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Abstract: Rapid economic growth in Northwest China has been accompanied by a dramatic increase
in carbon emissions. Based on the two-level Logarithmic Mean Divisia Index (LMDI) method, this
study decomposes changes in energy-related carbon emissions in Northwest China during 1995–2012
from the regional and provincial perspectives. Further, by constructing an expanded decomposition
model of the decoupling index, this paper quantitatively analyzes delinking indicators of economic
activity and environmental pressure in Northwest China. The results indicate that: (1) at both regional
and provincial levels, economic activity effects play a crucial role in increasing carbon emissions,
whereas improvements of energy efficiency appear as the main factor in curbing carbon missions;
(2) the significance of influencing factors of CO2 emissions varies across provinces. The role of
economic activity in Shannxi is more pronounced compared to that of the other four provinces,
as well as the role of population in Xinjiang; (3) when the decoupling relationship is considered,
“relative decoupling” and “no decoupling” are the main characteristics under investigation during
the examined period. Whereas “strong decoupling” was only identified in 2007 and 2009; (4) the
current extensive pattern of economic growth in Northwest China poses a serious threat to the
decoupling process. Furthermore, the coal-based energy structure also hinders the decoupling
process. According to these results, some policy recommendations are proposed.
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1. Introduction

In recent years, climate change issues, mainly caused by the emission of greenhouse gases (GHGs),
have attracted significant attention from both governments and the international community [1–6].
Since 2007, China became the world’s largest emitter of CO2 [7] and in 2012, China’s CO2 emissions
reached 9.21 billion tons, accounting for 26.7% of total global emissions [8]. In 2015, China promised to
reduce 40%–45% of carbon emissions by 2020 compared to the level in 2005. To achieve this ambitious
target, it is important to find effective measures to control CO2 emissions, reduce their intensity, and
decouple CO2 emissions from economic growth [9–11].

As shown in Figure 1, Northwest China, studied in this paper, includes three provinces, Shaanxi,
Gansu, and Qinghai and two autonomous regions, Ningxia Hui Autonomous Region and Xinjiang
Uygur. This area constitutes approximately one-third of China, and 7.2% of the total population lives
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there. Since the implementation of the Western Development Strategy, it became one of the most
economically vibrant regions in China. In recent years, with its rapid economic growth, this area
has witnessed fast growth of greenhouse gas emissions, particularly emissions of CO2. In 2012, the
growth rate of CO2 emissions in Northwest China was 12.0, about three times China’s average level.
At the same time, Northwest China’s contribution to CO2 emissions increased from 7.8% in 2000
to 12.0% in 2012, with an average annual growth rate of 3.7%. Moreover, along with the “One Belt,
One Road” initiative, the role of this area in the future economic development of China became
prominent. Furthermore, economic growth in backward regions may tend to consume more energy,
while producing more carbon emissions. Therefore, research on factors that influence CO2 emissions
and the relationship between carbon emissions and economic development in Northwest China can
center on the identification of technological means to reduce emissions and help achieve emission
control goals nationwide. In addition, such results can provide some reference to underdeveloped
areas worldwide.
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Figure 1. Northwest China.

To the best of our knowledge, most previous research tends to focus on CO2 emissions from
a regional or national perspective [12–18], and economic sectors with high energy consumption [19–23],
but is deficient in underdeveloped areas [24]. Ozturk and Acaravci [13] examined causal relationships
between economic growth and carbon emissions in Turkey by using conintegration analysis, and
found that controlling carbon dioxide emissions are likely to have no adverse effect on the real
output growth of Turkey. Al-Mulali et al. [16] explored the relationships among urbanization, energy
consumption, and CO2 emission in the MENA countries. The results showed that slowing down the
urbanization level can help reduce the level of pollutions and energy consumption. Zhang and Da [18]
utilized the logarithmic mean Divisia index (LMDI) method to decompose changes in China’s
carbon emissions, and discovered that the economic growth and share of secondary industries are
the principal sources of carbon emissions. Karmellos et al. [19] and González et al. [20] studied
driving forces of CO2 emissions from the sector perspective, EU power sector and Spanish electricity
sector. Regarding methodologies, there are primarily two approaches to research: econometric
analysis [25–29], and decomposition methods [18,30–35]. Two broad categories of decomposition
technique are often used in analyzing energy consumption and carbon emissions-index decomposition
analysis (IDA) and structural decomposition analysis (SDA) [31,32,36,37]. Xu and Ang [38] conducted
a comprehensive literature survey on IDA which was applied to energy and emissions. The IDA
method can be divided into two groups: the Laspeyres index and the Divisia index [39]. The Laspeyres
index measures the percentage change in some aspect of a group of items over time, using weights
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based on values in some base year, whereas the Divisia index is a weighted sum of logarithmic
growth rates, where the weights are the components’ shares in total value, given in the form of a line
integral [40]. The Divisia index method has been used by Ang et al. [41] and has been extended
to the LMDI. In addition, many studies have used the LMDI method to study residential carbon
emissions and energy consumption [4,10,15,34,35]. Unlike IDA analysis, the SDA method is based on
the input-output analysis [39,41]. Su and Ang [42] compared the IDA and SDA and found the gap
between SDA and IDA with regard to the decomposition method used has not widened but instead
narrowed. By using IDA, Sheinbaum-Pardo [43] decomposed CO2 emissions from demand services to
material production in Mexico. Cansino probed the main drivers of changes in CO2 emissions in the
Spanish economy by applying SDA [44].

Based on previous studies, this paper decomposes changes of final energy-related CO2 emissions
in Northwest China during 1995–2014 by applying the multilevel LMDI method and decoupling index
analysis. This period was chosen because it witnessed the highest economic growth in Northwest
China, so the empirical results can be used to formulate realistic and scientific carbon abatement
policies. As for Northwest China, it is a typical underdeveloped region in China, and its influencing
factors of CO2 emissions and the decoupling relationship between carbon emission and economic
growth may differ from those of China, and/or other more developed regions in China. Though there
are already papers published analyzing the changes of CO2 emissions in China from a regional
perspective [26,35], unfortunately, they all fail to pay adequate attention to underdeveloped areas.
Moreover, regarding methodologies, a multilevel decomposition approach was used in this paper.
We adopted different decomposition methods, namely additive and multiplicative decompositions
to analyze the changes of CO2 emissions on a regional level (Northwest China) and provincial level
(Shannxi, Gansu, Qinghai, Ningxia and Xinjiang), respectively. Furthermore, except for the multilevel
decomposition analysis, this paper also builds a new decoupling model based on the LMDI to calculate
decoupling trends in Northwest China. Combined these two techniques have two advantages. First,
according to the results obtained using the LMDI, annual decoupling states were identified with
applying the decoupling analysis. Second, the decoupling model can be built using the theory of
the LMDI; hence, driving or inhibiting factors of decoupling were clarified. Previous research on the
decoupling relationship focused mainly on carbon emission factor resolution, and then assessed the
status of decoupling or recoupling, which lacked an in-depth analysis of the contribution of each
factor [45–47].

In brief, there are three primary objectives of this study: (1) to identify, quantify, and explain the
factors influencing changes in energy-related CO2 emissions in Northwest China at the regional and
provincial levels; (2) to explore the relationship between economic growth and carbon emissions in
an underdeveloped region from the perspective of the decoupling index; and (3) to ascertain factors
for possible decoupling of energy usage and emissions from the point of view of policy making.

2. Methodology and Date

2.1. Methodology

2.1.1. Energy-Related CO2 Emissions Estimation Approach

The methods proposed by the Intergovernmental Panel on Climate Change (IPCC) guidelines [48]
were applied to estimate CO2 emissions related to end-use energy consumption. The total
energy-related CO2 emissions in Northwest China can be calculated based on energy consumption,
the fraction of oxidized carbon by fuel, and emission factors, as shown in the following equation:

Ct = ∑
i,j

Ct
ij = ∑

i,j
Et

ij × Oj × EFj (1)
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where Ct denotes the total CO2 emissions in year t (104 tons); Ct
ij means CO2 emissions based on fuel

type j in sub-region i in year t; i = 1, 2, 3, 4, 5 denotes the five province-level regions; j indicates the
main eight types of energy sources; Et

ij represents the consumption of fuel type j in sub-region i in year
t (GJ); Oj denotes the fraction of the carbon oxidized by fuel type j; and EFj denotes the CO2 emission
coefficient of fuel type j. The potential carbon content, oxidation rate, and CO2 emission factors are
listed in Table 1. In order to avoid the double counting of CO2 emissions from the power generation
industry, electricity consumption is regarded as clean [49].

Table 1. CO2 emission factors of various energy sources.

Fuel Type LCV a

(KJ/kg or KJ/m3) Oxidation Rate b Potential Carbon Content c

(kgC/GJ)
CO2 EF d

(tCO2/ton or 103 m3)

Raw coal 20,908 0.918 26.37 1.981
Coke 28,435 0.928 29.5 2.860

Crude oil 41,816 0.979 20.1 3.020
Gasoline 43,070 0.986 18.9 2.925
Kerosene 43,070 0.980 19.6 3.033
Diesel oil 42,652 0.982 20.2 3.096
Fuel oil 41,816 0.985 21.1 3.170

Natural gas 38,931 0.990 15.3 2.162
a,b Source: Chinese Energy Statistic Yearbook [50]; LCV: low calorific value; c,d Source: Song et al. [51];
d EF: emission factor.

2.1.2. Multilevel Index Decomposition Analysis

Among various index decomposition methods, Ang [52] recommended the LMDI due to its
theoretical foundations, adaptability, ease of use, results interpretation, and other desirable properties.
Based on the expanded Kaya identity [53,54] and Ang [55,56], this study applies both additive LMDI
and multiplicative LMDI to probe influencing factors of CO2 emissions at the regional and provincial
levels. Specially speaking, the addictive decomposition was utilized on regional level for further
decoupling analysis. At the same time, we chose multiplicative decomposition for provincial analyses
mainly due to the result presentation of this method is in indexes, which was more convenient
to conduct dynamic comparison among different provinces. Due to the constraints of the Kaya
identity, different factors were considered for specific regions. In Northwest China, the rapid growth of
population and coal based energy mix are two dominant characteristics. Accordingly, considering these
regional features and based on the extended Kaya identity, changes in energy-related CO2 emissions in
Northwest China may be studied by quantifying contributions from changes in five different factors:
the regional population (population effect), overall economic activity (activity effect), energy intensity
(intensity effect), energy structure (structure effect), and CO2 emission factors (emission-factor effect).
The aggregate CO2 emissions from each province and Northwest China can be evaluated as follows:

C = ∑
j

Cj = ∑
j

P × Q
P
× E

Q
×

Ej

E
×

Cj

Ej
= ∑

j
P × G × I×Sj × Fj (2)

where C refers to the total energy-related CO2 emissions in Northwest China (104 tons); P denotes the
regional population (104 people); Q is the total economic activity level, where we chose the GDP as
its indicator (104 Yuan, 1995 constant prices); E and Ej are the total end-use energy consumption and
energy consumption by fuel type j (104 tce), respectively; Cj is CO2 emissions by fuel type j (104 tons);
G and I denote the per capita GDP and energy intensity, respectively; Sj denotes the energy share of
fuel type j; and Fj denotes the emission factor of fuel type j.

According to the LMDI method [57,58], the CO2 emissions from year 0 to year t can be expressed
in additive and multiplicative forms as follows:

∆Ctot = CT − C0 = ∆CT
pop + ∆CT

act + ∆CT
int + ∆CT

str + ∆CT
f ac (3)
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Dtot = CT/C0 = DpopDactDintDstrD f ac (4)

A structural formula for each factor is shown in Table 2. Here, ∆Ctot means the CO2 emission
changes from C0 to CT; ∆Cpop, ∆Cact and ∆Cint are the changes in CO2 emissions from the population,
economic activity, and energy intensity, respectively; ∆Cstr and ∆Cfac are the changes in CO2 emissions
caused by the energy structure and emission factor; Dpop and Dact are the growth rates of CO2 emissions
corresponding to the population and activity effect; Dint, Dstr and Dfac are the growth rates of CO2

emissions corresponding to the intensity, energy-structure and emission-factor effects; The terms w
and w’ are the estimated weights of the additive and multiplicative LMDI.

Table 2. LMDI formulas for decomposition changes in energy-related CO2 emissions.

IDA
Identity

C = ∑
j

Cj = ∑
j

P × Q
P × E

Q × Ej
E × Cj

Ej
= ∑

j
P × G × I×Sj × Fj

Total
Effect

Additive decomposition
∆Ctot = CT − C0 = ∆CT

pop + ∆CT
act + ∆CT

int + ∆CT
str + ∆CT

f ac

Multiplicative decomposition
Dtot = CT/C0 = DpopDactDintDstrD f ac

Effect
by

Factor

∆CT
pop = ∑

j
wln PT

P0 Dpop = exp(∑
j

w’ln PT

P0 )

∆CT
act = ∑

j
wln GT

G0 Dact = exp(∑
j

w’ln GT

G0 )

∆CT
int = ∑

j
wln IT

I0 Dint = exp(∑
j

w’ln IT

I0 )

∆CT
str = ∑

j
wln ST

S0 Dstr = exp(∑
j

w’ln ST

S0 )

∆CT
f ac = ∑

j
wln FT

F0 D f ac = exp(∑
j

w’ln FT

F0 )

w =
CT

j −C0
j

lnCT
j −lnC0

j
w’ =

(CT
j −C0

j )/(lnCT
j −lnC0

j )

(CT−C0)/(lnCT−lnC0)

To overcome the problem of zero values, Ang [59,60] proposed to substitute zeros for δ values
between 10−10 and 10−20. Ang [60] also showed that this strategy is robust when an appropriate value
is used, and that it provides satisfactory results even in highly extreme cases.

2.1.3. Decoupling Measurement of CO2 Emissions and Economic Growth

In general, the decoupling index defined by Tapio [61] can be measured as the ratio of the
percentage change in carbon emissions to the percentage change in the GDP in a given time period:

ε =
∆C/C
∆G/G

(5)

However, in this paper, based on the additive decomposition results for energy-related CO2

emission changes, we apply a novel decoupling index which was advanced by Diakoulaki [62] and
Vehmas [63] to study the relationship between CO2 emissions and economic growth in Northwest
China. The advantage of this approach is that it indicates everything about the real effort needed to
achieve the target of decoupling, rather than providing only rough and superficial measurements of the
relationship between the GDP and CO2 emissions. Specifically, by combining additive decomposition
results and this novel decoupling index, we can identify which factors and to what extent enhance or
curtail carbon emissions.

During the study period (1996–2014), the economy of Northwest China witnessed rapid growth,
which eventually contributed to an increase in CO2 emissions. Conversely, improving energy efficiency,
fuel switching, and controlling population can directly or indirectly induce a decrease in energy-related
CO2 emissions. Therefore, we use ∆Et to represent the total inhibiting effect on CO2 emissions
as follows:

∆Et = ∆Ct
tot − ∆Ct

act = ∆Ct
pop + ∆Ct

int + ∆Ct
str (6)
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Then, the decoupling index is defined as follows:

δt = − ∆Et

∆Ct
act

= −
∆Ct

pop

∆Ct
act

−
∆Ct

int
∆Ct

act
− ∆Ct

str
∆Ct

act
= δt

pop + δ
t
int + δ

t
str (7)

where δt indicates the total decoupling index; δt
pop, δt

int and δt
str are the effects of the population, energy

intensity and energy structure on the decoupling of CO2 emissions and economic growth respectively.
If δt ≥ 1, there is a strong decoupling effect. In other words, the total CO2 emissions reduction

effect is greater than the driving effect of economic growth. If 0 < δt < 1, there is a relative decoupling
effect; in other words, the CO2 emissions reduction effect is weaker than the driving effect. If δt ≤ 0,
there is no decoupling effect, and we can say that the possible inhibiting factors do not reduce
CO2 emissions efficiently but rather increase them. The results can help us to disentangle relative
contributions of factors to the overall decoupling progress.

2.2. Data

This study covers the period from 1995 to 2014, and data used was primarily derived from
the China Statistical Yearbook [64], China Energy Statistical Yearbook [50], China Compendium of
Statistical [65], and China Population Statistics Yearbook [66]. The whole economy in Northwest China
is divided into three aggregated industries, namely the primary, secondary, and tertiary industry.
Agriculture and its related activities: farming, forestry, husbandry, secondary production and fishing
are the primary industry. The secondary industry sector includes mining, manufacturing, water
supply, electricity generation and supply, steam, the hot-water and gas sectors, and construction.
The tertiary industry sector is the rest (transportation sector and commerce sector). Regarding energy
data, we used the final consumption of raw coal, coke, crude oil, gasoline, kerosene, diesel oil, fuel
oil, and natural gas, in ten thousand tons of coal equivalent, obtained from China Energy Statistical
Yearbook [50]. The total end-use energy consumption data in each province was taken from the table
of energy consumption by regions, China Energy Statistical Yearbook [50]. The GDP and population
data was extracted from China Statistical Yearbook [64] and China Population Statistics Yearbook [66].
To eliminate inflation, the GDP was converted to 1995 prices.

3. Results and Discussion

3.1. Trajectory of CO2 Emissions

3.1.1. Features of CO2 Emissions in Northwest China

Figure 2 shows the change rates of CO2 emissions, per capita CO2 emissions, and CO2 emission
intensity during 1996–2014 in Northwest China. It can be analyzed in three periods: 1996–2002,
2003–2009 and 2010–2014. In the first period, both CO2 emissions and per capita CO2 emissions show
no significant changes, having average annual growth rates of 2.7% and 1.7%, respectively. On the
contrary, the average annual growth rate of CO2 emission intensity was −6% in this period. In the
second period, both CO2 emissions and per capita CO2 emissions increased sharply, having the average
annual growth rates of 10.1% and 9.5%, respectively. Contrary to expectations, the CO2 emission
intensity did not decline but rather increased with an annual growth rate of 1.0%. In the last period,
CO2 emissions and per capita CO2 emissions grew faster than in the other periods, with average annual
growth rates of 10.6% and 10.0%. However, the CO2 emission intensity barely changed in this period.
Overall, the total CO2 emissions and per capita CO2 emissions in 2014 increased 4.60 and 4.04 times in
1996, respectively. However, the CO2 emission intensity in 2014 was only reduced to 69.5% of the 1996
level. It shows that economic growth in Northwest China is characterized by high energy consumption
and high CO2 emissions. Compared to China as a whole and other more developed regions, such as
Beijing-Tianjin-Hebei (BTH) and Yangtze River Delta (YRD) economic bands, the growth rates of CO2
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emissions and per capita CO2 emissions in Northwest China are greater significantly. Furthermore,
the reduced rate of the CO2 emission intensity in Northwest China is lower [2,10,18,35].
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Figure 2. Change rates of CO2 emissions, per capita CO2 emissions, and CO2 emission intensity in
Northwest China during 1996–2014 (1996 as the baseline year).

3.1.2. Features of CO2 Emissions in Each Province

Due to the rapid economic growth, the total energy consumption in Northwest China increased
significantly from 11.77 Mtce in 1995 to 58.26 Mtce in 2014. However, the growth in energy consumption
varies among the five provinces. With increase in energy consumption, CO2 emissions increased as
well. Figures 3 and 4 present the total CO2 emissions and per capita CO2 emissions in five provinces of
Northwest China.
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Figure 3. Changes in CO2 emissions in five provinces.

As shown in Figure 3, CO2 emissions in the five provinces show a rising trend. The overall
changes can be divided into two periods, 1995–2002 and 2002–2014. In the first period, there were
subtle fluctuations in CO2 emissions despite the overall trend being relatively stable. We notice that in
1997, the total amount of CO2 emissions in these five provinces declined to different degrees. This may
be due to the Asian financial crisis. After 2002, CO2 emissions increased sharply, especially in the
Ningxia Hui Autonomous Region and Shaanxi Province. During 2002–2014, the average annual growth
rates in these two provinces were 10.5% and 13.5%, respectively. This indicates that the economic
development in these two provinces was characterized by high carbon emissions.
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As shown in Figure 4, the changes in per capita CO2 emissions in the five provinces of Northwest
China showed a growing trend during the study period. However, there exist significant differences
among the five provinces in terms of the rates of changes. According to the change rate of per
capita carbon emissions, we considered 3 periods: 1995–2002, 2003–2005 and 2006–2014, and sorted
these five provinces in descending order in each period. In the first period: Xinjiang, Ningxia, Gansu,
Qinghai and Shaanxi; in the second period: Ningxia, Xinjiang, Gansu, Qinghai and Shaanxi; in the
third period: Ningxia, Xinjiang, Shaanxi, Qinghai and Gansu. The results show that per capita carbon
emissions in Xinjiang and, especially, in Ningxia, are much higher than those in the other three provinces.
Taking Ningxia as an example, during 2002–2014, the average annual growth rate of its GDP was 11.6%,
while the average annual proportion of the secondary industry output value was 47.6%. Furthermore,
since the beginning of 2003, the construction of the Ningdong energy and heavy chemical industry
directly led to a rapid increase in energy consumption, with a significant increase in per capita
CO2 emissions.

3.2. Decomposition Results of CO2 Emissions

3.2.1. Additive Decomposition Results of CO2 Emission Changes at Regional Level

Decomposition results of final energy-related CO2 emission changes in Northwest China from
1996 to 2014 are shown in Figure 5. In the upper section of the figure, the contribution of the various
factors appears in a bar graph, while total CO2 emissions appear as a line. At the bottom of the figure,
CO2 emission variations appear as a percentage for each factor, where the sum of these variations is
an absolute value used to interpret the total change. Several findings are identified as follows.Energies 2016, 9, 680    9 of 17 
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First, changes of CO2 emissions increased during 1995–2014 except for 1997 and 1999. Specifically,
CO2 emissions increased by 1180.12 million tons with the annual growth rates of 8.8%. There were
two high speed phases: 2003–2007 and 2010–2014. In these two phases, the average annual growth
rate of CO2 was above 10.2%. In particular, the annual growth rates reached 22.7%, 14.6%, and 17.1%
in 2003, 2006, and 2011, respectively.

Second, the weight of the economic activity contributes strongly to the increase in CO2

emissions, which is consistent with the results of existing literature [18,35,58,67–69]. According to the
decomposition results, the CO2 emission changes from economic activity increased by 95.7 million tons
during 1995–2014. Based on the annual average contribution rate, economic activity accounts for
67.5% of the total CO2 emission change in absolute terms. Since the implementation of the Western
Development Strategy in 2000, the economic development of Northwest China accelerated, and the
average annual growth rate of GDP was 11.7% during 2000–2014. At the same time, CO2 emissions
also continued to rise, with the average annual growth rate of 11.6%. This shows that along with
high-speed economic development, CO2 emissions increased rapidly.

Third, the intensity effect was a major inhibiting factor of CO2 emissions during 1995–2014. During
this period, the energy intensity in Northwest China declined from 4.28 tce/104 Yuan to 2.92 tce/104 Yuan,
with the average annual decline rate of 2.0%. Based on the annual average contribution rate, the energy
intensity accounts for −13.3% of the total CO2 emission change in absolute terms. However, in six of
the nineteen years studied, the energy intensity increased with CO2 emissions. This can be explained
by sudden booms in production capacity after the entrance to the World Trade Organization (WTO)
and implementation of the Western Development Strategy, where not enough attention was given to
energy efficiency. To improve energy efficiency, a wide range of policies were implemented, such as
“Ten-key Projects” [70] and “Top 1000 Priorities” [71]. These policies halted the rise in energy intensity
efficiently. So, the intensity effect decreased CO2 emissions clearly during 2007–2009.

Fourth, the weight of the energy-structure factor as a determinant of CO2 emission variations
failed to show a consistent pattern. From 1995 to 2002, the energy structural effect inhibited CO2

emissions by −12.39 million tons. But after 2002, the effect increased CO2 emissions with exception
of 2004 and 2014. This anomaly may have been caused by the implementation of the Western
Development Strategy, which spurred the transfer of heavy industries to Northwest China. Overall,
in Northwest China, the accumulated energy-structure effect is an increase in CO2 emissions by
16.12 million tons during the study period.

Finally, the demographic growth contributed to increase in CO2 emissions in Northwest China
during the period under consideration. The accumulated effect of population is an increase in CO2

emissions by 84.60 million tons, with the annual average contribution rate of 5.08%. As Figure 5 shows,
the population effect is the second most significant factor after economic activity. These results are in
line with those found in other countries and regions [72,73].

3.2.2. Multiplicative Decomposition Results of CO2 Emission Changes at Provincial Level

According to the results of Section 3.2.1, on the regional level, the economic activity and energy
intensity are the crucial factors influencing CO2 emissions, whereas the population and energy structure
play a marginal role in changes in CO2 emissions. Is this conclusion applicable at the provincial level?
Are there significant differences in the factors affecting CO2 emissions of provinces? In this section, we
further explore the influencing factors of CO2 emissions at the provincial level.

Unlike the additive LMDI decomposition which was applied in Section 3.2.1, the multiplicative
LMDI decomposition method is used to analyze influencing factors of each province’s CO2 emissions.
Note that we choose different approaches to investigate influencing factors of carbon emissions
at the regional and provincial levels. The underlying reason is that the results of the multiplicative
decomposition were much smaller than the results of the additive decomposition, thus more convenient
to conduct horizontal comparison of provinces [55]. In addition, the results of the multiplicative
decomposition are given in indexes while those of additive decomposition are given as physical
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units [56]. Therefore, the multiplicative decomposition can be used to analyze dynamic trends
appropriately. In order to display results clearly and concisely, the multiplicative decomposition
results for the 9th (1996–2000), 10th (2001–2005), and 11th (2006–2010) periods as well as 2011–2014
are presented in the Table 3. It is worth noting that the values in the last column of Table 3 are the
accumulative decomposition of changes in CO2 emissions in different provinces.

Table 3. Multiplicative LMDI decomposition of CO2 emissions in different provinces.

Effect Province 1996–2000 2001–2005 2006–2010 2011–2014 1996–2014

Population

Shannxi 1.0372 1.0126 1.0122 1.0107 1.0745
Gansu 1.0509 0.9934 1.0058 1.0121 1.0627

Qinghai 1.0732 1.0515 1.0373 1.0346 1.2111
Ningxia 1.0818 1.0753 1.0615 1.0458 1.2913
Xinjiang 1.1132 1.0870 1.0851 1.0536 1.3833

Economic Activity

Shannxi 1.5329 1.7316 1.9207 1.5484 7.8943
Gansu 1.4796 1.6697 1.6898 1.5096 6.3020

Qinghai 1.4169 1.6795 1.7395 1.4896 6.1661
Ningxia 1.5207 1.5657 1.7029 1.4159 5.7405
Xinjiang 1.3190 1.4774 1.5228 1.4529 4.3114

Energy Intensity

Shannxi 0.6042 1.2412 0.9780 0.8901 0.6528
Gansu 0.7152 0.8917 0.7754 0.8109 0.4010

Qinghai 0.7102 1.0667 0.8596 0.9399 0.6120
Ningxia 0.6295 0.9308 0.9700 1.0426 0.5926
Xinjiang 0.8366 0.9570 1.0516 1.1180 0.9413

Energy Structure

Shannxi 0.9368 0.9973 1.0045 1.0217 0.9588
Gansu 0.9831 1.0090 1.0113 0.9990 1.0021

Qinghai 0.9881 0.9933 0.9845 0.9945 0.9609
Ningxia 0.9894 1.0140 1.0070 1.0031 1.0134
Xinjiang 0.9786 0.9866 1.0390 1.0168 1.0200

Total Effect

Shannxi 0.8999 2.1706 1.9098 1.4231 5.3092
Gansu 1.0932 1.4923 1.3328 1.2378 2.6062

Qinghai 1.0670 1.8713 1.5269 1.4406 4.3920
Ningxia 1.0247 1.5891 1.7657 1.5485 4.4522
Xinjiang 1.2020 1.5162 1.8054 1.7402 5.7257

As Table 3 shows, taking these five provinces as a whole, both economy activity and population
contributed to the increase in aggregate CO2 emissions, whereas the energy intensity had a negative
influence on the aggregate value as a consequence of energy efficiency improvement. In addition,
the structural effect has different signs depending on the province. Specifically, the structural effect
inhibited the CO2 emissions in Qinghai and Shannxi, conversely, it increased the CO2 emissions in the
other three provinces. In general, the decrease was nowhere near enough to overcome the increase.
Consequently, the total effect in every province was a sharp increase. For example, the total effects
in Shannxi and Xinjiang were 430.9% and 472.6% overall increase, respectively. Not surprisingly,
the contribution of each effect was different among provinces. This reflects differences in economic
perspectives, market and owner structures, local energy and environmental policies.

Focusing on specific factors, a positive population effect is observed for all provinces. However,
each province was affected differently. Among these provinces, the impact of population on carbon
emissions in Ningxia and Xinjiang was more significant than in the other three provinces. Take Xinjiang
for example, the increase due to population reached up to 38.3%. It is much higher than 6.3% in
Gansu. The underlying cause for this disparity is different family planning policies implemented in
Han and ethnic minorities. Pro-natalist policies promoted population growth in ethnic autonomous
regions, such as Ningxia and Xinjiang. In 2012, the natural growth rate of population in Xinjiang
and Ningxia was 10.6‰and 9.0‰, while it was only 3.7‰in Shaanxi. Therefore, the contribution of
population growth to carbon emissions in Ningxia and Xinjiang was significantly higher than that in
the other provinces.
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Regarding the activity effect, there is a common pattern in every province. Specifically, the
economic growth plays a determining role in increase in CO2 emissions. In these five provinces, the
contribution of economic growth to carbon emissions was more remarkable in Shannxi and Gansu.
In 2014, the cumulative effect of activity was 7.9 times that of 1995 in Shannxi. This can be explained
by different economic growths. For instance, the annual growth rate of economy in Shannxi is 11.9%
which is higher than 9.9% in Xinjiang.

As Table 3 shows, the intensity effects were negative in all provinces. Taking the accumulated
effect during 2006–2014 as an example, it was weak in Xinjiang, whereas it is very strong in Gansu.
A number of factors, including more efficient industrial processes and transport systems, tougher
standards and better labelling on appliances, energy conservation accountability, improving energy
performance of buildings, and, more generally, adaptation of more efficient technologies, tend to
reduce energy consumption. In the 11th Five-Year Plan period, a more stringent energy conservation
policy was implemented in Gansu. However, the energy intensity played a positive and promotional
role in increasing CO2 emissions in Ningxia and Xinjiang during 2011–2014. Specifically, in Xinjiang,
the intensity effect was also positive in 2006–2010. This indicates that in these three provinces, energy
efficiency and conservation were not obtained or improved.

The structural effect exhibits a great deal of variability depending on the province, ranging from
−4.2% in Shannxi to 2.0% in Xinjiang. In Gansu, Ningxia and Xinjiang, changes in the energy structure
contributed to increase in aggregate CO2 emissions. This was especially remarkable in Xinjiang. On the
contrary, both in Shannxi and Qinghai, the structural effect contributed to decrease in CO2 emissions.
This was mainly due to transformation processes by which the importance of raw coal and diesel oil in
energy consumption decreased, and increased for natural gas and cleaned coal.

3.3. Decoupling State in Northwest China

Based on the decoupling index, the relation between CO2 emissions and economic growth in
Northwest China from 1995 to 2014 was explored. The decoupling indices were obtained according to
Equation (7). The results are shown in Table 4, and some insightful conclusions were acquired.

Table 4. Decoupling of CO2 emissions and economic growth.

Time Period δ δpop ∆int ∆str Decoupling State

1995–1996 0.1591 −0.1464 0.2851 0.0204 Relative decoupling
1996–1997 1.2483 −0.1369 1.2318 0.1534 Strong decoupling
1997–1998 0.9162 −0.1509 0.9810 0.0861 Relative decoupling
1998–1999 1.3446 −0.1455 1.4160 0.0741 Strong decoupling
1999–2000 0.6929 −0.1981 0.7690 0.1220 Relative decoupling
2000–2001 0.4011 −0.0214 0.3792 0.0433 Relative decoupling
2001–2002 0.1370 −0.0659 0.1986 0.0043 Relative decoupling
2002–2003 −0.9952 −0.0619 −0.8919 −0.0414 No decoupling
2003–2004 −0.2138 −0.0553 −0.1818 0.0232 No decoupling
2004–2005 −0.2451 −0.0747 −0.1104 −0.0600 No decoupling
2005–2006 −0.2789 −0.0620 −0.2051 −0.0119 No decoupling
2006–2007 0.1689 −0.0593 0.2420 −0.0138 Relative decoupling
2007–2008 0.2585 −0.0532 0.3336 −0.0219 Relative decoupling
2008–2009 0.1731 −0.0530 0.2887 −0.0625 Relative decoupling
2009–2010 −0.1467 −0.0441 −0.0807 −0.0218 No decoupling
2010–2011 −0.3501 −0.0445 −0.2511 −0.0546 No decoupling
2011–2012 −0.0228 −0.0555 0.0651 −0.0325 No decoupling
2012–2013 0.1822 −0.0628 0.2640 −0.0191 No decoupling
2013–2014 0.3659 −0.0796 0.4408 0.0048 Relative decoupling

According to the method presented in Section 2.1.3, the decoupling effort indices (δ) were divided
into three states: strong decoupling, no decoupling, and relative decoupling. The decoupling indices
1.248 for 1997 and 1.345 for 1999 are both greater than 1. This indicates a strong decoupling effect, and
implies that the reduction effect of inhibiting factors, such as the energy intensity and energy structure
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has larger impact compared to the driving effect of economic growth. However, the decoupling
indices were negative during 2003–2006 and 2010–2013. This means there was no decoupling of
CO2 emissions and economic growth. In other words, in these years, rapid economic growth was
characterized by high energy consumption and high CO2 emissions. Relative decoupling is observed
in the other study period. This conclusion is different from previous results regarding other more
developed regions [10,35]. Put precisely, more “no decoupling” was observed in Northwest China
than in more developed regions [18,37,54,74,75]. This means that underdeveloped areas clearly lag
behind developed areas in the process of decoupling. It is necessary to clarify the decoupling state by
deeper analysis of each influencing factor. Each factor is analyzed separately below.

The population effect (δpop) generally results in a constant increase in CO2 emissions over the
study period, which does not contribute to decoupling. This indicates that the ongoing population
growth hinders decoupling. Although over decades China has implemented strict family planning
policies, the natural population growth rate is still high in Northwest China [76]. Taking Xinjiang for
instance, the average growth is 11.6‰ over the examined period, which is about two times the average
value in the whole country.

Regarding the energy intensity effect (δint), it plays a critical role in dissociating the relation
between CO2 emissions and economic growth, except during 2003–2006 and 2010–2011. Generally,
owing to extensive use of energy saving technologies and advancements in energy management,
the energy intensity should decline gradually [77–79]. However, two exceptions occur during
2003–2006 and 2010–2011. There are two main reasons: China’s accession to the WTO, and the
Western Development Strategy. Specifically, in these two periods, CO2 emissions caused by rapid
economic growth overwhelmed reduction, which was mainly due to improved energy efficiency.

As for the energy structure effect (δstr), it decreased CO2 emissions during 1996–2002. From 2005
to 2013, the energy structure effect played a negative role in the decoupling progress. In other words,
this indicates that with continuous economic growth, the structure of energy use was not optimized,
but degraded constantly. Take Ningxia as an example, where coal accounts for 80% of total energy
consumption. This hinders the healthy development of the sustainable energy consumption [80–82].
Again, in the case of Xinjiang, the proportion of coal declined from 50.0% in 1996 to 43.4% in 2002, and
then increased from 44.3% in 2003 to 58.0% in 2014. This fully shows that adjustment of the energy mix
is an important obstacle to decoupling process.

4. Conclusions and Policy Implications

4.1. Conclusions

In this paper, we compared and analyzed historical trajectories of CO2 emissions in Northwest
China from the regional and provincial perspectives. We decomposed changes in final energy-related
CO2 emissions in Northwest China and five provinces during 1995–2014 to identify main influencing
factors by utilizing the LMDI method. At the same time, we built a new decoupling model to analyze
the decoupling relation between CO2 emissions and economic growth in Northwest China. Moreover,
to investigate factors affecting the decoupling progress, changes in decoupling indicators were divided
into four factors based on the LMDI approach. Several conclusions can be obtained as follows:

• In Northwest China, total CO2 emissions and per capita CO2 emissions increased rapidly during
1996–2014. In 2014, these two indicators were 4.9 times and 4.3 times their 1995 levels. At the same
time, the trend of the CO2 emission intensity is more complicated. From 1996 to 2002, it decreased
slowly. Then, it increased with the average annual rate of 1.0% during 2002–2009. After 2009,
it almost unchanged. Specifically at the provincial level, although the trends of the total CO2

emissions, per capita CO2 emissions, and CO2 emission intensity were similar in the provinces,
variations of these indicators were different among provinces.

• The results derived from the additive decomposition of CO2 emissions at the regional level
show the following. The economic activity proves to be an overwhelming contributor to CO2
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emissions increase, which accounts for 67.5% of the total emissions during the study period.
At the same time, the population also contributes to CO2 emissions with the contribution rate of
5.1%. Conversely, the energy intensity partially offsets emission growth, with the contribution
rate of −13.3%. Moreover, the energy structure has a marginal effect with the rate of only about −0.02%.

• Comparative analysis of the multiplicative decomposition results for the five provinces indicates
that the population effect in Ningxia and Xinjiang is more significant than that in the other
provinces. At the same time, the contributions of the economic growth to carbon emissions are
more remarkable in Shannxi and Gansu. Moreover, the intensity effect was weak in Xinjiang,
whereas it was very strong in Gansu. In addition, the structural effect varies significantly among
provinces, ranging from −4.2% in Shannxi to 2.0% in Xinjiang.

• According to the decoupling index, the “relative decoupling effort” and “no decoupling effort”
are the main characteristics during the examined period. Specifically, in 1996, 1998, 2000–2002 and
2007–2009, the decoupling state is characterized as “relative decoupling”, while during 2003–2006,
2010–2013, the decoupling state is characterized as “no decoupling”. Also, there was “strong
decoupling” in 1997 and 1999.

4.2. Policy Implications

Based on the empirical conclusions above, to achieve reduction in the carbon emission intensity by
40%–50% by 2020 compared to the level of 2005, some policy recommendations proposed as follows.

• More attention should be paid to the environmental impact of the Western Development Strategy.
To achieve low-carbon development in Northwest China, the government should continually
change economic growth patterns. In particular, the government should increase its investments
in energy-related technologies, while restricting transfers of backward production capacities
to Northwest China. For other underdeveloped regions, it is equally important to change the
mode of economic growth. Underdeveloped areas should obtain more technology spillovers from
advanced areas, but not as pollution havens, aimed to boost the economy without considering the
environment and only relying on a large number of resources consumption.

• Readjusting the energy use structure is urgently required. From the national point of view, the
energy use structure significantly inhibited CO2 emissions in recent years [10,18]. On the contrary,
it increased CO2 emissions since 2005 in Northwest China. This indicates that optimization
of the energy use structure in Northwest China, where the proportion of coal consumption
continued to be at around 60.0%, clearly lags behind the rest of the country. The government must
strictly control coal consumption caps, and continuously reduce the proportion of coal in the total
primary energy consumption mix. Furthermore, policy makers should seize the opportunities
of the “One Road, One Belt” initiative, strengthen energy cooperation with Central Asia, and
increase the proportion of clean and renewable energy. In addition, there are many efficacious
energy innovation policy tools and energy innovation organizations, such as energy development
plan, preferential taxes, subsidies, and public procurement which can be used to invite investment
in clean and renewable energy technology.

• Energy efficiency should be persistently improved. Northwest China is a major energy and
chemical industry base. Since 2000, the central government began to implement the Western
Development Strategy. Financial support and preferential policies were provided to promote
growth of economy, especially industries. However, the progress in developing energy utilization
technologies in Northwest China lags far behind the national average. Accordingly, the
government should focus more on research and development of advanced energy technologies,
eliminating backward production capacities to improve energy efficiency. Moreover, given that
technology inequity exists between developed and undeveloped regions, the central government
has to make significant efforts to balance the development of carbon emission reduction technology
through removing technology barrier between regions.
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