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Abstract: The occurrence of outliers in real-world phenomena is quite usual. If these anomalous
data are not properly treated, unreliable models can be generated. Many approaches in the literature
are focused on a posteriori detection of outliers. However, a new methodology to a priori predict the
occurrence of such data is proposed here. Thus, the main goal of this work is to predict the occurrence
of outliers in time series, by using, for the first time, imbalanced classification techniques. In this sense,
the problem of forecasting outlying data has been transformed into a binary classification problem,
in which the positive class represents the occurrence of outliers. Given that the number of outliers is
much lower than the number of common values, the resultant classification problem is imbalanced.
To create training and test sets, robust statistical methods have been used to detect outliers in both sets.
Once the outliers have been detected, the instances of the dataset are labeled accordingly. Namely,
if any of the samples composing the next instance are detected as an outlier, the label is set to one.
As a study case, the methodology has been tested on electricity demand time series in the Spanish
electricity market, in which most of the outliers were properly forecast.
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1. Introduction

Prediction tools have become important for agents participating in electricity markets. Electricity
generation companies need to schedule electrical energy production to satisfy the forecasted load.
In this sense, demand forecasting plays an important role for electricity power suppliers, because
both excess and insufficient energy production may lead to increased costs and a significant reduction
of profits. Therefore, it is quite important to obtain forecasts for electricity demand as accurately as
possible [1].

The electricity load time series shows complex characteristics influenced by diverse factors,
such as meteorological conditions, seasonal patterns, or socioeconomic factors. As a consequence,
the demand presents some peculiarities such as the presence of outliers, that turn the forecasting
process into a particularly challenging task.

It is worth highlighting the difference between the forecasting of the occurrence of an outlier and
its detection. The detection consists of discovering the outliers in an already known set of values,
which is a common goal in robust statistics [2]. The majority of robust statistical techniques try to
obtain a time series model from data once the outliers have been replaced. Thus, these techniques
perform a posteriori detection; that is, they determine whether a point is an outlier or not, but once it
has already occurred. However, the problem considered here is more difficult, since a prediction of
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the occurrence of an outlier is made with the goal of electricity companies activating adequate action
protocols or using forecasting methods specifically designed for the prediction of the magnitude of
outliers once it is known that an outlier is going to occur.

In this work, given a time series of hourly electricity loads up to day d, the goal is to forecast
if an outlier will occur over the 24 h loads for day d + 1. A new methodology based on imbalanced
classification [3] is presented, which, to the best of the authors’ knowledge, has yet to be exploited
in outlier forecasting problems.Note that robust statistics techniques will be of utmost importance
in order to transform a prediction problem into a classification problem, since the class is built from
detected outliers in the dataset.

The remainder of the paper is organized as follows. A review of the most recently published works
regarding outlier forecasting in demand time series can be found in Section 2. Section 3 introduces the
proposed methodology, showing how to transform the outlier occurrence forecasting into a binary
classification general scheme. The results obtained for the Spanish electricity demand time series are
reported and discussed in Section 4. Finally, Section 5 summarizes the main conclusions achieved.

2. Related Work

The problem of a posteriori outliers detection in time series has been widely studied in the
literature, and has been addressed by many approaches. This is due to the high impact that the
existence of outliers can cause by generating inaccurate models [4], since they may deeply influence
the estimates that classical methods propose [5].

To deal with this issue, there is a large family of robust statistical methods [6]. Gelper et al. proposed
an adapted version of the classical exponential and Holt–Winters smoothing methodologies, providing
them with robustness [7]. Another version of a robust multivariate exponential smoothing applied to
time series can be found in [8]. Following classical methods, a work that enhanced Auto Regressive
Moving Average (ARMA) by adding robustness can be found in [9], in which the authors succeeded
in limiting the effect of outlying data to the time stamp in which they happen.

Robust estimations can be found in electricity prices. In fact, a battery of over 300 models were
considered in [10] to forecast the long-term seasonal component. The authors concluded that those
based on wavelet are significantly better in terms of forecasting spot prices for up to a year ahead.

A robust weighted combination load forecasting method based on forecast model filtering and
adaptive variable weight determination was proposed in [11]. In particular, the authors proposed an
Immune Algorithm-Particle Swarm Optimization that was applied to Chinese data.

However, this work is concerned with a priori outlier detection or, in other words, with predicting
the occurrence of these anomalous values in real time. A method for the prediction of outlier occurrence
was proposed in [12]. In particular, The Pattern Sequence Forecasting (PSF) algorithm [13] was adapted
to deal with spike values in the field of electricity price forecasting. As a case study, the markets of
New York, Australia, and the Iberian Peninsula were examined. An early version of this algorithm can
be found in [14].

An approach based on multi-feature wavelet and an Extreme Learning Machine (ELM) algorithm
for the forecasting of outlier occurrence in the Chinese stock market was proposed in [15]. To ensure
the universal application of the algorithm, the authors selected two market indexes in Shanghai and
Shenzhen, as well as six other individual stocks.

Later in 2016, the outlier occurrence prediction in the stock market was again addressed in [16].
In this case, the wavelet transform and an adaptive ELM algorithm were used to analyze daily values
of the petroleum sector index from Tehran, Iran. The model was compared to several methods, showing
some improvement in the results achieved.

3. Methodology

This section describes the proposed methodology for the forecasting of the occurrence of outliers in
time series. The first step consists of formulating the outlier prediction problem as a binary classification
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problem. Later, a classifier is applied to predict the occurrence of outliers. As the number of outliers is
usually small, this formulation of the problem generates an imbalanced binary classification problem.

3.1. Formulation of the Problem

The attributes are composed of a window of past values of the time series, and the class can be
1 or 0, depending on whether or not an outlier has occurred in the prediction horizon. Therefore, firstly
the labels 1 or 0 have to be constructed for each instance of the dataset.

Figure 1 shows the basic idea behind the proposed methodology. All the steps composing this
methodology are described in subsequent sections.

OUTLIER 
FORECASTS 

TIME 
SERIES 

OUTLIER 
DETECTION 

DATASET 
LABELLING 

UNBALANCED 
CLASSIFICATION 

Figure 1. Illustration of the proposed methodology.

3.1.1. Detecting Outliers

The outliers are detected in the historical data by applying a robust statistical method. In particular,
the robust method proposed in Gelper et al. [7] to detect outliers in time series has been considered.
This method carries out a cleansing process of the time series to replace the outliers by a more likely
value prior to generation of the time series forecasting model.

Namely, a time series value is replaced, and is therefore considered an outlier, if the difference
between the observed value at time t and its predicted value at time t− 1 is too large. Thus, the set of
outliers OS of a time series is defined by:

OS = {yt : yt − ŷt−1 > k · σ̂t} (1)

where k typically is set to 2 or 3, depending on if moderate or extreme outliers are considered,
respectively. The predicted value ŷt is obtained by a robust exponential smoothing model, and σ̂t is a
robust estimation of the scale of the yt − ŷt−1 errors. Namely, the prediction and the scale are defined
in a recursive way as:

ŷt = λy∗t + (1− λ)ŷt−1 (2)

σ̂2
t = λσρ

(
yt − ŷt−1

σ̂t−1

)
σ̂2

t−1 + (1− λσ)σ̂
2
t−1 (3)

where y∗t is the cleaned value of yt given by Equations (4) and (5), ρ is the loss-function defined
by Equation (6), and λ and λσ are smoothing parameters between 0 and 1 which have to be determined
in the learning phase from a training set.

y∗t = φ

(
yt − ŷt−1

σ̂t

)
σ̂t + ŷt−1 (4)

φ(x) =

{
x if |x| ≤ k
sign(x)k otherwise

(5)

ρ(x) =

{
ck(1− (1− (x/k)2))3) if |x| ≤ k
ck otherwise

(6)

The ck value is an input parameter related to the parameter k (for example, ck = 2.52 for a common
value of k = 2 [7]). The initial values used to obtain the prediction and the scale in a recursive way are
usually the mean and the standard deviation, respectively, of the first values in the time series.
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3.1.2. Labeling the Dataset

Once the set of outliers for the historical data have been discovered, the instances of the dataset
must be labeled with their corresponding class. Given an instance composed of m past values of the
time series and a prediction horizon of h, the label is 1 if an outlier occurs over the h next values of the
time series (in our case, h = 24 h). That is, the class C is defined by:

C =

{
1 if ∃i ∈ {t + 1, ..., t + h} such that yi ∈ OS
0 otherwise

(7)

3.2. Imbalanced Classification

The methodology applied in order to forecast the occurrence of outliers for the twenty-four hours
of the next day is described in this section.

Since outliers are anomalous data, an imbalanced classification problem is obtained when the
prediction of outliers is formulated as a binary classification problem. Therefore, the class representing
the outliers is a minority class, but the class of interest.

The approaches proposed to solve imbalanced classification problems can be split into two
differentiated groups: algorithm-based approaches that design specific algorithms to deal with the
minority class, and data-based approaches, which apply a preprocessing step to try to balance the
classes before applying a learning algorithm [3]. In this work, a selection of representative methods
of the first group are firstly used, and thereafter, the algorithm with the best performance will be
combined with different preprocessing methods in order to improve the results of the forecasts.

Table 1 shows both preprocessing and classification techniques that have been analyzed to provide
a forecasting of outliers in the electricity demand time series. Due to the good behavior exhibited in
oversampling methods [3], a number of oversampling-based preprocessing techniques greater than
those based on undersampling have been tested. All these techniques can be found in the KEEL open
source java software project [17].

Table 1. Techniques of imbalanced classification.

Preprocessing Classification
Algorithm Type Reference Algorithm Reference

ADASYN Oversampling [18] AdaBoost [19]
ADOMS Oversampling [20] AdaBoostM1 [21]

ROS Oversampling [22] AdaBoostM2 [23]
Safe-Level-Smote Oversampling [24] Bagging [25]

SMOTE Oversampling [26] BalanceCascade [27]
SMOTE-ENN Oversampling [22] C45CS [28]

SMOTE-TL Oversampling [22] C-SVMCS [29]
SPIDER Oversampling [30] DataBoost-IM [31]

SPIDER2 Oversampling [24] EasyEnsemble [27]
CNN Undersampling [32] UnderBagging [33]

CNNTL Undersampling [34] UnderBagging2 [33]
TL Undersampling [34] UnderOverBagging [35]

4. Results

The above-described methodology has been applied to the electricity demand of the
Spanish market [36].

This section is structured as follows: first, a brief description of the electricity demand time series
is included. Second, the usual quality parameters in an imbalanced context are presented. Third, the
robust exponential smoothing model is obtained in order to detect outliers, and for this reason, the
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election of both λ and λscale is discussed here. Finally, the accuracy of the predictions of outliers
is validated.

4.1. Dataset

The electricity demand time series from 1 January 2007 to 20 June 2016 has been recorded to
carry out the analysis presented in this work. The time series is measured at hourly intervals and is
composed of a total of 82,975 samples, which have been split into 49,785 samples for the training set
corresponding to the period from 1 January 2007 to 8 September 2012, and 33,190 samples for the test
set corresponding to days from 9 September 2012 to 20 June 2016.

4.2. Evaluation Measures

The parameters used to assess the accuracy of the classifiers are introduced in this section.
Note that in subsequent equations, true positives (TP) is the number of outliers properly predicted;
true negatives (TN) is the number of days that were not properly-predicted outliers; false positives
(FP) is the number of days that were not outliers and were predicted as outliers; and false negatives
(FN) is the number of outliers which were predicted as common days. Note that the prediction horizon
is 24 h, and therefore, the measures of evaluation are defined with respect to a day.

According to these definitions, the sensitivity is the ratio of outliers properly predicted by the
classification technique. Its formula is defined as follows:

Sn =
TP

TP + FN
(8)

Another parameter is the specificity, which is the ratio of days that were not properly predicted
outliers. The mathematical expression is:

Sp =
TN

TN + FP
(9)

The positive predictive value (PPV) is the probability of predicting an outlier correctly.
Its formula is:

PPV =
TP

TP + FP
(10)

Finally, the negative predictive value (NPV) is the probability that a point that was not an outlier
was properly predicted. Its formula is:

NPV =
TN

TN + FN
(11)

The performance of most classifiers is evaluated with the accuracy or error measures, defined by
the proportion of instances correctly or incorrectly classified for both classes. However, these measures
do not distinguish between the number of correct labels for each class, which is important in the
context of imbalanced classification problems, as the class corresponding to outliers is the class of
interest in this kind of problem. For that, measures intending to achieve good quality results for both
classes are preferred in order to assess the performance of the imbalanced classification techniques.
The following measures have been considered:

• F-measure or balanced F-score (F) is the harmonic mean of the PPV and sensitivity measures:

F =
2 · PPV · Sn

Sn + PPV
(12)
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• The area under the receiver operating characteristic (ROC) curve (AUC). The ROC curve shows
the relation between sensitivity and specificity. That is, trade-offs between benefits (true positives)
and costs (false positives).

AUC =
1 + Sn − FPrate

2
(13)

where FPrate is the false positive rate; that is, the ratio between the number of false positives and
the total number of days that are not outliers.

• The geometric mean (GM) of the sensitivity and specificity measures:

GM =
√

Sn · Sp (14)

• Matthew’s Correlation Coefficient (MCC), proposed in [37], provides better balance among the
four basic metrics Sn, Sp, PPV, and NPV.

MCC =
TP× TN − FP× FN√

(TN + FN)(TP + FP)(TP + FN)(TN + FP)
(15)

4.3. Training to Detect Outliers

In this section, the learning phase to obtain the robust exponential smoothing model is carried out.
Note that this model allows the detection of outliers to label the dataset in order to apply a supervised
learning for classification tasks.

The training consists of computing the parameters of the model, λ and λscale, from the historical
time series. For this reason, the mean absolute percentage error (MAPE) when predicting the time
series with the robust exponential smoothing model has been minimized for λ and λscale, varying from
0.1 to 0.9 by increments of 0.1. The first fifty values of the demand time series have been used as the
starting period to compute the initial value ŷ0 in Equation (2) and σ̂0 in Equation (3).

Figure 2 presents the surface representing the error for the different values of λ and λscale. It can
be noticed that the minimum error is 2.46% and is reached for λ = 0.1 and λscale = 0.3.
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Figure 2. Parameters of the robust exponential smoothing model. MAPE: mean absolute
percentage error.

The detection of outliers is made with the resulting model, and a total of 551 outliers were
detected. This means a percentage of 15.98% of outliers in the times series, and therefore, the selection
of imbalanced techniques to forecast outliers in the electricity demand is justified.
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4.4. Outlier Occurrence Forecasting

The results obtained from the application of the classification techniques specified in Table 1 to
the test set are reported in this section. The distribution of outliers for both training and test sets is of
374 outliers (18.08%) and 177 outliers (12.83%), respectively.

Table 2 shows the quality measures for the test set for each classification technique. The control
quality parameter is MCC, since it provides a global measure of all indicators. However, PPV is
also considered, given the nature of the addressed problem. It can be concluded that algorithms
Bagging and C-SVMCS achieve the best results, with MCC around 0.6. Additionally, the best PPV
values are also reached for these algorithms. As for the rest of the parameters, they exhibit satisfactory
values with, for instance, AUC around 0.8, or F-measures slightly inferior to 0.8. As for the rest of the
algorithms, their MCC values range from 0.181 (DataBoost-IM) to 0.462 (AdaBoost), which are not
particularly good for MCC (remember that MCC ∈ [−1, 1], −1 being the worst value, and 1 the best).

Table 2. Evaluation measures for each imbalanced classification algorithm.

Classifier TP FP FN TN Sn Sp PPV NPV F AUC-ROC GM MCC

AdaBoost 114 135 63 1068 0.644 0.888 0.458 0.944 0.725 0.622 0.756 0.462
AdaBoostM1 87 189 90 1014 0.492 0.843 0.315 0.918 0.632 0.667 0.644 0.280
AdaBoostM2 87 189 90 1014 0.492 0.843 0.315 0.918 0.632 0.667 0.644 0.280

Bagging 106 45 71 1158 0.599 0.963 0.702 0.942 0.799 0.781 0.759 0.601
BalanceCascade 160 580 17 623 0.904 0.518 0.216 0.973 0.513 0.711 0 .684 0.283

C45CS 143 233 34 970 0.808 0.806 0.380 0.966 0.698 0.807 0.807 0.461
C-SVMCS 164 191 13 1012 0.927 0.841 0.462 0.987 0.762 0.884 0.883 0.587

DataBoost-IM 126 532 51 671 0.712 0.558 0.191 0.929 0.499 0.635 0.630 0.181
EasyEnsemble 160 525 17 678 0.904 0.564 0.234 0.976 0.543 0.734 0.714 0.313
UnderBagging 152 590 25 613 0.859 0.510 0.205 0.961 0.498 0.684 0.662 0.247

UnderBagging2 152 427 25 776 0.859 0.645 0.263 0.969 0.588 0.752 0.744 0.341
UnderOverBagging 148 345 29 858 0.836 0.713 0.300 0.967 0.631 0.775 0.772 0.383

For this reason, Bagging and C-SVMCS have been selected as candidate algorithms to reach
the best results, and preprocessing algorithms have been applied as an initial step. Table 3 shows
the performance of the Bagging algorithm when all preprocessing algorithms described in Section 3
are previously applied to the time series in order to balance the two classes. Analogously, Table 4
summarizes the results of combining the preprocessing algorithms with C-SVMCS.

Table 3. Evaluation measures for each preprocessing, when Bagging is applied.

Preprocess TP FP FN TN Sn Sp PPV NPV F AUC-ROC GM MCC

ADASYN 148 347 29 856 0.836 0.712 0.299 0.967 0.630 0.774 0.771 0.382
ADOMS 143 273 34 930 0.808 0.773 0.344 0.965 0.670 0.790 0.790 0.423

ROS 139 155 38 1048 0.785 0.871 0.473 0.965 0.753 0.828 0.827 0.536
Safe-Level-SMOTE 139 170 38 1033 0.785 0.859 0.450 0.965 0.740 0.822 0.821 0.517

SMOTE 133 165 44 1038 0.751 0.863 0.446 0.959 0.734 0.807 0.805 0.499
SMOTE-ENN 140 162 37 1041 0.791 0.865 0.464 0.966 0.749 0.828 0.827 0.531

SMOTE-TL 150 220 27 983 0.847 0.817 0.405 0.973 0.718 0.832 0.832 0.502
SPIDER 143 207 34 996 0.808 0.828 0.409 0.967 0.717 0.818 0.818 0.489

SPIDER2 133 168 44 1035 0.751 0.860 0.442 0.959 0.732 0.806 0.804 0.495
CNN 146 404 31 799 0.825 0.664 0.265 0.963 0.594 0.745 0.740 0.334

CNNTL 168 740 9 463 0.949 0.385 0.185 0.981 0.431 0.667 0.604 0.235
TL 140 105 37 1098 0.791 0.913 0.571 0.967 0.801 0.852 0.850 0.616
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Table 4. Evaluation measures for each preprocessing, when C-SVMCS is applied.

Preprocess TP FP FN TN Sn Sp PPV NPV F AUC-ROC GM MCC

ADASYN 168 242 9 961 0.949 0.799 0.410 0.991 0.728 0.874 0.871 0.547
ADOMS 161 174 16 1029 0.910 0.855 0.481 0.985 0.772 0.882 0.882 0.597

ROS 156 188 21 1015 0.881 0.844 0.453 0.980 0.753 0.863 0.862 0.560
Safe-Level-SMOTE 165 235 12 968 0.932 0.805 0.413 0.988 0.729 0.868 0.866 0.543

SMOTE 154 181 23 1022 0.870 0.850 0.460 0.978 0.755 0.860 0.860 0.561
SMOTE-ENN 145 115 32 1088 0.819 0.904 0.558 0.971 0.800 0.862 0.861 0.619

SMOTE-TL 155 149 22 1054 0.876 0.876 0.510 0.980 0.785 0.876 0.876 0.607
SPIDER 165 262 12 941 0.932 0.782 0.386 0.987 0.710 0.857 0.854 0.517

SPIDER2 162 249 15 954 0.915 0.793 0.394 0.985 0.715 0.854 0.852 0.518
CNN 151 337 26 866 0.853 0.720 0.309 0.971 0.640 0.786 0.784 0.401

CNNTL 161 449 16 754 0.910 0.627 0.264 0.979 0.587 0.768 0.755 0.361
TL 160 187 17 1016 0.904 0.845 0.461 0.984 0.760 0.874 0.874 0.577

From the analysis of these two tables, several conclusions can be drawn. First, MCC increases
for both algorithms, thus showing that results are better in general terms. The TL preprocessing
algorithm increased the MCC value to 0.616 for Bagging, and the SMOTE-ENN algorithm to 0.619
for C-SVMCS. Second, with these algorithms, PPV values are the two best (a bit lower for Bagging,
0.571; and a bit higher for C-SVMCS, 0.558). Third, in general, the values for the F, AUC-ROC, and GM
measures have improved, and the values from both sensitivity and specificity remain quite high.
This shows that, despite the use of imbalanced classes, the algorithms are able to distinguish between
one class and another.

5. Conclusions

This work presents a new methodology for the forecasting of outlier occurrence in time series,
with application to the Spanish electricity demand. The main step consists of transforming the problem
into an imbalanced classification problem, paying particular attention to how the class is defined,
in order to ensure that the prediction of outliers over a prediction horizon of twenty four hours is made.
A representative number of classification algorithms specifically designed for imbalanced problems has
been tested, showing that the Bagging and C-SVMCS algorithms reach the best results. Later, the results
of these algorithms when several preprocessing algorithms are applied have been reported, with the
objective of improving the quality measures. In this case, F, AUC-ROC, and GM measures greater
than 0.8 and MCC greater than 0.6 have been obtained when the TL and SMOTE-ENN preprocessing
techniques were applied. From the results obtained, it can be concluded that the new methodology
proposed here provides a satisfactory accuracy. Future work is directed towards predicting not
only the days that will present anomalous behavior, but also the magnitude of the outliers. That is,
the problem will be formulated as a multiclass imbalanced classification problem, and outliers of
different magnitudes will be classified in different classes.
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