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Abstract: Many-core processors are becoming mainstream computing platforms nowadays. How to
map the application threads to specific processing cores and exploit the abundant hardware
parallelism of a many-core processor efficiently has become a pressing need. This work proposes
a data affinity based threads grouping mapping strategy Data Affinity Grouping based Thread
Mapping (DagTM), which categorizes threads into different groups according to their data affinity
and the hardware architecture feature of many-core processors. After that, the thread groups are
mapped to the specific processing cores to be energy efficiently executed. More specifically, first,
the intra-thread data locality is analyzed by computing the data reuse distance, and the inter-thread
data affinity is quantified by affinity matrix. Second, the threads are categorized into different
groups via affinity subtree spanning algorithm. Finally, the thread groups are assigned to different
processing cores through static binding. DagTM is able to reduce conflicts of the shared memory
access and additional data transmission, increase utilization of the computing resources, and reduce
entire system energy consumption. Experimental results show that DagTM obtains a nearly 14%
improvement in computing performance, and a nearly 10% reduction in energy consumption
compared with the traditional thread mapping mechanism under the condition of not introducing
additional runtime overhead.
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1. Introduction

Improving computing performance and reducing energy consumption remain key problems in
the high-performance computing domain [1]. The heterogeneous many-core system has emerged
as a promising solution in energy-efficient computing. In the emerging heterogeneous many-core
systems composed of a host processor and co-processor, the host processor is used to deal with
complex logical control tasks (i.e., task scheduling, task synchronizing, and data allocating), and the
co-processor is used to compute large-scale parallel tasks with high computing density and simple
logical branch. These two processors cooperate to compute different portions of a program to improve
the program energy efficiency. The host processor generally adopts chip multi-processors that contain
a limited number of processor cores, and the co-processor generally adopts an emerging many-core
processor, such as graphics processing unit (GPU) and Intel many integrated core (MIC), which
integrates many processing cores (generally tens or even hundreds of cores) in a single chip, and these
processing cores are connected via interconnection network and employs simultaneous multithreading
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(SMT). For instance, Intel MIC [2] is a new type of many-core processor architecture. It extends the
traditional microprocessor vector, integrating many microprocessors onto a single chip. All processing
cores within each microprocessor share the same last level cache and operate at the same frequency.
These microprocessors are connected via a ring interconnecting network in order to further improve
computing energy efficiency.

With the development of many-core technology, the increasing number of processing cores
deteriorates the contention for shared resources (such as shared cache and shared bandwidth).
In addition, hierarchical non-uniform memory access (NUMA) memories lead to more complex
memory access. If the threads with frequent data interaction are mapped to different hardware threads
on different processing cores, higher memory access latency and higher data transmission overhead
will occur. On the contrary, if the threads without data affinity are mapped to a same processing
core, higher memory access conflicts and higher cache misses will occur. These higher memory access
latency, higher data transmission overhead, higher memory access conflicts, and higher cache misses
will result in a computing performance decrease and energy consumption increase. Therefore, memory
architecture features and data access pattern should be simultaneously considered in the process of
mapping the application threads to processing cores in many-core systems.

State-of-the-art techniques for thread mapping which rely on the data locality can be classified
into static and dynamic mapping. Static mapping generally profiles and analyzes offline the data,
accesses program information, and partitions the workloads into different threads. Then the threads
are directly mapped to the processing cores according to user-defined mapping, e.g., using the Open
Multi-Processing (OpenMP) affinity clause. This static mapping is simple and does not introduce
additional overhead. However, it is unable to practically reflect the data locality between threads
running on a specific processor. Dynamic mapping can assign threads to processing cores by
dynamically profiling and thread migration, but this will introduce high runtime overhead and
impact the program performance. Since the traditional multi-core system has a limited number of
processing cores, it can obtain acceptable computing performance by using the existing mapping
mechanisms. However, the existing mapping mechanisms cannot meet the higher requirements of
performance and efficiency for many-core systems. The reason is that the many-core systems have
more processing cores and more complex memory hierarchy.

In order to handle the above challenges, we first analyze the data locality of a thread by
computing the data reuse distance, which is a rigorous and hardware-independent data locality
metric [3]. To efficiently compute data reuse distance of a thread, we design a data reuse distance
computation algorithm by constructing a balanced binary tree. We then propose the data locality
pattern to determine the data affinity between threads, and use the affinity matrix to quantify the data
affinity. On the basis of data affinity, the threads are categorized into different groups by an affinity
subtree spanning (ASS) algorithm combined with the many-core system hardware architecture feature.
The ASS algorithm can ensure that data correlations between threads within the same group are as
large as possible, and data correlations between threads in different group as small as possible. After
that, the threads grouping mapping strategy Data Affinity Grouping based Thread Mapping (DagTM)
is implemented. DagTM maps the different threads groups to different processing cores based on the
data affinity between threads and the architecture features of a many-core system, in order to minimize
the data interaction between processing cores, fully exploit the computing power of a processing core,
and reduce the system energy consumption. Furthermore, DagTM will not produce additional runtime
overhead, because the thread grouping is conducted before the actual execution of a program.

Experimental results show that DagTM improves the application performance by nearly 14%, and
decreases energy consumption by 10% on average compared with the traditional Operating System
(OS) thread mapping mechanism for PARSEC [4] benchmark programs running on an Intel MIC
heterogeneous many-core system. The key contributions of this work are as follows:

(1) We design an algorithm for calculating data reuse distance by constructing a balanced
binary tree. The algorithm can efficiently implement the data reuse distance calculation by inserting,
traversing, and deleting data nodes during the process of constructing a balanced binary tree.



Energies 2016, 9, 754 3 of 20

(2) We propose data locality patterns that reflect the different data correlations, and use an affinity
matrix to quantify the data affinity between threads.

(3) We design an affinity subtree spanning algorithm based on an affinity graph to implement
thread grouping.

(4) We implement the thread grouping mapping strategy DagTM based on the data affinity on the
Intel MIC heterogeneous many-core system.

2. Related Work

A large number of efforts have been done for mapping threads to processing cores based on the
data locality. Jiang et al. [5] introduced the concurrent data reuse distance concept by extending the
traditional data reuse distance, connected concurrent reuse distance with the data locality of each
individual thread by using a probabilistic model, and presented a solution to collect and apply the
concurrent reuse distance on Chip Multi-Processor (CMP) platforms. Zhang et al. [6] designed a novel
data locality optimization strategy for multicores, which is able to balance both inter and intra-core
reuses. The strategy is essentially an exhaustive comparison method, which needs to calculate the
data reuse weights, construct a data dependence graph and data sharing graph in advance, and
tradeoff performance and overhead. In addition, the strategy mainly focuses on the multi-core
single threading without considering simultaneous multi-threading. Drebes et al. [7] proposed a
resource-aware approach combined with topology-aware work stealing, dependence-aware memory
allocation, and work pushing. The approach can significantly improve the performance of some
memory-bound applications. However, for computation-bound applications, the approach may not
achieve the ideal performance due to additional run-time overhead. Lu et al. [8] proposed a software
framework that partitions the cache at the data object level to reduce cache misses. Unlike our strategy,
the work focuses mainly on reducing cache misses to improve performance without considering the
data interference between different processing cores. Moreover, it needs to modify the Linux kernel to
implement the proposed framework, which restricts its generality. Muralidhara et al. [9] proposed
a cache hierarchy-aware application grouping algorithm to find an application-to-core mapping.
The work mainly analyzes the memory access relationship between different applications according
to the sampling reuse distance distribution on the simulator, and groups the workload on the
coarse-grained program level, which could not fully reflect the data interaction characteristics
between different threads in the same application. Diener et al. [10] proposed a mechanism to
improve memory access locality by reducing accesses to remote caches and memories. In the process
of program execution, sharing threads are migrated to the same memory level processing core,
and memory pages accessed by a thread are migrated to a node that runs the thread to improve
memory access performance. However, the mechanism will introduce additional runtime overhead.
Ding et al. [11] proposed a cache hierarchy-aware code mapping and scheduling strategy for multicore
architectures. In the process of mapping, the loop iteration, data reuse, and processor memory hierarchy
are abstracted as iteration vector, reuse vector, and core vector, for implementing the loop iterations
to processing cores mapping by using the algebraic method. The method calculates the data locality
by comparing the vectors. For the computation intensive loop iteration, this method can achieve
good computing performance, but for the storage density and communications intensive applications,
simply comparing the vector is not able to effectively extract relative complex data correlation between
threads. Cruz et al. [12] proposed a mechanism to detect the communication patterns of shared memory
applications by monitoring cache coherence protocols, and proposed an algorithm to dynamically
migrate the threads. This mechanism could implement the dynamic thread mapping to reduce
communication overhead supported by the certain hardware. Tousimojarad et al. [13] proposed
an extended lowest load technique by using a heuristic to find the optimal target core for each
thread. The work aims mainly to provide load balancing in a multithreaded multiprogramming
environment. Marongiu et al. [14] considered a representative template of a modern multi-cluster
embedded Multiprocessor System-on-chip (MPSoC), and presented an extensive evaluation of the cost
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associated with supporting OpenMP. They adopted a hierarchical barrier algorithm to improve the
performance of global synchronization, and introduced extensions for data distribution at the cluster
level to implement data sharing in an effective manner. Poovey et al. [15] proposed four novel, hybrid
hardware/software, pattern-based thread mapping predictors, which aims to provide load balancing
to improve the performance. Our work mainly utilizes the data locality between threads to map the
thread to the appropriate processing cores to improve energy efficiency. However these works are not
orthogonal to our work, they can mutual combine to further improve the energy efficiency.

The different thread mapping strategies mentioned above, either introduce extra runtime
overhead, or need customized support from compilers or special hardware, which limit their
versatility and effectiveness. However, DagTM simultaneously takes into account the memory access
characteristics of application threads and hardware architecture features of many-core processors,
analyzes the data affinity of application threads, and then divides the threads into different
groups. DagTM can reduce shared memory access conflicts and unnecessary data transmission,
improve program computing performance, and reduce system energy consumption without requiring
additional runtime overhead and special hardware support.

3. Threads Grouping Mapping Framework

The thread grouping mapping framework of DagTM is shown in Figure 1. First, the application
program is divided into the corresponding number of application threads according to the maximum
number of hardware threads supported by the many-core processor. The computing tasks are evenly
allocated to different application threads. The data locality of computing tasks is not considered
during task partition, and will be taken into account in the subsequent process of threads grouping.
We develop the parallelism based mainly on the loop portions of benchmark programs. Given that
the major computing task is focused on the loop portions for most of the programs, inserting the
OpenMP directive statement # pragma omp parallel for in the loop parts of benchmark program can
realize the parallelization.
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Figure 1. Data Affinity Grouping based Thread Mapping (DagTM) thread grouping mapping framework. 
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Figure 1. Data Affinity Grouping based Thread Mapping (DagTM) thread grouping mapping framework.

Second, DagTM detects the data locality of thread by computing the data reuse distance.
The different threads are merged into the different pattern classes by data locality pattern classification.
Third, DagTM analyzes the data affinity between different threads through calculating the number of
shared data. The data affinity reflects the inherent data correlation of program, and is independent of
the specific running platform. DagTM uses the affinity matrix to quantify the data affinity. Fourth,
threads are categorized into different thread groups relying on the data affinity matrix and data affinity
graph. Finally, thread groups are mapped to different processing cores to execute by considering the
hardware architecture feature of many-core processor.

4. Detecting Thread Data Locality

After the computation tasks are partitioned into different application threads, DagTM detects the
data locality of thread by collecting the memory access data of each thread, and calculating the data
reuse distance.

4.1. Calculating Data Reuse Distance

Data reuse distance is an ideal metric for detecting program data locality [2,5], which refers to the
number of distinct data elements referenced between current and the previous access to the same data
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element. The reuse distance is inherent to a program, and is independent of hardware configuration.
A small reuse distance means the accessed data has good data locality, which can be accessed at high
frequency; on the contrary, it means a poor data locality, and a low access frequency. We design the Pin
tool by using Intel Pin Application Program Interface (API) [16,17] to collect the memory access data
and calculate the data reuse distance, in parallel. After that, the average data reuse distance of each
thread is calculated.

The traditional data reuse distance calculation is realized by using stack- or tree-based algorithms.
Stack-based algorithms are inefficient due to a need to sequentially traverse all of the data sequences
from the stack top to the bottom. However, the tree based algorithm has high computing efficiency,
because it is able to utilize some special properties of the tree to reduce the redundant traversal.
In order to improve the speed of traversal data nodes in the tree, Niu et al. [18] used a hash table to
assist the data reuse distance calculation. Because the hash table must be constructed before calculating
the data reuse distance, it will incur additional overhead in both time and space.

In order to reduce the additional overhead in both time and space, we calculate the data reuse
distance when inserting the memory access data into a balanced binary tree, and simultaneously
record the data reuse distance into the corresponding data node. In this way, the calculation of data
reuse distance and collection of thread access data can be simultaneously completed, which does
not need the support of other auxiliary data structure (e.g., a hash table). Therefore it could reduce
additional overhead in both time and space. When the whole memory access data scanning is finished,
the balanced binary tree containing the memory access data and reuse distance is also generated. The
balanced binary tree node is used to record the memory access data. It is defined as a struct. The node
data structure definition is shown as follows:

struct Node

{int TS; //time stamp that records the access order of data.

float Element; //records the accessed data.

int Frequency; //records the access times of memory access data.

int Weight; //records the number of sub-node contained in the current node.

int RD; //records the data reuse distance of the current node.

}.

The whole process of calculating the data reuse distance includes inserting nodes, deleting nodes,
and traversing nodes in the balanced binary tree. The average data reuse distance of a whole thread
is calculated by traversing the balanced binary tree, which is used to quantify the data locality of
a thread.

4.1.1. Collecting Thread Access Data

Collecting memory access data is implemented through inserting data nodes in the balanced
binary tree. The data node insertion operation adopts the in-order inserting algorithm of a balanced
binary tree based on the time stamp as a primary key.

Before inserting a new data node, the algorithm first traverses the current binary tree, and judges
whether the new data has been recorded in the current binary tree. If the data has been recorded,
the data reuse distance will be calculated. The existing data node that contains the new data is deleted
from the current binary tree, and the current binary tree is adjusted to maintain the balance. Then the
new data node is inserted into the current balanced binary tree. If new data is not recorded in the
current binary tree, the new data node will be inserted into the binary tree. The algorithm constantly
iterates according to the above steps until all the memory access data and corresponding information
are recorded. A complete algorithm of collecting access data consists of the following five procedures:
scanning memory access data, inserting data node, deleting the original data node, counting data
reuse frequency, and calculating data reuse distance. The concrete realization process is as follows:
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(1) Initialization: define the data structure of new data node: Node (TS; Element; Frequency; Weight;
RD), an empty binary tree.

(2) Call Pin tool to scan threads access variables, and record time stamp ti and data element di.
(3) Assign initial values to data item variables of new data node: TS = ti; Element = di; Frequency = 1;

Weight = 1; RD = ∞.
(4) Judge whether the data element of new data node is included into the current binary tree, and

inorder traverse the binary tree.
(5) If the data element has been contained in the data node of the current binary tree:

a Call the data reuse distance calculation function (shown in Algorithm 1) to calculate current
data reuse distance RD.

b Count the data reuse frequency of new data node: the data reuse frequency equals to the
data frequency value of current node plus one.

c Delete the current data node in the current binary tree.
d Adjust the balanced binary tree. The conventional AVL algorithm (balanced binary

tree algorithm) is used to adjust the balanced binary tree based on the time stamp as
a primary key.

e Insert the new node into the current balanced binary tree.

(6) If the node is not contained in the current balanced binary tree, then directly insert the new data
node into the binary tree.

(7) Repeat steps (2)–(4), until all the access data of thread have been scanned. Generate the new
balanced binary tree which contained all the memory access data, corresponding data access
frequency, and corresponding data reuse distance information.

(8) Adjust the data reuse distance which equals ∞ in the data node. The values ∞ are replaced with
the M (refers to the number of data nodes in the current binary tree). The M is the value of Weight
of root node, and it also refers to the max data reuse distance of current thread.

(9) Finish the collecting access data of thread.

4.1.2. The Algorithm of Calculating Data Reuse Distance

The data reuse distance calculation process is encapsulated into an isolated function, which is
directly called during collecting thread access data. The algorithm realization is as follows:

(1) Search the data node which contains the data to be inserted into the current binary tree. If the data
node is not included, which means that the data is firstly accessed, and its data reuse distance is
set as ∞.

(2) If the data node is found in current binary tree, then the data reuse distance calculating process is
as follows:

(a) If the time stamp of the target node (Ntarget) is smaller than the time stamp of the root node
(Nroot), it indicates that Ntarget is the left subtree node of Nroot. The data reuse distance
equals the number of right subtree nodes plus the number of nodes which are included in
the left subtree of Nroot and their time stamps are larger than the time stamp of Ntarget.

(b) If the time stamp of Ntarget is larger than the time stamp of Nroot, it indicates that Ntarget is
the right subtree node of Nroot. The data reuse distance is the number of nodes which are
included in the right subtree of Nroot and their time stamps are larger than the time stamp
of Ntarget.

(3) Compare the data reuse distance of the current data with the original node in the binary tree, and
set the smaller value as the final data reuse distance RD of the data node to be inserted in the
binary tree in order to ensure the validity of data reuse distance.
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(4) In the left or right subtree of Nroot, the calculation process of the number of nodes in which time
stamp is larger than the time stamp of Ntarget is as follows. (rd refers to the final number of node).

(a) Set the initial value of rd as 0.
(b) Assign the weight value of the right child node of Ntarget to rd, and set Ntarget as the

current node Ncurrent.
(c) Backtrack to the parent node of Ncurrent.
(d) If the Ncurrent is not the root node, and its time stamp is larger than the Ncurrent, the rd

equals to the weigh value of Ncurrent subtracts its left child weigh value. Set the current
parent node as the Ncurrent, and go to the step (c).

(e) If the time stamp of Ncurrent is smaller than Ntarget, then set the current parent node as the
Ncurrent and go to the step (c).

(f) If the Ncurrent is Nroot, then calculation is completed.

The algorithm details are shown in Algorithm 1.

Algorithm 1: Calculating data reuse distance algorithm.

1 Input: Nroot, Ntarget

2 Output: RD
3 Begin
4 RD = 0;
5 if ((Ntarget ->TS) < (Nroot ->TS)) then

//Target node time stamp is smaller than the root node time stamp,
//the target node is the left subtree node.

6 RD = (Nroot -> right_child.weight) + 1 + (Ntarget ->right_child.weight);
7 p = Ntarget -> parent;
8 while (p! = Nroot)
9 if ((p-> TS) > (Ntarget -> TS)) then
10 RD + = (p->weight)-(p->left_child.weight);
11 p = p-> parent;
12 else
13 p = p-> parent;
14 end if
15 end while
16 RD = (RD < Ntarget ->RD)? RD: Ntarget ->RD;

//Set the smaller value of data reuse distance between target node
// and current to be inserted node as the current data reuse distance.

17 return RD;
18 else

//The target node is in the right subtree of root node.
19 RD = Ntarget -> right_child.weight;
20 p = p->parent;
21 while (p! = T)
22 if ((p->TS) > (Ntarget -> TS)) then
23 RD+ = (p-> weight)-(p-> left_child.weight);
24 p = p->parent;
25 else
26 p = p-> parent;
27 end if
28 end while

//Set the smaller value of data reuse distance between target node
//and current to be inserted node as the current data reuse distance.

29 RD = (RD < Ntarget -> RD)? RD: Ntarget ->RD;
30 return RD;
31 end if
32 End
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4.2. The Instance of Calculating Data Reuse Distance

The following concrete instance explains the process of collecting the memory access data and
calculating the data reuse distance. Table 1 shows the data sequence accessed by the thread, the values
of frequency and reuse distance are obtained by executing Algorithm 1.

Table 1. The memory access data sequence.

Time Stamp 1 2 3 4 5 6 7 8 9 10

data element d b c e a b e c f a
frequency 1 1 1 1 1 2 2 2 1 2

reuse distance ∞ ∞ ∞ ∞ ∞ 3 2 3 ∞ 4

Figure 2 shows the process of inserting data elements of the Table 1 into a balanced binary tree, and
calculating the data reuse distance and frequency as well. The process mainly includes the searching,
deleting, and inserting operation. Finally, it generates a balanced binary tree which contains the unique
memory access data d, b, c, e, f, a, and their corresponding data reuse distance information.
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4.3. The Average Data Reuse Distance of Thread

After the balanced binary tree is generated, the average data reuse distance of every thread is
computed by traversing the corresponding binary tree. Let K refer to the total number of threads, and
RDj (j = 1, 2, . . . , K) be the average data reuse distance of every thread, the data reuse distance of every
data is rdi, and the number of unique data is M. RDj can be calculated as follows:

RDj =
∑M

i=1 rdi

M
(1)

The average data reuse distance reflects the internal data locality of a thread. The average data
reuse distance is greater which means the data reuse rate is low and data locality is poor, and otherwise
the high data reuse rate and better data locality.

4.4. The Algorithm Complexity Analysis

Let N refer to the total number of access data of a thread, and the M be the number of unique
access data. The whole algorithm implementation mainly includes the insertion, traversal, and deletion
of nodes in the balanced binary tree. The main computation overhead is spent on searching the data
and calculating data reuse distances. The time complexity of searching for target data nodes is O(M),
and the time complexity of calculating data reuse distances is O(log(M/2)), so the total time complexity
of the whole algorithm is O(N(M + log(M/2))). The space complexity of the whole algorithm is O(N).

5. Determining Data Affinity

We merge all the threads into different data locality pattern classes based on the data reuse
distance. We then analyze and quantify the data affinity between threads. First, we determine the data
locality pattern according to the average data reuse distance of every thread. After that, the threads
are merged into different pattern classes. Lastly, we analyze the data affinity between threads in every
pattern class, and use the data affinity matrix to quantify the data affinity between different threads.

5.1. Definition of Data Locality Pattern

Data locality patterns are classified into three types: data sharing patterns, data dependency
patterns, and data isolation patterns. The different data locality patterns are quantified by the data
reuse distance. We set the data reuse distance threshold values as Dmin and Dmax, which reflect
different data access characteristics, and divide the data reuse distances into three different ranges,
each of which corresponds to one of the data locality patterns. Finally, we identify the data locality
pattern of each thread by comparing its average data reuse distance with the threshold values Dmin

and Dmax. The data locality pattern definitions are as follows:
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Definition 1: Data Sharing Pattern (DSP): RDj < Dmin. Under this pattern, the data accessed by the
thread has strong temporal locality. Threads that belong to this pattern should be assigned to different
hardware threads on the same processing core, and the data accessed by the thread should be allocated
to the same memory location of thread.

Definition 2: Data Isolation Pattern (DIP): RDj > Dmax. Under this pattern, the data accessed by the
thread has poor temporal locality. Threads that belong to this pattern should be assigned to different
hardware threads of different processing cores of different processors.

Definition 3: Data Dependency Pattern (DDP): Dmin ≤ RDj ≤ Dmax. Under this pattern, the data
accessed by the thread has partially temporal locality. Threads that belong to this pattern should be
assigned to different hardware threads of different processing cores on same processor.

The specific threshold values of Dmin and Dmax are obtained by empirical observation.
By measuring the different benchmark programs, we calculate the data locality, and analyze the
relationship between data locality and data reuse distance. Comparing the data reuse distance values
of programs with strong data sharing, let the max value be Dmin; and comparing the data reuse
distance values of programs with isolated data access characteristic, let the min value be Dmax. In this
article, the obtained values of Dmin and Dmax are 35% and 85% of the amount of data access in certain
interval, respectively.

5.2. Quantifying Data Affinity among Threads

We analyze the data affinity between threads in every pattern class by calculating the number
of identical accessed data between different threads, and use the data affinity matrix to quantify the
data affinity between different threads. The data affinity matrix reflects the data sharing characteristics
between different threads. The matrix row and column label respectively represent different thread
Identifies (IDs). Every element value of the matrix represents the number of sharing data between
threads marked by the corresponding row and column ID. A greater element value means the data
sharing is better between corresponding threads, and the data affinity is also better between them.

We calculate the number of identical accessed data between different threads, and set the number
as the corresponding data element value of the data affinity matrix. In order to improve the calculation
speed, we compare in parallel the same accessed data between threads that belong to the same data
locality pattern class. By comparing the corresponding balanced binary tree of different threads,
we compute the number of same data nodes between different binary trees, and the number is the
sharing data volume of the corresponding two threads. In addition, the number is recorded into
the corresponding element of the data affinity matrix. Finally, a complete data affinity matrix is
constructed, which reflects the data affinity between threads. After that, the data affinity matrix is
transformed to the data affinity graph which can intuitively reflect the data affinity between threads.
The data affinity graph is an undirected weighted connected graph, whose vertex refers to the thread
ID, and edge weight refers to the data sharing volume between threads.

6. Threads Grouping Mapping

DagTM implements mapping threads to processing cores in two stages based on the data affinity
combined with the memory hierarchy feature of many-core system. The first stage is threads grouping;
the second stage is assigning thread groups to different processing cores.

6.1. Threads Grouping

Threads are divided into K different thread groups based on the data affinity graph combined with
the max number of hardware threads supported by a processing core. The threads grouping needs to
ensure the good data affinity between threads in every similar group. It is essentially a combinatorial
optimization problem to divide the threads into different groups and ensure a better data sharing in
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the same thread group. In the process of thread grouping, the impact of the current thread on other
threads should be considered, similarly, the impact of other threads on the current thread should also
be considered. In this article, the thread grouping is abstracted as a graph decomposition problem.
By designing an affinity sub-tree spanning algorithm, the data affinity graph is decomposed as K
subtrees to meet the above requirements. The threads with high data sharing are merged into the
same thread group, and the threads with strong memory access conflicts are merged into different
thread groups.

6.1.1. Affinity Subtree Spanning Algorithm

The detailed execution process of the affinity subtree spanning algorithm is as follows:

(1) The G = (V, E) is a weighted undirected connected graph (i.e., affinity graph). The vertex V
refers to the set of threads, and edge E refers to the set of data affinity between different threads. Each
edge (Ti, Tj) ∈ E has a weight value ω (Ti, Tj), which refers to the sharing data volume between the
corresponding threads (as shown in Figure 3a). The total number of vertexes of graph G is Nt, which
refers to the total number of threads; Np refers to the number of nodes of every subtree (i.e., the number
of threads of every thread group), the number corresponds to the max number of hardware threads
supported by the specific many-core processor; K refers to the number of finally generated subtrees.
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Figure 3. Affinity sub-tree spanning process instance. (a) The affinity graph; (b) Find the edge  
(T1, T7); (c) Find the edge (T1, T3); (d) Find the edge (T3, T6); (e) Generate the subtree (T1, T7, T3, T6);  
(f) Find the edge (T2, T4), (T2, T5); (g) Find the edge (T4, T8); (h) Generate the subtree (T2, T4, T5, T8). 
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Figure 3. Affinity sub-tree spanning process instance. (a) The affinity graph; (b) Find the edge (T1, T7);
(c) Find the edge (T1, T3); (d) Find the edge (T3, T6); (e) Generate the subtree (T1, T7, T3, T6); (f) Find
the edge (T2, T4), (T2, T5); (g) Find the edge (T4, T8); (h) Generate the subtree (T2, T4, T5, T8).

(2) Generating the K subtrees from the weighted undirected connected graph G. STk refers to the
different subtrees. Each generated subtree contains Np nodes at most, and it must ensure the sum of
weight values of subtree edges is the largest, so it should satisfy following constraint conditions:

i. K =
⌈

Nt
Np

⌉
ii. ω (STk) = max ∑

(Ti ,Tj)∈STk

ω
(
Ti, Tj

)
(3) The sub-tree spanning algorithm is shown as Algorithm 2.
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Algorithm 2: Affinity Sub-tree Spanning Algorithm.

1 Input: G = (V, E), Np.
2 Output: STk (k = 1, 2, . . . , n).
3 Begin
4 K = 1;
5 Search_max_weight_edge (G, E, STk);

//Searching the max weight values edge, and add it into the current subtree STk.
6 while (V! = NULL)
7 {
8 do
9 {
10 Search_adjacent_max_weigh_edge (G, Ei, STk );

//Searching the max weight edge connecting the current edge Ei, and add //it into the current
subtree STk.
11 } while (Vi < Np && V ! = NULL)
12 end do
13 Delete_adjacent_edge (G, STk );

//Deleting adjacent edges are not to be included in the current subtree STk.
14 Generate_subtree (STk);

//Generate the new subtree STk.
15 K++;
16 Search_max_weight_remain_edge (G, E-Ek-1, STk);

//Searching the max weight values edge in the remained graph G.
17 }
18 end while
19 End.

6.1.2. The Algorithm Complexity Analysis

The complexity of the affinity subtree spanning algorithm is related to the number of vertexes and
edges of the affinity graph. The time complexity is mainly related to the number of edges of the data
affinity graph. The initial comparison needs to compare the weight values of all edges. Subsequently,
the number of comparisons will be reduced gradually. If the number of edges is n, the number of
comparisons will be n, n − 1, n − 2, . . . , 1, the total time complexity of algorithm is O(n2/2 + n/2).
In order to reduce the space complexity of the algorithm, the adjacency matrix is used to store the
affinity graph, and the upper diagonal information of the adjacency matrix is only stored. So, the space
complexity of the algorithm is O(V2/2).

6.1.3. Instance of Threads Grouping

A concrete instance of the affinity sub-trees generating procedure is shown in Figure 3. The graph
contains eight threads, and the max number of hardware thread supported by the processing core is
four. Finally, the two sub-trees are generated, i.e., the eight threads are merged into two thread groups
ST1 (T1, T7, T3, T6) and ST2 (T2, T4, T5, T8). The generated each thread group contains four threads at
most, and the sum of weight value of sub-tree edge is the largest, which ensures the data correlation
between threads within the same group as large as possible.

6.2. Mapping Rules

Combined with the memory hierarchy graph, the threads in the affinity sub-tree are mapped to
the different processing cores of many-core processor. Referring to the mapping algorithm in the [9,10],
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the data affinity sub-trees and memory hierarchy graph are used as input, we realize the thread
mapping by static binding of threads to processing cores. The mapping rules are as follows:

Rule 1: The application threads in the same thread group should be assigned to different hardware
threads in the same processing core as far as possible. If the hardware threads in the same processing
core are all allocated, the application threads should be assigned to the adjacent processing cores. The
aim is to reduce the additional data replication and memory access latency, and improve the utility of
the sharing cache.

Rule 2: The application threads in the different thread groups should be assigned to different
processing cores. Let the isolated threads be dispersed among different processing cores with isolated
cache space. The aim is to avoid a high data transmission latency and shared cache contention caused
by the great number of different data replications of application threads.

6.3. DagTM Implementation

DagTM implementation includes the data locality detecting of thread, data affinity quantifying,
thread grouping, and thread to processing core mapping and executing. The concrete implementation
is shown in Figure 4.
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Figure 4. Implementation framework of DagTM.

We utilize an eight-thread parallel application to explain the complete DagTM mapping process to
the Intel MIC processor. The task model and target platform model can refer to our previous article [19].
The detailed mapping process is as follows:

(1) DagTM first computes the average data reuse distance of each thread, identifies the locality
pattern of different threads, and merges the threads into different pattern classes on the basis of the
locality pattern [20–22]. After that, DagTM constructs the data affinity matrix (as shown in Figure 5)
of threads by counting the sharing data volume between threads in different pattern classes, and
transforms the data affinity matrix to the data affinity graph (as shown in Figure 6).
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(3) After the thread grouping is completed, the thread groups are assigned to the different
processing cores. We need to make sure that the threads assigned to the same processing core have
better data locality, and threads assigned to the different processing cores have the smallest data affinity.
The finally mapping result is shown in Figure 8c.

Figure 8 compares the mapping results between traditional OpenMP mapping and DagTM
mapping for the same application threads on the same Intel MIC many-core system. The OpenMP
Compact mapping mechanism mainly considers making full use of every processing core, and the
data locality between threads is not considered. It will assign the threads with high sharing data to the
different processing cores, and result in a high additional memory access.

As shown in Figure 8a, the threads T1, T3, T6, and T7 with high data affinity are assigned to
different processing cores 1 and 2. The same data copy needs to be stored to the chip cache of core 1
and core 2, respectively, which added the additional memory overhead. The OpenMP Scatter mapping
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in Figure 8b mainly considers the load balance, it evenly assigns threads to the different processing
cores, and also it does not consider the data locality between threads. Therefore, the scatter mapping
method will also introduce high additional data memory access, moreover it is unable to make full use
of the processing cores source and will cause high system energy consumption. However, as shown
in Figure 8c, the DagTM mapping considers the data locality between different threads, and divides
the threads into different groups according to the hardware architecture features of the processing
core and data affinity, and then maps the different thread groups to the specific processing cores of a
many-core processor, so it could utilize the data locality between threads to improve the data sharing
between hardware threads, and reduce the additional data access and data transmission. In addition,
it could make full use of the processing core sources to improve utilization of every processing core
and reduce the whole system energy consumption.Energies 2016, 9, 754  15 of 20 
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7. Experimental Evaluation

7.1. Experimental Methodology

We used the PARSEC [4] benchmark suite to evaluate the DagTM. The benchmark programs
were executed by using the native input size based on the OpenMP APIs. The experiment was
conducted on an Intel MIC heterogeneous many-core system that consists of two eight-core E5-2670
CPUs and one Xeon Phi 7110P MIC co-processor with 64 GB memory and a 300 GB hard disk. The MIC
co-processor contains 61 processing cores, and every processing core supports four hardware threads.
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The PCI-E x16 bus that connects the CPU and MIC co-processor can transfer data at a maximum
transmission speed of up to 16 GB/s. The OS is Red Hat Enterprise Linux Server release 6.3,
the performance metrics were obtained by the PAPI_5.4.1 performance measurement tool [16,17].
The soft development environment is Intel parallel_studio_xe_2013_update3_intel64.

The DagTM, OpenMP Compact, OpenMP Scatter, Oracle (the ideal optimized thread mapping
for the application obtained by empirical observation), and Kernel Memory Affinity Framework
(kMAF) [10] mapping mechanisms were used in benchmark programs, respectively, to compare their
performance from the following three aspects: computing performance, energy consumption, and
extra overhead.

7.2. Experimental Results and Discussion

7.2.1. Computing Performance

Figure 9 shows the relative improvement of computing performance of different mapping
mechanisms for different benchmark programs. The normalized performance improvement ratio was
computed via the relative reduce ratio of application execution time of different mapping mechanisms
compared to the baseline that OS default mapping mechanism (first-touch policy).
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Figure 9. Computing performance comparison.

As shown in Figure 9, the average computing performance was increased by 2%, 3%, 17%, 14%,
and 12% compared to the baseline (OS) by Compact, Scatter, Oracle, DagTM, and kMAF, respectively.
The DagTM computing performance amounted to 82.4% of the Oracle and was better than the other
three mapping mechanisms. The computing performances of the Compact and Scatter were lower
than the DagTM and kMAT. In some cases, their computing performances were even lower than
the OS default mechanism (e.g., Blackscholes, x264, Dedup, and Facesim). The main reason is that
the Compact and Scatter do not completely consider the data locality between threads, which will
cause the sharing source contention and additional data transmission delay. Furthermore, the DagTM
computing performance in some cases was lower than the kMAF (e.g., Streamcluster, Raytrace, Freqmine,
and Dedup). The reason is that kMAF can dynamically adjust threads according to the runtime data
affinity between different threads. kMAF can achieve a better computing performance when running
behavior of application has significant changes and the performance benefits obtained by dynamic
adjustment is greater than the additional overhead. However, for the applications whose running
behaviors have no significant changes, the additional runtime overhead introduced by the kMAF will
offset the performance benefits, so their computing performances are lower than the DagTM.

Figure 10 shows the reduction ratio of the last level cache misses normalized to the OS default
mapping mechanism. The smaller the normalized value is, the better. Overall, the reduction ratio of
the L2 level cache misses of DagTM was superior to the Scatter and Compact. The reduction of the
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cache misses of kMAF was the closest to the Oracle, and superior to the others. The main reason is that
kMAF is able to monitor the cache status in real-time and dynamically adjust threads to reduce the
cache line replication. However, real-time monitoring data affinity will introduce additional runtime
overhead, which will offset the part of performance benefits obtained from the reduction cache misses,
and impact the whole computing performance. So, as shown in Figure 9, the kMAF average computing
performance is not superior to the DagTM.
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7.2.2. Energy Consumption

Apart from performance, reducing energy consumption is another important goal of thread
mapping. On the one hand, the energy consumption can be reduced by hardware approaches
(e.g., DVFS [23,24]); on the other hand, it can be reduced by efficiently exploiting the computing
sources and reducing the execution time. DagTM relatively reduces the whole system static energy
consumption by making more efficient use of the computing resources and reducing the execution
time. The system energy consumption was measured during the execution of each application by
using PAPI components, which provides access to the energy and power values returned by the Intel
RAPL interface [17].

As shown in Figure 11, the average energy consumption was reduced by 2.3%, 3.2%, 12.4%,
10.3%, and 8.5% compared to the baseline (OS) by Compact, Scatter, Oracle, DagTM, and kMAF,
respectively. Because the DagTM considered the data affinity before the thread mapping, which is
able to reduce the memory access contention, improve the sharing sources utilization, reduce data
transmission overhead, and reduce the whole execution time, so it could relatively reduce the whole
system energy consumption.

 

Figure 11. The reduction of the system energy consumption. 
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Figure 11. The reduction of the system energy consumption.

7.2.3. Overhead

DagTM will introduce extra overhead before the execution of the program. The extra overhead
is mainly attributed to the data locality detection, data affinity determination, and thread grouping.
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To approximate the extra overhead for the benchmark program, we measured the time spent mostly
on data locality detection. Figure 12 shows the extra overhead of DagTM, which was measured by the
execution time ratio of data locality detection compared to the whole program execution time of the
different benchmark programs. The average extra overhead introduced by DagTM is nearly 11%.
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Figure 12. Extra overhead of DagTM.

The Compact and Scatter mappings do not consider the program itself data locality, and directly
map the thread to the processing core, which will not introduce additional overhead before and
during the program execution. The Oracle mapping obtained the best performance by exhaustively
comparing, and introduced the largest additional overhead, which only serves as an ideal mapping
standard, and does not serve as a practical mapping approach. The kMAF is able to dynamically adjust
the thread according to the running status of a program, which will introduce a certain additional
runtime overhead and impact on the computing performance of a program. It needs to trade off the
performance benefits and additional runtime overhead. However, DagTM directly implements thread
mapping after completing threads grouping. Due to the fact that threads grouping is implemented
before the program execution, it will not introduce additional runtime overhead. DagTM is able
to realize thread grouping at the cost of a negligible preprocessing overhead. It could make up the
shortcoming of the Scatter and Compact approaches, and obtain similar performance improvements
without introducing additional runtime overhead compared to the kMAF.

8. Conclusions and Future Work

In this article, we have investigated the mapping problem of thread to processing core based
on data affinity. The mapping of threads to the different processing cores of a many-core processor
was implemented based on the data affinity between threads considering the memory hierarchy
architecture features. The ultimate purpose of this work is to improve the whole system energy
efficiency by reducing sharing memory access contention, increasing sharing resource utilization, and
reducing data transmission overhead. Specifically, the data locality is detected by computing the
data reuse distance; the data affinity is quantified via an affinity matrix; the threads are divided into
different thread groups via an affinity sub-tree spanning algorithm. Finally, the thread groups are
assigned to the processing cores by static binding. The benchmark programs evaluation results show
that the DagTM is effective for improving program computing performance and reducing energy
consumption. DagTM is able to reasonably map the threads to different processing cores relying on the
data affinity between threads, and improve the whole system energy efficiency without introducing
additional runtime overhead.

For the future, we will extend DagTM and combine with the dynamic detecting the phase changes
of the running program to realize the hybrid static and dynamic thread mapping based on the data
affinity. In addition, we will combine the DagTM with the other thread mapping strategies to adapt
multithreaded multiprogramming environment and cluster architecture.
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