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Abstract: Consumption of natural gas, a major clean energy source, increases as energy demand
increases. We studied specifically the Turkish natural gas market. Turkey’s natural gas consumption
increased as well in parallel with the world‘s over the last decade. This consumption growth in Turkey
has led to the formation of a market structure for the natural gas industry. This significant increase
requires additional investments since a rise in consumption capacity is expected. One of the reasons
for the consumption increase is the user-based natural gas consumption influence. This effect yields
imbalances in demand forecasts and if the error rates are out of bounds, penalties may occur. In this
paper, three univariate statistical methods, which have not been previously investigated for mid-term
year-ahead monthly natural gas forecasting, are used to forecast natural gas demand in Turkey’s
Sakarya province. Residential and low-consumption commercial data is used, which may contain
seasonality. The goal of this paper is minimizing more or less gas tractions on mid-term consumption
while improving the accuracy of demand forecasting. In forecasting models, seasonality and single
variable impacts reinforce forecasts. This paper studies time series decomposition, Holt-Winters
exponential smoothing and autoregressive integrated moving average (ARIMA) methods. Here,
2011–2014 monthly data were prepared and divided into two series. The first series is 2011–2013
monthly data used for finding seasonal effects and model requirements. The second series is 2014
monthly data used for forecasting. For the ARIMA method, a stationary series was prepared and
transformation process prior to forecasting was done. Forecasting results confirmed that as the
computation complexity of the model increases, forecasting accuracy increases with lower error rates.
Also, forecasting errors and the coefficients of determination values give more consistent results.
Consequently, when there is only consumption data in hand, all methods provide satisfying results
and the differences between each method is very low. If a statistical software tool is not used, time
series decomposition, the most primitive method, or Winters exponential smoothing requiring little
mathematical knowledge for natural gas demand forecasting can be used with spreadsheet software.
A statistical software tool containing ARIMA will obtain the best results.

Keywords: demand forecasting; natural gas; univariate methods; time series decomposition;
Holt-Winters model; autoregressive integrated moving average (ARIMA); seasonal ARIMA

1. Introduction

Natural gas has the fastest growing consumption rates among clean energy resources in the
world. It is considered a common resource and is used in different sectors such as heating, electricity
generation, transportation, cooking, and cooling. Large investments are needed for forwarding,
transporting and using natural gas. Some factors that affect these investments are whether the
investment matches the consumption amount or how much air pollution occurs. Contracts have
been made between various countries for natural gas supply whereby usage started at the beginning
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of the 1990s and demand has rapidly increased since then [1,2]. These contracts are mainly take-or-pay
type contracts, focusing on estimating long-term natural gas consumption. One of the characteristics of
take-or-pay contracts is that for lower consumption than estimated the price of estimated consumption
must still be paid. However, for higher consumption then estimated, reducing the gas supply by slightly
closing the valve or paying an extra price per unit m3 occurs. In order to avoid these situations and
reduce economic and social losses, demand forecasting with some minimum acceptable error should
be used. Country governments should have preliminary information on regional consumption levels
for demand forecasting. The main objective of gathering the preliminary information is that regional
consumers use natural gas for various reasons and together they form a country’s consumption capacity.
For instance, large factories use natural gas for electricity generation and manufacturing. These
factories consume similar amounts both in winter and summer seasons, so they mostly show stationary
behavior. Likewise, as long as there is no failure, daily high consumption of electricity generation plants
depending on electricity generation staying at the same levels. Besides high consumption factories,
organizations and plants, there are low consuming corporations and residential consumers as well.
Their consumption patterns are mainly affected by seasonal variations. For instance, consumption
levels decrease in the summer season and noticeably increase in the winter period. Even if each
region in the country has different consumption levels, low consuming consumers always have a
critical amount of natural gas consumption at the national level. Since natural gas unit costs of
these consumers need extra investment costs, their unit m3 charges are higher compared to the high
consumption sectors. Seasonal influences (change in consumption behavior) and high unit costs have
made these consumers more important. Our case study is based on a city’s consumption in Turkey
and this situation is also applied to cities in Turkey. Seasonally affected consumption behaviors of city
consumers have an impact on the natural gas market in Turkey.

The natural gas market in Turkey is shown in Figure 1. The companies placed on dotted lines
perform an annual forecast based on regulations [3]. The producers are generally outside Turkey [4].
Import/export and wholesale companies could import natural gas to Turkey through pipelines or as
liquid natural gas (LNG). At each level except the bottom, companies report their year-ahead forecasts
in a hierarchical manner to the companies that have a contract. Finally, import or wholesale companies
make a final estimation using bottom-up collected data. Each month, these forecasts are checked and
if the mean absolute percent error is higher than 10%, penalties occur [3]. The natural gas market
is inspected by the Energy Market Regulatory Authority (EMRA, known by its Turkish acronym
EPDK) and controlled by the Petroleum Pipeline Corporation (PPC, known as BOTAS). According
to the EMRA report, in 2014, 49.262 billion m3 natural gas was imported by nine long-term and two
spot (LNG) import licensed entities [4]. In the same report, it is stated that 7.281 billion m3 of LNG
was imported, which equals 14.78% of total imports. At the national level, the household ratio of
consumption is nearly 20% of total consumption [4]. This consumption amount is noticeably high,
affecting penalties, and it is forecasted based on the bottom part of the market, from the residential/and
small commercial end users who are subscribers of the City Distribution Company. As mentioned
in the report, the sum of household and low consumption consumers comprises nearly 26% of total
consumption at the national level [4]. Therefore, the main objective of this application paper is to
show the possibility of monthly forecasting natural gas demand for household and low consumption
consumers by applying well-known univariate methods in the literature at the city level. Thus, it is
expected that a low error rate and local error-free prediction results will be obtained.

The rest of the paper is organized as follows: related studies are presented in Section 2. The data
and theoretical description of methods are described in Section 3. Section 4 gives detailed information
about modeling, definitions, scenario analysis and error benchmarks. Section 5 presents pre-forecasting
steps and Section 6 shows the forecasting results and discussion. The key findings and next studies are
given at the end of the paper as conclusions in Section 7.
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Figure 1. Turkey natural gas market and users.

2. Related Work

Time series forecasting is an important area of forecasting in which past observations of the same
variable area are collected and analyzed to develop a model describing the underlying relationship [5].
Natural gas consumption predictions are being made with several approaches in different fields. These
studies can be investigated as daily, monthly, national level, regional level, residential area, industrial
area, use of an independent variable and no use of an independent variable.

In the first group, publications can be divided according to the use of timeframes which
apply the time series method in daily periods [6–19] and monthly periods [20–24]. In the second
group, publications can be grouped as regional [8–12,15,18,19,21–24] or national [6,7,13,14,20,24–31]
consumptions are investigated. In the third group, papers are investigated by consumer types. This
group includes household consumers [6–12], commercial consumers [11,13,25] and consumers where
all consumption sectors are included [14–18,24–31]. In the fourth group, where studies are categorized
by data used, papers are divided with respect to the use of only consumption data using univariate
approaches [28–31] or independent variable [6–18,20,22–27] included studies. Investigation of these
studies showed that, mostly independent variable included regional-based natural gas consumption
prediction is done. The summary of this research is published by Soldo [32].

Univariate techniques have a broad usage area in time series forecasting. Ediger et al. used
autoregressive moving average (ARIMA), seasonal ARIMA (SARIMA) and comparative regression
techniques to forecast the production of fossil fuel sources in Turkey, which include natural
gas [33]. They made annual forecasts from 2004 to 2038 and used different regression types such as
linear, logarithmic, inverse, quadratic, cubic, compound, power, growth, exponential, and logistic.
They concluded that ARIMA is a suitable technique for natural gas consumption. Gutiérrez et al.
used the Gompertz-type innovation diffusion process as a stochastic growth model to forecast
annual natural gas in Spain from 1973 to 1997 [29]. They compared the results between 1998 and
2000 with stochastic logistic innovation modelling and the Gompertz model was found to be more
suitable. Ma and Wu studied China’s annual natural gas consumption and production prediction
with the Grey model. They used data from 1990 to 2003 and generated forecasts for 2004 to 2007 [30].
In a comparison between the Grey model (with one variable and rank 1 differential equation—GM(1,1))
and Grey-Markov model, the Grey-Markov gave better results. Xie and Li also used the Grey
model to predict China’s annual natural gas forecasting. Unlike Ma and Wu, they used a genetic
algorithm for optimizing the GM(1,1) model [31]. They used data from 1996 to 2002 and predict for the
forecast range of 2003 to 2005. Here, genetic optimization performed better results. In the literature,
only Liu and Lin studied forecasting monthly natural gas [34]. Their research is on a national level,
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and they made predictions on monthly and quarterly periods. They formed ARIMAX (ARIMA with
eXogenous) models by adding temperature and price into ARIMA models.

Univariate statistical forecasting could also be also applied in other sections of the energy sector
such as electrical, water, solar, wind etc. Yalcintas et al. studied water management through demand
and supply forecasting for Istanbul city [35]. They applied ARIMA to forecast annual demand
2015–2018 by using data from 2006 to 2014 and suggested that sustainable management of water can be
achieved by reducing residential water use through the use of water efficient technologies. Gelažanskas
and Gamage used time series seasonal decomposition, exponential smoothing and SARIMA methods
for predicting hot water demand [36]. They found that the most significant part in the accuracy
of forecasting is the seasonal decomposition method of the time series. Prema and Rao forecasted
wind speed using time series decomposition, exponential smoothing and back propagation neural
networks [37]. They observed that decomposition of time series and ARIMA methods gave more
accurate results. The ARIMA method has been frequently used for daily and hourly load prediction
of electricity consumption. Research on time series applying electricity prediction is presented as
a survey [38]. It is observed that ARIMA is one of the most used linear prediction techniques.
For instance, Wang et al. studied electricity price estimation with Winters’ exponential smoothing and
SARIMA methods [39].

3. Our Contribution

This application paper studies forecasting of natural gas demand. As mentioned above, in
previous studies time series decomposition, seasonal exponential smoothing (Holt-Winters exponential
smoothing), ARIMA and SARIMA methods are frequently used ones used to study predictions of
electricity load, price, hot water demand, and wind speed. To the best of our knowledge, ARIMAX,
includes exogenous variables, has been used for natural gas monthly predictions [34]. In our research,
three methods are applied for the monthly demand prediction of natural gas, which is a sub-branch of
the energy sector. These methods have not been used previously together on natural gas and monthly
predictions. The existence of seasonality is the power of these methods as they do not contain any
information with other variables except its own past data.

4. Methodologies

This paper examines time series decomposition, Holt-Winters exponential smoothing and ARIMA
methods. The common feature of these techniques is they do not need extra data besides their own
data. Other than this, each model has its own characteristics. The models consisting of seasonality and
trends can also be used in natural gas forecasting. These methods are briefly introduced in this section.

4.1. The Data

Natural gas is distributed with pipelines to the end-users in Turkey. Pipelines are connected to the
cities with reducing and measuring stations (RMS). In these stations, the natural gas pressure decreases
and the volume of natural gas is calculated. RMSs are divided into three categories. The first is RMS-A,
which connects pipelines from national distribution to regional distribution. Those connections are
steel lines because of the pressure (40–75 bar is reduced to 12–25 bar and the consumption range in an
hour is 10,000 to 300,000 m3). RMS-A type stations are administrated by city natural gas distribution
companies. The other two kinds of RMS are B and C, which reduce pressure from 6–25 bar to 4 bar and
from 1–4 bar to 0.3 bar. RMS-B stations are also steel lines while RMS-C stations are polyethylene lines.
All RMS’ consumptions are measured and calculated hourly. In this study, the natural gas consumption
data is collected from the Natural Gas Distribution Company of Sakarya province. One hour resolution
data consumption is first converted to daily resolution and then monthly data for all RMSs. 90%
of industrial subscribers have an RMS and telemetry system for remote measurement. Monthly
converted telemetry consumption of RMS-B and RMS-C are subtracted from RMS-A consumption.
The remaining 10% of industrial subscribers’ invoices are billed the first day of the month like
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the other 90%. Also those 10% of subscribers’ consumptions are subtracted from the remaining
RMS-A consumptions so that the monthly consumption of households and low-consuming consumers
are found.

4.2. Forecasting Models

This section gives brief information about time series decomposition, Winter exponential
smoothing, ARIMA and SARIMA models. The time series has four different elements, which are
the seasonal component (S), trend component (T), cycle component (C) and irregular component
(E) [37,40,41]. The decomposition of time series (D) has two approaches, namely the additive and
multiplicative model. The multiplicative decomposition model multiplies the components one by
another, whereas in the additive decomposition model component predictor variables are added to
one another [37,40–43]. In the model, trend component denotes long-term tendencies while cycle
component indicates longer periodic seasonal movements. The seasonal component represents short
periodic oscillations and the irregular component represents not expected or could not be predicted
values. Forecasting two periods may contain a cycle effect [43]. The main reason for this effect is the
long term and changes during the process. The advantage of applying the decomposition method is
that the method is easy to understand and applicable. Compared to other methods, it needs at least
three-term data to process.

In the exponential smoothing method, the effect of last actual data is related to its weight. Besides
the last actual data, older data has an influence on the prediction as well. In fact, the prediction has an
impact on all data in descending order. In order to obtain the exponential smoothing equation, the
previous prediction is added to the model with the alpha coefficient recursively and a new weighted
equation is formed [37,40–46].

The Holt-Winters exponential smoothing (W) method also has a similar process chain with a basic
exponential smoothing method. A key point here is having a coefficient, which is suitable to make
seasonal predictions and an equation. Holt-Winter computes the prediction by using the level, trend,
and seasonal equations and putting them in appropriate positions in the forecast equation. Weights
of level, trend and seasonal components are α, β and γ, respectively. The Holt-Winter method is
able to present trend, seasonality and randomness in an effective way by the exponential smoothing
process [41]. The only disadvantage of this approach is taking a long time duration to determine
three parameters.

ARIMA is a popular technique used for time series analysis and prediction [47–53]. This method
has three components. These components are the autoregressive part (AR), which shows a relationship
between previous data during modeling; the moving average part (MA) and integration part (I),
which is used to make the series stationary. During the ARIMA process, the series should not
have a missing value and it should be stationary [40–42,47,50–53]. ARIMA models can be defined
as an ARIMA(p,d,q) notation. In the notation, p is the AR parameter (φp), d is the order of the
backward-difference value and q is the MA parameter (θq).

If seasonality is contained in the ARIMA model, the seasonal ARIMA (SARIMA) method is
used. In this method, the model can be initiated the same as ARIMA, and related to the duration
of the season AR, I and MA parameters are applied to the model [41,42]. Usually, the model is
represented as ARIMA(p,d,q)T(P,D,Q)s notation. In the first part of the notation, the p,d,q values are
the same parameters modeled in ARIMA method. T is a transformation parameter and if there is
no transformation operation, the coefficient is zero. If the transformation operation is logarithmic,
the parameter is assigned to 1. Except this assignment, whatever number is written, values are
exponentiated to that number. The second P,D,Q value is the seasonality part of the ARIMA model.
The value of the power “s” indicates the duration of the season.
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Box-Jenkins Approach

The ARIMA Box-Jenkins approach consists of four stages [41], which are model identification,
parameter estimation, model diagnostics and forecast verification, respectively. During the
model identification phase, series graphics, autocorrelation and partition autocorrelation functions
(ACF-PACF) are investigated and stationary tests are completed. If data values are high in a series,
logarithm, natural logarithm etc. transformations are done for normalization. As a result of this step,
data will be converted into a more predictable version. The next phase in the ARIMA process is
stationary tests. Various unit root tests are applied in the literature [54–56]; however, more frequently
used ones are two tests, namely the Augmented Dickey-Fuller (ADF) [55] and Phillips-Perron (PP) [56]
tests. In the ADF test, the model can be formed by whether the coefficient and trend exist in the
equation or not exist. On the other hand, the PP test is applied on large datasets. Another difference
between the PP and ADF test is that since the lag value does not exist in PP, there is no reduction in
the degree of freedom. In the Dickey Fuller test, in order to remove the autocorrelation problem, lag
lengths of dependent variables are added. This operation yields a decrease in the degree of freedom
as well. However in the Philips Perron test, instead of adding an additional lag, non-parametric
corrections are done. Therefore, the degree of freedom is not lost. Although it seems like an advantage
that the PP test gives better results in large samples compared to the ADF test, the major disadvantage
is the PP gives worse results in small samples. After the stationary test, the ARIMA method is applied
to a stationary series. In this step, parameters are determined. In the next step, model diagnostics
are completed.

4.3. Performance Evolution and Error Estimations

In the diagnostics phase, the success of the ARIMA method is related to some particular
components such as the adjusted coefficient of determination (Ṙ), mean absolute percent error (MAPE),
Akaike information criterion (AIC), Bayesian information criterion (BIC) and whether residuals are
white noise or not [41,42]. These terms are defined as diagnosis tools and used in the determination
process [40–42,57].

Other success criterion is MAPE. MAPE is calculated by subtracting the actual value from the
forecasting value and then dividing by the actual value. The absolute value of the division is multiplied
by 100 and divided by the number of observations. The absolute value is critical in the equation to
ensure that negative and positive percent errors should not eliminate each other.

AIC and BIC are other information criteria of this study [40,41,50]. Relevant to model complexity,
they significantly help to select more accurate and low error models in out-of-sample forecasting.

The errors for each method are measured by the coefficient of determination and mean absolute
percent error. By examining these two criteria, the estimation satisfaction level on the overall general
series is determined.

5. Case Study

The case study models low consuming commercial and residential consumers’ natural gas
consumption by seasonal univariate statistical methods (time series decomposition, Holt-Winters
exponential smoothing, ARIMA, SARIMA). The natural gas consumption data is collected from the
city of Sakarya, Turkey. Industrial hourly consumption data (102 users) was summarized as monthly
and another 12 industrial subscribers’ consumption was prepared from manually billed invoices. The
consumption of RMS-A is prepared between the years 2011–2014 (48 month-long) and this data was
later divided into two parts. In the first part, 2011–2013 (36 month-long) data is used for monthly
forecasts, and in the second part, 2014 (12 month-long) data. In the next section, the evaluation and
comparison of results will be presented for all series and for 2014 separately. The error and estimation
accuracy will be also investigated with MAPE and Ṙ2.
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Hereafter, time series decomposition, Holt-Winters exponential smoothing and autoregressive
integrated moving average are referred to as “D”, “W” and “ARIMA”, respectively. Each applied
method has its own sub-techniques. These three methods are preferred as they all include the
seasonality effect.

The time series decomposition method can be additive or multiplicative as shown in Table 1. If the
values increase or decrease proportionally over time, the “multiplicative model” gives better results.
However, if values increase or decrease additively over time the “additive model” gives better results.
This study applies both additive and multiplicative models in order to show which technique has more
influence on natural gas prediction. The decomposition process of this method can contain both trend
and seasonality or only the seasonality estimation method. Consumptions that increase during winter
and decrease during summer indicate the seasonality effect. Therefore, all decomposition methods
contain seasonality. Besides seasonality, this research investigates both trends and seasonality included
situations to determine the trend effect on consumption. Thus, two situations (additive/multiplicative
or trend/seasonal) can generate up to four different estimations. These four techniques can be easily
computed with simple mathematical operations on spreadsheet software.

Table 1. Time series decomposition model abbreviations.

Method D Components Abbreviation

Additive
Seasonal D-AS

Trend Seasonal D-ATS

Multiplicative Seasonal D-MS
Trend Seasonal D-MTS

Holt-Winters Exponential Smoothing is the second method used. This approach can be additive
or multiplicative as well (Table 2). The determination of α, β and γ parameters is important in this
method. Before the determination step, default values for α, β and γ are taken as 0.2 as stated in [51].
However, these values will not give the best results. In order to obtain the best result, they should be
optimized. Various methods are used in convergence. In this work, ordinary least squares (OLS) is
applied as the convergence technique. The convergence value is 10−7 and iteration number is 500,000.
In abbreviation, coefficients are divided by ”c” char. The left side of “c” is the Holt-Winters method
such as “A” for additive and “M” for multiplicative. The right side of “c” is parameters. If default
values are taken, it is 0.2 or else it is written as “Opt” in generally. This technique can be implemented
on spreadsheet software with programming experience.

Table 2. Holt-Winters exponential smoothing model abbreviations.

Method W Parameters Abbreviation

Additive
α, β, γ = 0.2 W-Ac0.2

α, β, γ optimized W-AcOpt

Multiplicative α, β, γ = 0.2 W-Mc0.2
α, β, γ optimized W-McOpt

Other forecasting techniques used in the study are ARIMA and SARIMA methods. The stationarity
of the series is investigated by these methods. In this respect, necessary conversion operations are
done and the series is stationarized. In order to stationarize the series, differentiation is applied to
the ARIMA method. On this new stationary series, particular parameters are determined such as
AR, MA, seasonal AR (SAR) and seasonal MA (SMA). Data generated by taking the difference can be
described as:
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• Secondary difference; ∆2log(Consumption); I(2)1 or ARIMA(0,2,0)1.
• Primary seasonal difference; ∆12log(Consumption); I(0)1(1) or ARIMA(0,0,0)1(0,1,0)12.
• Primary difference and primary seasonal difference; ∆12,1log(Consumption); I(1)1(1) or

ARIMA(0,1,0)1(0,1,0)12.

Equations are formed containing these parameters and later estimations are done.
Natural gas consumption values are related to weather conditions, the number of consumers

and calendar effects. Eventually, the consumption is formed by these facts. The main objective of
this paper is to show the possibility of monthly forecasting natural gas demand on the city level
by performing well-known univariate methods in the literature. Thus, the low error rate and local
error-free prediction results will be obtained.

6. Pre-Forecast

Natural gas consumption changes depend on weather conditions. Seasonal impact mainly
causes the weather change. Thus, natural gas consumption is influenced by seasonal facts (Figure 2).
In D and W methods, seasonality is mandatory in a series. In this way, forecasting is more accurate
with the help of seasonal effects. On the contrary, ARIMA and SARIMA methods require stationarity
in a series. In other words, seasonality should not exist in a series. Since stationarity is an important
fact, preprocesses need to be accomplished. The first step is setting the T value to 1. This process takes
the logarithm of a series. There is no difference between the series and logarithm. Only the range of
the series is narrowed.
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Figure 2. Monthly consumption subplot by years.

In order to stationarize the series, differentiation processes should be completed. The
differentiation operation is represented with the “∆” operant. The difference between the series
itself and the previous value of it is called the first difference, and it is presented singly. When the
differentiation is applied again to the differentiated series, the secondary difference is generated and
it is denoted as ∆2. The seasonality impact takes place on 12-month data in this study. Therefore,
the seasonal difference of a series is shown as ∆12. Both the seasonality and primary difference
included series is shown as a ∆12,1. This representation expresses that first seasonal difference, and
the next primary difference is performed. In Figure 3, consumption is presented on the left axis and
logarithmic values are presented on the right axis of the graph. Results show that consumption series
and logarithmic primary difference series are not stationarized. Other differentiation processes applied
to the logarithmic series have stationarity.
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Figure 3. Consumption with integrated series.

Descriptive statistics in Table 3 indicate that the log operation exposes consumption values
between 6.108 and 7.392 on an average of 6.757 and standard deviation of 0.443. The mean of the
first differentiated series is around zero and its standard deviation reduces by half according to the
log(consumption) series. The second differentiated, seasonal differentiated and both seasonal and
non-seasonal differentiated log series have a zero mean and reduced their standard deviations.

Table 3. Descriptive statistics of monthly consumptions.

Variable (m3) Obs Minimum Maximum Mean Std. Dev.

(Consumption) 48 1,281,594 24,651,621 8,854,694 7,203,095
log(Consumption) 48 6.108 7.392 6.757 0.443
∆log(Consumption) 48 −0.537 0.665 0.003 0.263
∆2log(Consumption) 48 −0.469 0.606 0.003 0.243
∆12log(Consumption) 36 −0.492 0.554 0.019 0.176
∆12,1log(Consumption) 36 −0.561 0.483 −0.007 0.210

Even though stationarity can be seen visually (Figure 3), the stationarity of a series is examined
by ADF and PP tests [54,55,58]. Table 4 shows probability values of the prepared series on ADF and
PP tests. The tests basically investigate the existence of the unit root. This existence proves the series is
not stationary. According to this, the hypothesis is prepared. Hypothesis H0 defines that there is a
unit root in a series while the alternative hypothesis shows there is not a unit root, meaning the series
is stationary. In this computation, the significance degree of the p probability value is taken as 0.05.
If the p value is less than 0.05, then the series is called stationary. Three situations of unit root tests are
represented in the table, which are no constant and no trend, only constant, constant and trend. For
these three situations, unit root tests are performed. “C” value in the table represents a constant in the
equation, while “T” represents the trend. Regarding the outcome of the tests, ADF and PP tests show
that all series are stationary except the raw consumption series.

Table 4. Stationary test for consumption series.

p-Value for Stationary ADF Test PP Test

Variable (m3) None C C + T None C C + T
Consumption 0.715 0.000 0.001 0.077 0.062 0.22

∆log(Consumption) 0.000 0.000 0.000 0.001 0.012 0.048
∆2log(Consumption) 0.000 0.000 0.000 0.000 0.000 0.000
∆12log(Consumption) 0.000 0.002 0.006 0,000 0.002 0.008

∆12,1log(Consumption) 0.079 0.453 0.644 0.000 0.000 0.000
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Another way used to determine the stationarity of a series is analyzing ACF and PACF graphs.
The ACF graph is demonstrated as an autocorrelogram and PACF is demonstrated as a partial
autocorreglogram (Figure 4). Depending on lags, correlograms vary between −1 and 1, and the
significance degree of the relationship between the variable and its history is shown with a dotted line.
The area above the dotted line is accepted as a significant relation [41,42]. When ACF and PACF are
analysed, it is seen that seasonal patterns of a 12-month series of Consumption and ∆log(Consumption)
consumptions are noteworthy in ACF graphs. Although ADF and PP test results show stationarity,
because of the seasonal patterns of these series, it is not appropriate to use them in forecasting.
The ∆2log(Consumption), ∆12log(Consumption) and ∆12,1log(Consumption) series do not have
seasonal patterns. Thus, the ARIMA method can be easily applied to the generated series.
It is observed that the autocorrelograms and partial autocorrelograms of these three series have
a relation in the 12th month. The seasonality of the series can be seen by this way. The AR, MA
coefficients in the non-seasonal and the seasonal parts are used between zero to three for finding
the optimum forecast results. Different ARIMA models (256) were prepared and the forecast results
are examined.

The equivalents of differentiation operations of ARIMA and SARIMA methods are called “I”
values. Log of differentiate and seasonal differentiate are formulated as ARIMA(0,1,0)1(0,1,0)12 or
I(1)1(1)12.
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Figure 4. ACF and PACF plots of logged transformed consumption with differenced values for:
(a) None; (b) ∆log; (c) ∆2log; (d) ∆12log; (e) ∆12,1log of consumption.

7. Results and Discussion

The forecast results are shown based on the method in Figure 5. The year 2014 is shown in grey
and a transparent box in graphs. In this way, the difference between the fitted historical data and the
forecast can be easily seen.
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For the decomposition model, the first method in the graph, at the beginning of 2014, the
consumption and forecast difference is considerably large. However, this difference decreases gradually
by the end of the year. Ṙ2 and MAPE values for D-AS, D-ATS, D-MS, D-MTS are 0.907, 0.910, 0.909,
0.915 and 19%, 20%, 20%, 19%, respectively. It is clearly seen that high consumption in January affected
forecasting in 2014. Even though spring and autumn seasons are difficult parts of the forecast because
of climate changes, the decomposition forecast is well fitted here. The best outcome for 2014 is 15%
MAPE at additive trend seasonal decomposition.

Holt-Winters exponential smoothing is applied with two sub-models, additive and multiplicative.
Both sub-models’ coefficients are taken as 0.2 in the first study of the Holt-Winters model.
After gathering results, the second study coefficients of the model are calculated with least square
regression to find the optimized solution. The first study gives a weaker estimation than the optimized
coefficients. Considering the additive and multiplicative models, the multiplicative models generate
higher estimation values than additive models. The major reason behind this outcome is that the
seasonal impact in the Holt-Winters method increases multiplicatively. Although additive stays at
similar levels, the consumption forecast rises steadily with the multiplicative influence. Another point
is that the Holt-Winters method has negative value estimations. Since parameters are taken as 0.2,
the June 2013 consumption is around −95 × 103 m3 (Figure 5b). Since the estimation values cannot
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be negative, it can be evidently seen that the parameter selection is important. The optimized α, β, γ
parameters are 0, 0.01, 0.375 and 0.15, 0, 0.74 for the additive and multiplicative methods, respectively.
However in the Holt-Winters method, the optimized parameters α and β are very close to zero.
Parameter γ is on average above 0.5, such that it proves the seasonal influence on the series, clearly.
Table 5 presents the results based on the data range and methodology. In cases where parameters
are not optimized according to the optimized situation, (α, β, γ = 0.2) MAPE values are high and Ṙ2

values are low (Table 5). Non-optimized results present worse performance. For optimized results,
however, the additive method has better outcomes than the multiplicative method, both on the entire
series and the 2014 estimation. The lowest MAPE over the 2011–2014 period with the additive method
is 28.81% and the highest Ṙ2 value is 0.846. In 2014, the lowest MAPE is 14.01% while the highest
Ṙ2 is 0.983. The additive methodology obtains the lower MAPE values in 2014 for the time series
decomposition and Holt-Winters methods. Moreover, Holt-Winters has 1% less MAPE value than the
time series composition.

Table 5. Error measurement for Holt-Winters exponential smoothing forecast.

Date Range Methodology
α, β, γ = 0.2 Optimized Parameters

MAPE Ṙ2 MAPE Ṙ2

January 2011—December 2014 Additive 62.02% 0.747 28.81% 0.846
Multiplicative 36.86% 0.758 29.60% 0.835

January 2014—December 2014 Additive 74.63% 1 0.946 14.01% 1 0.983
Multiplicative 26.67% 1 0.954 15.05% 1 0.960

1 MAPE values are for 2014 is shown as MAPE2014.

The third method used in this study is ARIMA. The estimation of natural gas consumption
with the ARIMA method needs stationary data. Therefore, as the first stage, ACF and PACF graphs
should be explored. The second stage of determination of stationarity applies ADF and PP tests. The
results of stationarity represented in Section 5 are named Pre-Forecast. In ACF and PACF graphs
(Figure 4c–e), the 12th lag state of the stationary series, which is formed by taking both the secondary
difference and seasonal difference, it is seen that the significance crosses the boundary in ACF and
PACF autocorrelograms and there is a relation between the two. Therefore, the results prove that
seasonality is critical. In order to identify the forecast accuracy, AIC, BIC, Ṙ2, MAPE and MAPE2014

(MAPE in 2014) are determined as selection criteria. For each selection criteria, the best ARIMA model
results and result values are presented in Table 6. The outcome graphs are also visualized in Figure 5c.
For each selection criteria of I(2)1 series of the ARIMA method, the best results are different. AIC and
BIC have the same ARIMA(1,2,1)1; however, the MAPE series has ARIMA(0,2,2)1 as the best result.
For the I(0)1(1) series, the best outcome on the AIC and BIC criteria is the ARIMA(0,0,1)1(1,1,0)12

model while Ṙ2 and MAPE are ARIMA(3,0,q)1(1,1,1)12 where q is the non-seasonal parameter of MA
and its values are 2 and 3. For MAPE2014, the best model is ARIMA(0,0,0)1(0,1,1)12, which shows the
effectiveness of the first seasonal MA parameter. The I(1)1(1) series performs nearly similar results to
the I(0)1(1) series on Ṙ2, MAPE and MAPE2014 criteria. In the I(1)1(1) series, the ARIMA(3,1,3)1(1,1,1)12

model is the most suitable model on Ṙ2. ARIMA(1,1,0)1(1,1,1)12 and ARIMA(1,1,1)1(0,1,1)12 models
are found to be the best models for MAPE and MAPE2014 criteria.

The SARIMA series has at least 1 seasonal parameter. This shows the strength of the seasonal
aspect of the series. Since seasonality is not contained in the I(2)1 series, the results are considerably
weak. In seasonality included models, the Ṙ2 value is around 0.95, proving that the influence of the
method is precisely high during the estimation. AIC and BIC values can vary between −600 and
340,000 [59]. In this research, the minimum AIC is observed as −17.26, while the minimum BIC is
observed as −14.82 among obtained results. The lowest AIC and BIC indicate that I(0)1(1) models give
more accurate results.
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Table 6. Best results of error and forecasting measurement for ARIMA and SARIMA.

Differencing AIC BIC Ṙ2 MAPE MAPE2014

∆2log(Consumption)
(1,2,1)1

5.54
(1,2,1)1
10.12

(3,2,3)1
0.753

(0,2,2)1
335%

(0,2,2)1
1186%

∆12log(Consumption) (0,0,1)1(1,1,0)12

(−17.26)
(0,0,0)1(1,1,0)12

(−14.82)
(3,0,3)1(1,1,1)12

0.956
(3,0,2)1(1,1,1)12

17.9%
(0,0,0)1(0,1,1)12

12.9%

∆12,1log(Consumption) (0,1,1)1(1,1,0)12

(−10.09)
(0,1,1)1(1,1,0)12

(−6.69)
(3,1,3)1(1,1,1)12

0.950
(1,1,0)1(1,1,1)12

18.9%
(1,1,1)1(0,1,1)12

12.9%

Figure 6 presents the 2014 residual graph of the lowest MAPE2014 values observed using the three
estimation methods. The time series decomposition is represented in blue, Holt-Winters is represented
in green and SARIMA is represented in red in the series. The fact that winter consumption is 10 times
greater than summer consumption, is also seen in the estimation errors. Although residuals are low
during the summer period, in winter 5 times more residuals occur than in summer.
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Figure 6. Residuals of Consumption for MAPE2014.

The methods studied in this paper are currently used on research related to the energy sector,
mainly, in wind speed, hot water demand and wind power generation. For instance, Prema and Rao
applied Holt-Winters, ARIMA and time series decomposition methods, and they found 28.63%, 23.26%,
18.24% MAPE’, respectively. They also mentioned that 30% MAPE is acceptable by the Government of
India [37]. We found MAPE for the time series decomposition, Holt-Winters and ARIMA methods
at 19%, 14% and 12.9% respectively. Gelažanskas and Gamage found the R value for the time series
decomposition, Holt-Winters and ARIMA to be 0.863, 0.811, 0.872 respectively [36] to forecast hot
water demand. In our study, the Ṙ2 value of the time series decomposition, Holt-Winters and ARIMA
are 0.915, 0.846 and 0.956, respectively. Wu and Peng introduced a wind power generation forecasting
model and they compared their result with the ARIMA method [60]. They found 38.57% MAPE
with ARIMA forecasting whereas we achieved a three times lower MAPE. Our results prove that
these methods are suitable for the natural gas demand forecast over the mid-term range, over a year
measured on a monthly basis.

8. Conclusions

The main reasons for households and low consuming commercial users to use natural gas are
heating, cooking and water heating. Even though cooking and water heating routinely occur, heating
only appears in the winter period. Natural gas consumption also increases related to infrastructure
investments and growth. The data used for forecasting in this study is prepared for the Sakarya
province of Turkey. Households and low consuming commercial users’ 4-year consumption data
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between years 2011–2014 are gathered in monthly periods. This consumption data decreases in
the summer while it increases in the winter. Therefore, the study researches natural gas demand
forecasting by applying univariate seasonal and statistical methods. Well-known techniques of Time
Series Decomposition and Winters Exponential Smoothing can be easily applied with spreadsheet
software in daily life. However, ARIMA models need moderate knowledge and software containing
ARIMA methods. Decision makers can use the natural gas demand forecasting results obtained from
forecasting models as decision support systems. Therefore, they can comfortably use the supporting
system for determining year-ahead demand and show the consistency of forecasts by comparing their
prediction and statistical method results.

Based on the results, the main conclusions of the paper are as follows: the stationary of the series
cannot be accepted after applying one time differencing because the series still include seasonality.
Taking advantage of applying various methods such as time series decomposition, Holt-Winters
exponential smoothing, and ARIMA-SARIMA, it is evaluated that the error rates decrease as the
computation complexity of the method increases. Also the fact that infrastructure investments of
the region where the data is gathered are almost completed, the investigated dataset does not show
an increasing trend in consumption. However, the time series decomposition method, such as the
simplest method, can be used by decision makers by calculating one by one, manually without using
any statistical software. Moreover, even the worst case in the D-AS model is 0.907 Ṙ2, 20% MAPE,
15% MAPE2014 which is a better result than [36,37]. This outcome shows the possibility of forecasting
natural gas demand.

Future research of this study will be in three different directions. The first case will use
independent variables such as temperature, humidity, wind speed, number of subscribe and unit price
if applicable. The second case applies methods such as ARIMAX (ARIMA with exogenous), regression
models, learning algorithms, etc. The last case involves changing the time density such as using daily
forecasts to make monthly estimations for a year.
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