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Abstract: Wind farm power production is known to be strongly affected by turbine wake effects.
The purpose of this study is to develop and test a new analytical model for the prediction of wind
turbine wakes and the associated power losses in wind farms. The new model is an extension of
the one recently proposed by Bastankhah and Porté-Agel for the wake of stand-alone wind turbines.
It satisfies the conservation of mass and momentum and assumes a self-similar Gaussian shape of the
velocity deficit. The local wake growth rate is estimated based on the local streamwise turbulence
intensity. Superposition of velocity deficits is used to model the interaction of the multiple wakes.
Furthermore, the power production from the wind turbines is calculated using the power curve.
The performance of the new analytical wind farm model is validated against power measurements
and large-eddy simulation (LES) data from the Horns Rev wind farm for a wide range of wind
directions, corresponding to a variety of full-wake and partial-wake conditions. A reasonable
agreement is found between the proposed analytical model, LES data, and power measurements.
Compared with a commonly used wind farm wake model, the new model shows a significant
improvement in the prediction of wind farm power.

Keywords: analytical model; Gaussian velocity deficit; turbulence intensity; velocity deficit
superposition; wake growth rate; wind farm power production

1. Introduction

Renewable energies play an increasingly important role in the global energy market as sources of
sustainable and clean energy. Specifically, wind energy is witnessing continuous growth at an average
annual rate of approximately 25% and currently contributes to more than 2.6% of electricity generation
worldwide. This contribution is expected to increase to 18% of the world’s electricity generation
by 2050 [1].

Power production from wind farms is significantly affected by wind turbine wakes. This power
loss can be up to 25% of the total power output [2]. For this reason, the accurate prediction of
turbine wakes is imperative to minimize power losses and, thus, increase the overall efficiency of
wind farms. Turbine wake effects have been investigated in numerous experimental, numerical,
and analytical studies. Recent advances in turbulence-resolving computational fluid dynamics
methods, such as large-eddy simulation (LES) and cutting-edge experimental techniques, have allowed
detailed characterization of wind turbine wake flows. Although both experimental and numerical
approaches have the potential of providing accurate results, the simplicity and low computational cost
associated with analytical models make them appealing for wind farm optimization purposes [3,4].
For that reason, analytical modeling of wind farms has been and continues to be an important topic
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of research in the field of wind energy. Analytical wind farm models can be divided into two main
types: Kinematic models (e.g., [5,6]) and distributed roughness models (e.g., [7–9]). Kinematic models
consider each turbine wake individually and apply superposition principles to address the interaction
of neighboring wakes. In distributed roughness models, turbines act as distributed roughness elements
in which the ambient atmospheric flow is modified. Furthermore, there are some models that combine
kinematic models with distributed roughness models (e.g., [10,11]). In the present study, we propose
a new wind farm analytical model, which is a type of kinematic model, to predict the performance
of wind farms of arbitrary size and layout. Although several analytical wind farm models have
been developed to estimate the power generated from wind turbines, there are still some critical
issues related to the modeling of the velocity deficit and the velocity deficit superposition (due to the
interaction of multiple wakes) that need to be addressed to increase the accuracy and robustness of
these models.

Several analytical wake models have been developed to estimate the wake flow inside wind
farms [5,12–15]. One of the most commonly used wake models is the one proposed by Jensen [6,12].
This model, which has been extensively used in the literature (e.g., [16]) and in commercial software
(e.g., [17–21]), considers a top-hat shape for the normalized velocity deficit and is defined as:

∆U
U∞

=
U∞ −Uw

U∞
=
(

1−
√

1− CT

)
/
(

1 +
2kwakex

d0

)2
, (1)

where U∞ is the undisturbed velocity, Uw is the wake velocity, CT is the thrust coefficient of the turbine,
kwake is the wake spreading parameter, d0 is the wind turbine diameter, and x is the distance behind
the turbine. It should be noted that this model was derived using only mass conservation [15].

In a later study, Frandsen et al. [14] also assumed a top-hat shape for the velocity deficit and
applied conservation of mass and momentum to a control volume around the turbine to derive the
following model:
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where A0 denotes the circular area swept by the wind turbine blades and Aw represents the
cross-sectional area of the wake. Despite the wide use of these turbine wake models in the literature
and commercial software, the unrealistic assumption of a top-hat velocity deficit results in a tendency
for these models to overestimate power prediction in the full-wake condition and underestimate power
prediction in the partial-wake condition.

The normalized velocity deficit in the turbine wakes has been observed to follow a self-similar
Gaussian profile in several experimental and numerical research studies (e.g., [22–25]). In agreement
with this observation, a recently developed Gaussian wake model by Bastankhah and Porté-Agel
was found to provide substantially better results in both full-wake and partial-wake conditions
when compared to top-hat wake models [15]. In their analytical wake model, mass and momentum
conservation is applied to a control volume around one turbine where a self-similar Gaussian profile is
assumed for the velocity deficit to derive the following equation for the normalized velocity deficit:

∆U
U∞

=

(
1−

√
1− CT

8 (k∗x/d0 + ε)2

)
× exp

(
− 1

2 (k∗x/d0 + ε)2

{(
z− zh

d0

)2
+

(
y
d0

)2
})

, (3)

where x, y, and z are streamwise, spanwise, and vertical coordinates, respectively, and zh is the hub
height level. k∗ denotes the wake growth rate which is a function of thrust coefficient and local
streamwise turbulence intensity [15]. They also proposed the following expression for ε:

ε = 0.2
√

β, (4)

where β is a function of CT and can be expressed as:
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β =
1
2
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√

1− CT√
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, CT < 0.9. (5)

Depending on the wind direction, wind turbines inside wind farms are often exposed to multiple
wakes from several upstream wind turbines. Therefore, analytical wind farm wake models need to
account for the cumulative wake flows that are formed by the interaction of multiple wakes. To achieve
that, wind farm models predict cumulative wake effects by applying stand-alone wake models to each
individual turbine, together with superposition principles to represent the combined effects of multiple
overlapping wakes. Lissaman [5] proposed a model for the cumulative velocity deficit based on the
linear superposition of velocity deficits. This model considers an analogy between the point-source
pollutant dispersion (e.g., from smoke stacks) and the wind turbine wake expansion in the atmospheric
boundary layer and is defined as:

Ui = U∞ −∑
k
(U∞ − Uki) , (5)

where Ui is the velocity at the turbine i and Uki is the wake velocity of the turbine k at turbine i
considering only those turbines whose wakes interact with turbine i. Katic et al. [6] later on used the
superposition of energy deficits, instead of velocity deficits, to model the interaction of multiple wakes
as follows:

Ui = U∞ −
√

∑
k
(U∞ − Uki)

2, (6)

where for each individual wake inside the wind farm, the kinetic energy deficit of multiple wakes
is assumed to be equal to the sum of the energy deficits from the relevant upwind turbines.
Voutsinas et al. [13] followed the same approach as Katic et al. [6], but to estimate the energy deficit of
each wake, they considered the difference between the inflow velocity at the turbine and the wake
velocity as follows:

Ui = U∞ −
√

∑
k
(Uk − Uki)

2. (7)

In wind farms, turbine wake flows lead to a substantial increase in the level of turbulence intensity
with respect to the turbulence level of the incoming atmospheric boundary layer flow. This effect has
been observed in several numerical and experimental studies (e.g., [26–29]). Furthermore, some recent
research studies have shown that the wake growth rate increases as the turbulence intensity level
increases (e.g., [15]), yet most of the common analytical wind farm models assume a constant wake
growth rate inside a wind farm. Since the constant wake growth rate assumption is likely unrealistic,
we propose an empirical equation for the local wake growth rate that is based on the local streamwise
turbulence intensity to consider the turbulence effect in wind farms. Several research studies have
attempted to model the added streamwise turbulence intensity inside wind farms [30–32]. In general,
these models use the thrust coefficient of the turbines and the ambient turbulence intensity to estimate
the added streamwise turbulence intensity at the wind turbine hub height as follows:

I+ =
√

I2
wake − I2

0 , (8)

where Iwake is the streamwise turbulence intensity in the wake and I0 is the ambient turbulence intensity.
Quarton and Ainsile [30] proposed the following empirical expression to predict the added streamwise
turbulence intensity generated by a wind turbine:

I+ = 4.8C0.7
T I0.68

0 (x/xn)
−0.57 , (9)

where xn is the length of the near-wake region, which is defined as [33]:
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= 0.012Bλ. B is the number of

blades and λ is the tip speed ratio. Later, Hassan and Hassan [31] suggested the following expression
for the added streamwise turbulence intensity:

I+ = 5.7C0.7
T I0.68

0 (x/xn)
−0.96 . (13)

Based on a numerical study, Crespo and Hernandez [32] suggested the following empirical
equation for the parameter ranges 5 < x/d0 < 15, 0.07 < Iu < 0.14, and 0.1 < a < 0.4, where a is
the induction factor:

I+ = 0.73a0.8325 I0.0325
0 (x/d)−0.32 . (14)

This paper is structured as follows: The proposed analytical wind farm wake model is presented
in Section 2. A description of the case study (the Horns Rev wind farm) is then given in Section 3.
In Section 4, the results obtained with the new analytical wind farm model are discussed and compared
with power measurements and with results from LES and a commonly-used analytical wind farm
model. Finally, a summary and conclusion are provided in Section 5.

2. Description of the New Analytical Wind Farm Model

The proposed analytical wind farm model uses the self-similar Gaussian model, recently
developed by Bastankhah and Porté-Agel [15], together with the assumption of superposition of the
velocity deficit for the cumulative wake effects. Next, details of the formulation and implementation
of the new wind farm model are given.

2.1. Analytical Model for the Velocity Deficit

The Gaussian wake model of Bastankhah and Porté-Agel [15] (Equations (3)–(5)) is applied
individually to each of the turbines in the wind farm. For single wakes, this model considers
a self-similar Gaussian distribution for the normalized velocity deficit, in which mass and momentum
are conserved. In this study, the operating conditions of the wind turbines are within a range for
which the thrust coefficient is approximately constant (see Section 3). For this reason, wake growth
rate is assumed to be only a function of local streamwise turbulence intensity. Figure 1 shows the
wake growth rate behind a V-80 turbine obtained from LES for a wide range of streamwise turbulence
intensities of the incoming boundary layer wind at hub height level [15]. Based on the aforementioned
numerical data, the following empirical expression is proposed to calculate the growth rate of the
wake behind each turbine for the range of conditions considered herein (0.065 < I < 0.15):

k∗ = 0.3837I + 0.003678, (15)

where I is the local streamwise turbulence intensity immediately upwind of the rotor center, which is
estimated while neglecting any potential effect of that turbine on the upwind turbulence level.
The generalization of Equation (15) to include a wider range of turbine operation conditions and
inflow characteristics will be the focus of our future research.
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Figure 1. Wake growth rate for the V-80 turbine in boundary layer flow with different streamwise
turbulence intensities at hub height.

The interaction among multiple wakes is modeled by applying a new approach, which is based
on the velocity deficit superposition principle. Previously, Lissaman [5] applied velocity deficit
superposition that explicitly considers the difference between the undisturbed velocity and the wake
velocity. It should be noted that this method of wake superposition results in an overestimation of the
velocity deficit, specifically where there are several rows of wind turbines [3]. Here, instead, to estimate
the velocity deficit, we propose to calculate the difference between the inflow velocity at the turbine
and the wake velocity as follows:

Ui = U∞ −∑
k
(Uk − Uki) . (16)

Similar to the single-wake model, it is vital that the wake superposition procedure conserves
mass and momentum. Lissaman [5] justified the linear superposition of the wakes. He argued that
there is an analogy between turbine wakes and pollution plumes, whose Gaussian concentration
distribution can be superimposed as a result of the linearity of the process. In the same way that
pollutant superposition conserves mass, the linearized momentum deficit is conserved by applying
superposition of velocity deficit.

2.2. Turbulence Intensity Model

For the local streamwise turbulence intensity, we propose to use a top-hat distribution with
a wake diameter of 4σ, which has been derived empirically based on LES data [26], where σ denotes
the standard deviation of the Gaussian-like velocity deficit. It is defined [15] as:

σ/d0 = k∗x/d0 + ε . (17)

The enhancement of streamwise turbulence intensity for individual turbines is calculated from
Equation (14). Then, the local streamwise turbulence intensity is found using Equation (8).

Several numerical and experimental studies have shown that the level of turbulence intensity
increases inside a wind farm. Furthermore, the level of turbulence intensity has been observed to
quickly reach an equilibrium after 2–3 rows of wind turbines [26,34]. A previous study by Frandsen
and Thøgersen [35] has also shown that to predict the turbulence intensity in the wake of a given
turbine, the only important effect is that of neighboring upstream turbines. In this respect, for every
turbine, we consider solely the added streamwise turbulence intensity caused by the nearest upstream
turbine whose wake has the most significant impact. It is defined as:
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I+ j = max
(

Aw4
πd0

2 I+ kj

)
, (18)

where I+ j is the added streamwise turbulence intensity at the turbine j, Aw is the intersection between
the wake (using Equation (17)) and the rotor area, and I+ kj is the added streamwise turbulence
intensity induced by the turbine k at the turbine j.

2.3. Power Prediction

The power curve, which gives the power production as a function of incoming wind speed,
is used to predict the power generated by each turbine. Here, the data available for Vestas V-80 wind
turbines is used where a fifth degree polynomial is fitted to the data, as shown in Figure 2.
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Figure 2. Power curve of the V-80 wind turbine. Red circles correspond to the manufacturer’s data and
the blue line represents a polynomial fit.

3. Case Description

We selected the Horns Rev offshore wind farm as a case study because LES flow and power
predictions [26,36] and power measurements [17,37] are available to evaluate the performance of the
proposed analytical wind farm model. The wind farm has a total rated power capacity of 160 MW and
consists of eighty Vestas V-80 wind turbines within an area of approximately 20 km2. It is located in
the North Sea, approximately 15 km off the westernmost point of Denmark. Each turbine has a rotor
diameter of d = 80 m and a hub height of Hhub = 70 m (above sea level). Figure 3 shows a schematic
of the Horns Rev wind farm layout. The wind farm has a rhomboid shape with wind turbines
arranged in 8 columns (aligned with the East-West direction) and 10 rows (turned approximately 7◦

counterclockwise from the North-South direction). The turbines are regularly spaced, with a minimum
spacing between two consecutive turbines of 7 rotor diameters.
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The wind turbine power curve and thrust coefficient curve, both of which are inputs required
by the new analytical wind farm model, are typically available from the manufacturer. The curves
for the Vestas V-80 turbine are shown in Figure 4. The same curves were also used by Wu and
Porté-Agel [36] in their LES study of wake flows in the Horns Rev wind farm. To specify the incoming
flow conditions, the aerodynamic surface roughness of the sea surface was set to z0 = 0.0002 m.
The inflow wind condition is characterized by a turbulence intensity of 7.7% at the hub height and
an average velocity of 8 ms−1 at the same height. These conditions are the same as those for the
available power measurements [17], LES flow, and power results [36].Energies 2016, 9, 741 7 of 13 
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4. Results and Discussion

In this section, predictions obtained with the new analytical model for the turbine wakes and
associated power losses in the Horns Rev wind farm are presented. The results are also compared
with available power measurements [17,37] and LES data [26,36], as well as with predictions from
an existing analytical top-hat wake model. The top-hat wake model is based on the one proposed
by Katic et al. [6] and is commonly used in a variety of software (e.g., the Wind Atlas Analysis and
Application Program (WAsP) and the PARK model). In this top-hat wake model, the wake growth rate
is set to a constant (and spatially uniform) value of 0.04, which is based on the formula proposed by
Frandsen et al. [14].

The simulated total normalized power output from the Horns Rev wind farm calculated with
the new model, LES [26], and the top-hat model [6] is shown in Figure 5 for a wide range of wind
directions (from 173◦ to 353◦). This enables an extensive model evaluation over a variety of both
full-wake and partial-wake operating conditions. Furthermore, we normalize the simulated power
output by the power of an equivalent number of stand-alone wind turbines operating in the same
incoming wind condition. As shown in Figure 1, a good agreement is found between the proposed
analytical model and LES, while the top-hat model significantly under predicts the normalized power.
Furthermore, wind farm power production substantially decreases (approximately 30%) as the wind
farm is exposed to wind direction angles (173◦, 270◦, and 353◦), corresponding to full-wake conditions
with short streamwise distances between consecutive wind turbines. Additionally, when the wind
farm is exposed to the wind directions in which there is a large streamwise distance between turbines
(e.g., 185◦ and 340◦), several local maxima can be distinguished.
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Next, the performance of different multiple wake superposition approaches is evaluated.
For this purpose, we compare the normalized power output simulated with the new analytical
model using both velocity deficit superposition (i.e., Equation (12)) and energy deficit superposition
(i.e., Equation (8)) with the one obtained with LES. The normalized power output as a function of
turbine row (averaged over columns 2, 3, and 4) in the wind farm is shown in Figure 2. The difference
between the inflow velocity at the turbine and the wake velocity is used for calculation of the velocity
and energy deficits. It is important to mention that if the difference between the incoming velocity to
the turbine and the wake velocity is used, unrealistic negative velocities can occur as a result of a large
number of turbine rows. As shown in Figure 6, although energy deficit superposition substantially
overestimates the normalized power output, velocity deficit superposition shows good agreement
with LES.
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Figure 6. Comparison of the wind-farm power output for θwind = 270◦ obtained using LES as well as
the new analytical model with both energy and velocity deficit superpositions.

To show the impact of the local wake growth rate on wind farm power prediction, the simulated
normalized power output obtained using constant and variable wake growth rates (the latter calculated
based on the local streamwise turbulence intensity, Equation (15)) is compared with LES. As shown in
Figure 7, reasonable agreement between the analytical model and LES can be achieved using a variable
wake growth rate. In contrast, assuming a constant wake growth rate leads to a clear underestimation
of the normalized power output. This is because, inside the wind farm, the wakes recover faster (and
thus have a larger growth rate) due to the increased flow entrainment induced by the relatively higher
turbulence levels in the wakes, compared with the incoming flow. Our results show the importance of
taking into account the increased level of turbulence intensity and the associated increased growth
rate for the prediction of wakes and power inside wind farms.

Figure 8 shows the normalized power output for three wind sectors (i.e., ±5◦, ±10◦, and ±15◦)
centered on three mean wind directions (θwind = 270◦, 222◦, and 312◦) simulated by the new analytical
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model and WAsP, as well as the measurements [37]. As shown in this figure, WAsP clearly tends to
under predict the power output, while a very good agreement between the measurements and the
proposed model is found. This result reveals the fact that considering a top-hat shape for normalized
velocity deficit can lead to substantial error in both full-wake and partial-wake conditions.
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new analytical model, and WAsP data, respectively. Blue, red, and black colors represent ±5◦, ±10◦,
and ±15◦ wind sectors, respectively.

One of the main features of the new analytical wind farm model is the capability of computing the
mean velocity field inside a wind farm and the associated power output in a computationally efficient
way while keeping the accuracy acceptable. Figure 9 shows a two-dimensional contour plot of the
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streamwise velocity on a horizontal plane at hub level simulated by LES [26,36], the new analytical
model, and the classical top-hat analytical model [6]. It should be mentioned that the analytical
wake models can only predict the velocity deficit in the far-wake region (after a downwind distance
of approximately two rotor diameters from each turbine) where the wake flows have a self-similar
Gaussian behavior and can be described by global parameters such as the thrust coefficient. To this
effect, a white rectangle is placed in the near wake region in Figure 9. Reasonable agreement between
the proposed analytical model and LES is found, while the top-hat model gives a less realistic prediction
of the velocity flow field due to the top-hat assumption for the velocity deficit, which results in
a uniform wake velocity distribution in the spanwise direction. Furthermore, it is obvious that wake
flows are responsible for a significant reduction of the velocity immediately upstream of the wind
turbines inside the wind farm.
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As discussed previously, the wake growth rate is dependent on the local streamwise turbulence
intensity. Therefore, the local streamwise turbulence intensity in the wind farm should be predicted
in the analytical wind farm model. Furthermore, it is imperative to estimate the level of turbulence
intensity at the turbine locations to investigate the impact of fatigue loading due to turbulence on the
turbines. Figure 10 presents the level of streamwise turbulence intensity at hub height in the wind
farm obtained from the models of Quarton and Ainslie [30], Hassan and Hassan [31], and Crespo and
Hernandez [32], as well as the LES predictions. It clearly shows that both the models of Quarton and
Ainslie and of Hassan and Hassan over predict the level of streamwise turbulence intensity when
compared with LES. In contrast, the model of Crespo and Hernandez, which is used in the new
proposed model, predicts turbulence intensity levels that are very similar to those simulated by LES.
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5. Conclusions

A new analytical wind-farm wake model is proposed to predict wake flows and associated power
losses inside wind farms. The model combines the self-similar Gaussian model recently developed by
Bastankhah and Porté-Agel [15] for stand-alone wind turbine wakes with a new wake superposition
procedure that is based on the superposition of velocity deficits. This combination guarantees
that mass and momentum are conserved by the model. The growth rate of each individual wake
needs to be specified and is computed using an empirical expression based on the local streamwise
turbulence intensity, which is predicted inside the wind farm using the model proposed by Crespo and
Hernandes [32]. Finally, the power curve of the wind turbines is used to estimate the power production.

The Horns Rev wind farm was selected as a validation case study because power measurements
and previous LES predictions of the wake flows and turbine power are available for a wide range
of inflow conditions. Comparison between the measurements and LES results reveal that the new
analytical wind-farm model yields reasonably accurate predictions of the power output from the
Horns Rev wind farm for all of the wind directions considered in this study. Additionally, we show
that the power prediction of the new analytical wind farm model is significantly better than the one
estimated by WAsP.

Future research will consider the development of more general parametrization of the local
turbulence intensity and the wake growth rate, which can then be used by the new model for a wider
range of inflow characteristics (e.g., including thermal stability) and turbine operation conditions
(e.g., turbine down-regulation or yawing). Furthermore, because of its low computational cost,
the newly proposed model can be used for the optimization of wind farm layouts to maximize power
output and minimize the fatigue load on the wind turbines.
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