltage of 5 kV was done. 
 
3.8. Determination of drug loading 
 

Drug loading was determined by dissolving accurately weighed amounts of microspheres in 
dichloromethane and subsequent drug detection at λmax= 229 nm (UV µ-Quant, Bio-Tek Instruments, 
Inc., VT, USA). 
 
3.9. Drug activity assessment by cell viability studies 
 

U937 human macrophages were cultured in RPMI 1640 medium (HyClone, Logan UT) 
supplemented with 5% fetal bovine serum, 100 U/mL penicillin, and 100 µg/mL streptomycin. 
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Macrophages (105 cells/mL) cultured in suspension were exposed to different surfaces. Macrophages 
alone served as negative control. 100,000 cells per mL were exposed to the CH-PEO/HA membrane, 
CH-PEO/HA/Pac membrane with chemically linked Pac and to the CH-PEO/HA with physically 
incorporated Pac. The UV-spectrum of paclitaxel in an ethanol/water solution showed a maximum 
extinction at λmax = 229nm whereas an aqueous solution of HA did not show any absorption at that 
range. The synthesized bioconjugate of Pac and HA showed a maximum at 228 nm indicating the 
successful linkage of Pac to HA. The loading of Pac on the polymer backbone was quantified by UV 
absorbance at 228 nm. HA-Pac with an amount of 10% Pac was used in all following experiments. 
Incubations were conducted at 37°C in a humidified 5% CO2 environment. After 24 hours the cells 
were stained with a trypan blue solution and both, the number of stained cells and the total number of 
cells were counted using a hemocytometer under the microscope.  
 
3.10. Drug release studies  
 
3.10.1. Drug release study from CH-PEO/HA/Pac membranes  
 

A 2% CH-PEO solution in 0.1 M acetic acid (250 µL) was cast into 24-well cell culture plates. The 
solutions were dried over night, de-protonated with 0.1M NaOH, neutralized with PBS-buffer, and 
subsequently coated with HA-Pac (HA-Pac 1 mg/mL in 0.14M aqueous NaCl). Drug release studies 
were carried out in phosphate-buffered ethanol-water (40:60 v/v) on a shaking platform under gentle 
agitation. The solvent was exchanged frequently to maintain sink-conditions. HPLC analytic was used 
for the quantification of Pac with UV-detection at λmax = 229 nm using acetonitrile water (50:50) 
(Fisher Scientific, HPLC grade) as mobile phase with a flow rate of 1.2 mL/min. The injection volume 
was 50 µL. The separation was achieved using a C-18 reverse phase column (LiChrosorp 25 mm, 
diameter 4.6 mm). The calibration line for Pac in ethanol-water (40:60) showed good linearity (R2 = 
0.9996). 
 
3.10.2. Drug release study from CH-PEO/HA + Pac membranes 
 

A 2% CH-PEO solution in 0.1M acetic acid (250 µL) was cast into 24-well cell culture plates. The 
solutions were dried over night, de-protonated with 0.1 M NaOH, neutralized with PBS-buffer, and 
subsequently coated with HA (HA 1 mg/mL in 0.14M aqueous NaCl). The dried membranes were 
loaded with 0.3, 0.7 and 1.0 mg Pac using an ethanolic solution of the drug. After evaporation of 
ethanol, the dried membranes were treated with 0.5 mL of pure ethanol. After drying membranes were 
washed with an ethanol-water (40:60 v/v) solution to remove surface-attached Pac. The release 
experiment of Pac into phosphate-buffered ethanol-water (40:60) solution was carried out on a shaking 
platform under gentle agitation. The solvent was exchanged frequently to maintain sink conditions. 
UV analytic was used for the quantification of Pac at λmax = 229 nm. The calibration line for Pac in 
ethanol:water (40:60) showed good linearity (R2 = 0.9994). 
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3.10.3. Drug release study from CH-PEO/HA + PLGA membranes 
 

Isolated Pac-loaded microspheres (8.0 and 9.5 mg, respectively) were added to a CH-PEO solution, 
cast into 24-well cell culture plates and dried over night. The dried membranes were de-protonated 
with 0.1M NaOH, neutralized with PBS buffer, and subsequently coated with HA (1 mg/mL in 0.14 M 
aqueous NaCl). Drug release studies were carried out similarly as described earlier.  
 
3.11. Isolation and labelling of platelets 
 

Platelets were isolated and radio-labelled with 51Cr as described previously [27]. A human blood 
sample collected in acid citrate dextrose was centrifuged at low speed to obtain platelet-rich plasma. 
Incubation with the radioactive 51Cr (Amersham International) followed. The suspension was 
centrifuged to remove unbound 51Cr and re-suspended in platelet-poor plasma. 245x106 platelets were 
found per mL plasma. Platelet adhesion experiments were carried out with different polymer foils and 
polymer-composites for 1 hour at room temperature. The size of the foils was 1 cm × 0.5 cm resulting 
in an exposed area of 1 square centimetre (neglecting the height of the foils). Subsequently, the 
samples were placed in a gamma counter equipped with a nuclide analysing program for 51Cr 
radioactivity determination. The amounts of platelets per square centimetre adhered to the samples was 
calculated from the samples radioactivity and the cellular count of reference calibration. The 
calibration line showed a good linearity (R2 = 0.9996) indicating measurement accuracy. 
 
3.12. Statistics 
 

Results are expressed as mean values ±standard deviation (SD). Paired student t-tests were used and 
ρ<0.05 was considered statistically significant. 
 
4. Conclusions 
 

In this work, we have reported a membrane-covered stent from CH-PEO blends with attractive 
mechanical properties and enhanced drug loading and release capacity. We showed that the 
combination of the hemocompatible CH-PEO/HA membrane with a drug release system is feasible 
and that drug release kinetics can be modulated using the desired loading strategy. The absence of 
surface irregularities due to the HA coating shows the potential for abolishing platelet deposition and 
thus thrombus formation. The membrane offers the possibility of incorporating the anti-proliferative 
agent paclitaxel using various strategies: (i) surface bound paclitaxel via hydrolysable ester linkage of 
drug and HA, (ii) physical incorporation of paclitaxel into the membrane, and (iii) PLGA microspheres 
loaded with paclitaxel and embedded into the membrane to modulate drug release. Significantly slower 
release of paclitaxel from PLGA microspheres (~ 60% in 216 hours) could be achieved if compared 
with the release from physically incorporated or covalently-bound paclitaxel (~ 100% in 65 and 43 
hours, respectively). In either membrane system, the Pac-loaded membranes inhibit the viability of 
proliferating cells such as U937 human macrophages as a result of drug release and demonstrate 
improved thrombogenicity due to a monolayer coating of the membrane with HA. Thus, it is 
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promising for the clinical administration of highly hydrophobic drugs to more than one application 
requiring different release patterns such as in the treatment of aneurysms as well as in rare and life-
threatening complications of sealing coronary perforations.  
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