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Abstract: Static formation temperature (SFT) is required to determine the thermophysical properties
and production parameters in geothermal and oil reservoirs. However, it is not easy to determine SFT
by both experimental and physical methods. In this paper, a mathematical approach to predicting
SFT, based on a new model describing the relationship between bottom hole temperature (BHT)
and shut-in time, has been proposed. The unknown coefficients of the model were derived from
the least squares fit by the particle swarm optimization (PSO) algorithm. Additionally, the ability
to predict SFT using a few BHT data points (such as the first three, four, or five points of a data set)
was evaluated. The accuracy of the proposed method to predict SFT was confirmed by a deviation
percentage less than 4% and a high regression coefficient R? (>0.98). The proposed method could
be used as a practical tool to predict SFT in both geothermal and oil wells.

Keywords: static formation temperature; shut-in time; least squares; particle swarm optimization (PSO)

1. Introduction

Deep drilling is necessary for the exploitation of deep geothermal reservoirs [1]. In this case,
borehole drilling is a complicated process in which a constant thermal anomaly (in addition to the
circulating drilling mud) affects the static formation temperature (SFT) around the borehole [2].
Determining SFT at any depth demands a lot of time to measure the bottom-hole temperature (BHT)
and shut-in time [3]. Measuring BHT can be costly due to the usage of sophisticated logging equipment
and the necessity to temporarily stop the wellbore drilling [4].

Optimal estimation of SFT is required for several applications, including the determination of
geothermal heat flow, analysis of well logs, estimation of geothermal potential, evaluation of in
situ thermophysical formation properties [5], and the determination of hydrocarbon properties in
petroleum systems [6-8].

Estimation of SFT is usually achieved by analytical and numerical simulation methods. Most
of the analytical methods are based on the constant linear and cylindrical heat source models.
Analytical methods most commonly used to estimate SFT include the Horner-plot method (HM), or the
line-source method [9]; the Kutasov-Eppelbaum method (KEM), or the generalized Horner method [10];
the Manetti method (MM), or the cylindrical source with a conductive heat flow method [11];
the Hansan and Kabir method (HK), or the cylindrical heat source with a conductive-convective
heat flow method [12]; the Bernnand method (BM), or the radial source with a conductive heat flow
method [13]; the spherical and redial heat flow method (SRM) proposed by Ascencio et al. [14]; and the
Leblanc method (LM), or the cylindrical source with a conductive heat flow method [15].

Energies 2016, 9, 646; doi:10.3390/en9080646 www.mdpi.com/journal/energies


http://www.mdpi.com/journal/energies
http://www.mdpi.com
http://www.mdpi.com/journal/energies

Energies 2016, 9, 646 2of 14

These methods determine SFT by using BHT and shut-in time data as input, and the linear or
nonlinear regression models as solutions [16]. Nevertheless, large errors are likely encountered in
the prediction of SFT. In this case such errors may arise from various sources, including unrealistic
models proposed to describe the drilling process, heat transfer models based on simple assumptions,
measurement errors in the BHT data, and total uncertainties in SFT estimation [17].

Numerical simulation is another method to estimate SFT, which can also be applied to determine
geothermal gradients and describe the thermal history [18]. For example, Garcia et al. [19] developed
the numerical simulator TEMLOPI for estimating the transient temperature distribution in a wellbore
and the surrounding rock formation. Application to well Az-29 from the Los Azufres Mexican
geothermal field shows satisfactory results. This simulator could be used by drilling engineers to
determine the optimal design of cement slurries and their setting times during well construction.

However, both analytical and numerical simulation methods have some limitations, such as
the excessive amount of some other data that is needed in addition to BHT and shut-in time,
(e.g., thermophysical and transport properties of the wellbore, drilling and cementing materials,
and formation and rock materials, whose data is rarely available and, therefore, limits the usage of
these methods) and the accurate circulation time that is usually unknown or difficult to determine
under drilling conditions.

Against this background, a reliable and practical tool to estimate SFT is still required in geothermal
and petroleum industries. In this paper, a mathematical function has been proposed to correlate BHT
and shut-in time. The coefficients of the function were obtained from the particle swarm optimization
(PSO) algorithm based on the least squares fit target.

PSO is a stochastic, population-based optimization method that was introduced by Kennedy
and Eberhart [20]. It belongs to the family of swarm intelligence computational techniques and is
inspired by social interaction in human beings and animals (especially bird flocks and fish schools).
PSO optimizes a problem by having a population of candidate solutions, dubbed particles here,
and moving these particles around in the search-space according to simple mathematical formulae
over the particle’s position and velocity. Each particle’s movement is influenced by its local best known
position, but is also guided toward the best known positions in the search-space, which are updated as
better positions are found by other particles. The PSO algorithm has been used in many numerical
solution problems and shows its wide applicability [21-23].

PSO has some advantages in solving optimization problems, for example, it requires few
parameters to be tuned by users, it is highly accurate, it is less affected by initial solutions compared
with other algorithms, it has fast convergence, and it is easy to code due to the simple underlying
concepts and demands no requirement for preconditions, such as continuity or differentiability of the
objective functions [24].

2. Methodology

A function correlating BHT and shut-in time was derived to fit the BHT data and the estimated
SFT. The coefficients of this function can be obtained from least squares fit method using the
particle swarm optimization (PSO) algorithm. Additionally, other methods were also introduced
for comparison purposes with the new method. Statistical tests were applied to evaluate the validity
of the predicting methods.

2.1. Method Development

2.1.1. Function Derivation

The Horner method for determining the static formation temperature is widely used in the oil
and gas industry [9]. This analytical method is based on the assumption that thermal effect of drilling
is a constant linear heat source. The approximate solution is given by:

BHT (t) = Ty — (brr) - log {{tc +1) /t} M
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where Ty is the static formation temperature, log {(tc +t) /t} is the dimensionless Horner time
(DHT), and tc and t are the circulation time before shut-in and the time elapsed since the circulation
stopped, respectively. One of the problems in Equation (1) is that of being inconsistent with the
boundary conditions. BHT approaches the static formation temperature, Tyyy when t approaches to
infinity. However, BHT cannot be obtained when t approaches or is equal to zero. This problem may
also decrease the fitting quality of the model. We propose the following mathematical model in order
to solve this problem in Equation (1). The modified model is expressed as:

BHT(t):ab~log{M+1}. ()

where a, b, and c are constants, a is actually equal to Tgps , which can be estimated using Equation (2)
when shut-in time tends to infinity:
SFT = limBHT = a (3)

Equation (2) meets all of the boundary (time) conditions:
As t approaches infinity, maximum BHT is obtained:

BHTyax = Tym = a 4
When t approaches to zero, the minimum BHT is obtained:
BHT,,;, =a—b - In2 (5)

One can observe that the problem in Equation (1) has now been solved by Equation (2). When the
maximum and minimum values of BHT have been determined, the shape of the BHT-time curve
will only depend on the value of c. The curve of the BHT-time function is illustrated in Figure 1.
The equation can characterize the BHT-time function in a large scope, as shown in Figure 1.
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Figure 1. The relationship between bottom hole temperature (BHT) and shut-in time, when a = 100,
b = —50, and c varies from 1 x 1077 to 1.
2.1.2. Solutions to the Three Parameters in the New Function

In order to obtain the best fit of the equation, the least squares fit target is applied. The difference
between the proposed function and the measured value of temperature is denoted by Q, which is
obtained using the following equation:

Q=Y (BHT, - BHT,)’ ©)
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where BHT; and BHT,; are measured and calculated BHT using Equation (2).

The least squares fit method requires minimization of Q. Here we used the particle swarm
optimization (PSO) algorithm to obtain the best fitting coefficients of a, b, and c that yields the
minimum value of X.

The position and velocity of the ith particle are respectively denoted by X; and V;, which are
the best position and velocity attained by each particle and therefore referred to as its personal best.
For the ith particle, the position vector of its personal best is denoted by P; and its objective value is
denoted by Py,;. The best position attained by the swarm is referred to as either the swarm best, global
best, or leader. It is denoted by P; and its objective is denoted by gy,;. At each iteration t, the positions
and velocities of all particles are updated by Equations (7) and (8) which are also called the update
equation [24]:

Vi(t+1) =wV; (t) + Cir1 (P — X;) + Corp (Pg - Xz’) (i=1,2,..., Np) )

X (t+1)=X; () + Vi (t+1) (i=1,2,..., Np) ®)

where w is inertia weight; C; is the cognitive acceleration coefficients, which prompts the attraction of
the particle towards its own personal best; C; is the social acceleration coefficients, which prompts the
attraction of the particle towards the swarm best; and r; and r; are two random numbers in [0,1].

A schematic of the solving process of the proposed method is depicted in Figure 2.

Input Particles’ velocities and positions are
Shut-in time=[t,,t,,...,t,] initialized randomly
BHT=[BHT, BHT,,...,.BHT,]
BHT=[BHT, BHT,,...,BHT,,]
BHT, can be calculated by equation(2) 1

Particles’ velocities and positions are
updated according to Equation(7) and (8)

Each particle’s Py and P;are updated

Q = X%, (BHT; — BHT,)? — 1
Pgand g are updated

Iteration difference
<10%

Stop
Outputa, b, cand Q

Figure 2. Schematic representation of the solving process of the proposed method.

2.2. Existing Methods

2.2.1. Selection of the Analytical Methods

A few previous analytical methods have been discussed in this paper for comparison with
the newly-proposed method in this paper. The three most commonly used analytical methods were
introduced in Table 1. The equations, analytical models and sources of these methods are listed in Figure 1.
Basically, two regression models were applied to obtain the coefficients in each analytical method.
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Table 1. A summary of the analytical methods used for comparison with the method developed in

this paper.
Method Physical Model Equation Sources
Horner (HM) Constant Linear heat source BHT (t) = Ty — bgmin ( tttf ) Dowdle and Cobb (1975)
Manetti (MM) Conductive cylindrical heat source  BHT (t) = Tapr — bymlin (t—t I Manetti (1973)
Ascencio (SRM) Spherical-radial heat flow BHT (t) = Tsrm — bsrmin (% Ascencio et al. (1994)

2.2.2. Selection of the Regression Models

Two regression methods were used as regression models to obtain the coefficients in the three
analytical methods: the ordinary linear regression (OLR) model and quadratic regression (QR) model.

The general equation of the OLD model is: y = a 4 bx , where a and b are the intercept and
the slope of the fitted straight line [16], while that for the QR model is given by: y = a + bx + cx? ,
where a, b, and c represent the polynomial coefficients [16].

2.3. Statistical Evaluation

2.3.1. Deviation Percentages (DEV%)

In order to test the estimation accuracy of the estimated SFT, the deviation percentages (DEV %)
between the estimated and reference SFT values were used:

DEV, — (SET — SFT)
o=t

] x 100 )
where SET is the value of SFT estimate, and SFT is the true SFT value reported in the literature.

It should be noted that this evaluation test was not applied from datasets without reference SFT
(Data 7 and Data 8). The closer the DEV% to zero, the better the estimation of SFT.

2.3.2. Regression Coefficient (R?)

The regression coefficient (R?) is applied for testing the fitting ability of each method. The value
can be obtained from:

PR— A. 2
Rz—l—gﬂﬁ—%%. (10)
L (yi—y)
where y; is the measured value of BHT, 7j; is the estimated BHT, and ¥ is the mean of the measured
BHT values. The fitting is more satisfactory if the value of R? is closer to 1.

2.3.3. Residual Sum of Squares (RSS)

The fitting result of each method can also be evaluated through estimation of the normalized
residual sum of squares (RSS), which is calculated by the following equation:

RSS — im1 (Vi — ]/Ai)z. 11)
n
where y; and 7j; are same as in Equation (10), n is the total numbers of elements in a BHT dataset.
The smaller the value of RSS in a dataset, the better the fitting result. The goodness of fit can be
evaluated by DEV% and R?. However, the comparison between different methods should be based
on the whole accuracy and fitting ability of each method. To evaluate each method comprehensively,
the following synthetic statistical parameters were also used.
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2.3.4. Theil Inequality Coefficient (TIC)

TIC is applied to test the estimation accuracy comprehensively when only very few BHT data are
available. For each dataset and each method used, the TIC value can be obtained from:

A 2
TIC — \/ Y2 5 (SET; — SFT)
/X2 4 SET? + SFT

where SFT; is the SFT estimate using the first i of the dataset.
The value of TIC is in [0,1], and could be used to compare between different datasets. For each
method, the closer the TIC to zero, the more accurate the method is.

(12)

2.4. Data Sources

Eight thermal recovery datasets were collected from the published literature (see Table 2) for the
accuracy and application tests. They include:

(1) Four synthetic datasets selected from the literature; and
(2) Four datasets logged in some boreholes from long logging work in geothermal and
petroleum fields.

These datasets are summarized in Table 2 [25-30].

It should be pointed out that the datasets 1-6 all have reference SFT values, which can be
very useful to evaluate the application of the proposed method and conduct comparisons between
different methods.

Table 2. Summary of the bottom-hole temperature (BHT) datasets used in this paper.

Data Type n tc (h) Sources Data Name in

This Paper
SHBE Synthetic data 8 5 Shen and Beck (1986) Data 1
CLAH Synthetic data 15 5 Cao et al. (1988) Data 2
CJON Synthetic data 12 0.2 Cooper and Jones (1959) Data 3
. Steingrimsson and

KJ-21 Geothermal field data 6 2.5 Gudmundsson (1989) Data 4
SG Geothermal field data 12 3 Schoeppel and Gilarranz (1966) Data 5
MOU Synthetic data 3 10 Mou (2013) Data 6
DA-XIN Geothermal field data 40 5 Da-Xin (1986) Data 7
UASM Petroleum field data 14 10 Kutasov (1999) Data 8

3. Validation and Discussion

3.1. Accuracy of the Static Formation Temperature (SFT)

For each dataset, coefficients a, b, and ¢ were solved by the PSO algorithm based on the least
squares fit target. After applying Equation (2), the BHT data were recalculated at each shut-in time of
the borehole and entitled calculated BHT. The DEV% between SFT estimate and reference SFT were
obtained by Equation (9), as described in the “Methodology” section. A comparison between data
from the literature and data estimated by our proposed method is depicted in Figure 3, in which yellow
circles represent measured BHT values (in this case reference BHT), black dots represent calculated
BHT, red full lines represent reference SFT, and the black dashed lines represent values of SFT estimate.

Using the synthetic set of Data 1, the SFT value estimated by the proposed method was 80.99 °C,
which is in agreement with the true SFT, 80 °C. The error in this case is 1.24%. The SFT estimated
in Data 2 is about 4 °C higher than the true value (120 °C), with an acceptable percentage of 3.52%.
For those data sets from well-logging (Data 4 and 5), the deviation percentages fall in the range of —2%
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to 1%. Data 6 was recorded at three shut-in times, with an SFT value of 105.296 °C estimated accurately
by the proposed method, and a deviation percentage of 0.28% with the reference SFT value of 105 °C.
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Figure 3. Comparisons for the bottom-hole temperature (BHT) and Static formation temperature (SFT).

Figure 4 shows the comparison between estimated SFT values using the proposed method and
true SFT values for six datasets using the true SFT values ranging from 20.25 to 240 °C, during the last
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shut-in time from 1.5 h to 600 h. The number of the dataset varies from three to 15. The DEV% of each

dataset is in [~2%, 4%], a satisfactory range for a practical predicting tool.
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=
v
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SFT (reference)

250

Figure 4. Comparison of the SFT estimates using the proposed method and reference SFT values.
(n is the number of data points of each dataset).

3.2. Fitting Results

The regression coefficients R?> determined by Equation (10) and the normalized RSS by
Equation (11) were calculated for all datasets using the proposed method. The calculation results
are presented in Table 3, and the BHT values calculated by the proposed method are also shown
in Figure 3. For the datasets 1 and 2, the values of R? are both greater than 99.9%, which indicates
that the proposed method can fit the BHT data accurately. As for those BHT datasets obtained from
well-logging, the proposed method also showed a good fitting ability because the R? for each dataset
is greater than 98%. Based on the good matching results, the proposed method seems to provide
acceptable correlations between BHT and shut-in time.

Table 3. Results of each dataset using the proposed method.

NO. Coefficients of the Proposed Method STF SFT DEV% R RSS
a b c (Reference)  (Estimated)

Data 1 81.000 45.960 0.172 80.000 81.000 1.249 1.000  0.025
Data 2 124.232 63.459 0.243 120.000 124.232 3.527 0.999  0.089
Data 3 20.327 30.865 28.299 20.250 20.327 0.380 0987  0.073
Data 4 236.084 280.837 0.039 240.000 236.084 —1.632 0.999 2243
Data 5 100.132 21.111 0.694 101.111 100.132 —0.968 0.999  0.026
Data 6 105.296 26.481 0.067 105.000 105.296 0.282 1.000  0.000
Data 7 132.459 133.588 0.289 N/A 132.459 N/A 0.979  11.053
Data 8 147.600 12.809 0.071 N/A 147.600 N/A 0979  0.085

In addition, comparisons of estimates and reference SFT values using various methods was
carried out, the results of which are shown in Table 4. It is obvious that the SFT values predicted by
the proposed method are much better than others.
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Table 4. Comparison of estimates and reference Static formation temperature (SFT) values using
various methods.

NO HM MM SRM Proposed  Reference
OLR QR OLR QR OLR QR  Method SFT
Data 1 75.871 79.372 74.713 77.936 77.362 86.914 80.999 80
Data 2 119.66 123.26 117.45 121.15 125.63 131.91 124.231 120
Data 3 20.328 18.981 20.003 21.302 22.132 19.499 20.327 20.25
Data 4 187.60 223.5 220.64 230.65 207.39 260.87 236.084 240
Data 5 98.449 100.07 97.048 98.257 99.858 106.16 100.133 101.111
Data 6 94.261 98.535 94.971 N/A 94.334 101.23 105.296 105

4. Applications in the Case of a Small Number of Data Points

The fitting ability of the proposed method has been tested in the cases of a set having a small
number of BHT data points. Three different analytical methods with two different regression models
mentioned in Section 2 were applied for comparison, the results were shown in Table 5. The first three,
four, or five data points of each dataset were applied to estimate SFT in different analytical methods
including the proposed method. The results are discussed in this section.

Figures 5 and 6 present the SFT estimation results using different methods when the first three,
four, or five data points or all the n data points in each set (i.e., DN 3, DN4, DN 5, and DN n) are used.
The red full line in Figure 5a—f (plotted based on the dataset 1 to 6) represents the true value of SFT for
each dataset, whereas the black dashed lines above and below the red line represent the SFT values
with the DEV% of 5% and —5% of the true SFT value, respectively. The circles in Figure 5 and the
diamonds in Figure 6 represent the results of SFT estimations using different methods. It should be
mentioned that the red diamonds in Figure 6 represent the SFT estimates of our proposed method.
The results of deviation percentages between each estimate with the reference SFT value are listed in
Table 4 for reference. The SFT estimates discussed here were obtained using seven methods when the
first three, four, or five points, or all data elements in each set, were applied, in the ranges [SFT —5%
SFT to SFT +5% SFT], which is called “the acceptable range”.

By comparing the SFT estimates with the reference SFT values, it can be observed in Figure 5 that
the SFT values estimated by the Horner method (HM) when OLR model is applied were typically
underestimated in all datasets except for Data 3. Additionally, the aspheric heat-flow method (SRM)
with the OLR model was likely to overestimate the SFT, as mentioned in [17]. As for the regression
models, results showed that SFT values estimated by using an ordinary linear regression model were
less than those by the quadratic regression model in Figure 5. This observation was also reported in
other literature [16,17].

For Data 1 and 2 set, the proposed method is the only method in which all the SFT estimates lie in
the acceptable range. It can be concluded that both the HM and MM method with the QR model are
two good estimating methods, except for the proposed method from Figure 5a,b. However, the SFT
estimates obtained using the two methods for only the first three points of Data 1 set were both out
of the acceptable range. Estimation results for the Data 3 set using the three methods were all in the
acceptable range. The three methods in this case involved HM with the OLR model, MM with the
OLR model, and the proposed method. For this dataset use of the SRM methods with the OLR and
QR models could not yield good results for the estimated SFT. For Data 4, application of DN 3 in all
methods resulted into the SFT being out of the acceptable range. However, it should be noted that
the proposed method was the only method in which the estimates laid in the acceptable range (using
DN 4, DN 5 and DN n). All but one SFT estimated by the MM method with QR model on the DN n
were unacceptable. For Data 5, the predicting results of the proposed method and other four methods
all lied in the acceptable range. For Data 7 without the reference SFT value, the predicting ability
of each method can still be seen in Figure 5f. The estimates obtained from HM method with OLR
model and SRM method with the OLR model were uncertain, with a range of 63.77 °C and 99.74 °C,
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respectively. However, the proposed method, as well as the MM method with the OLR model, can still
be used to estimate SFT reliably. Except for the SRM method with the QR model, using our proposed
method, the estimates using other methods were likely to be underestimated when only the first three,
four, or five points of the dataset were used, while the estimates by the SRM method with the QR
model were more likely to be exaggerated. However, estimates obtained from the proposed method
were likely to distribute but close on both sides of the reference SFT value (red full lines in Figure 5),
which is also an indication of the advantage of the proposed method.

Based on the results of these statistical tests and the analysis above, the proposed method can be
considered to estimate SFT accurately and reliably in the cases with few data.
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Figure 6. SFT estimates for each method using the first three, four, or five points, or all (n) data of a set,

(a) to (f) plotted based on the dataset 1 to 5and 7.

Both data quantity and method will affect the accuracy of prediction, and some methods under
specific conditions may have better results than the newly-proposed method, so the Theil inequality
coefficient (TIC), an overall evaluation, was used to assess all of the data. The value of the TIC is in
[0,1], and could be used to compare the results of different datasets. For each method, the closer the
TIC is to zero, the more accurate that method is. The results of the TIC are depicted in Figure 7. It is to
be observed that the new proposed method is the only one in which the TIC values for all datasets are
less than 3%, indicating that the newly-proposed method cannot only estimate SFT using a few data

points accurately, but also reliably.
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Table 5. Deviation percentages of the SFT estimates using different methods.
Data1l Data 2
Method Data Number Data Number
3 4 5 (n) 3 4 5 ()
HM OLS —11.756 —10.378 —8.765 —5.161 —6.808 —5.583 —4.608 —0.283
QR —5.456 —3.944 —3.058 —0.785 0.067 0.658 1.217 2.717
vy OLS 10186 —9.576 —8.091 —6.609 —7.708 —6.708 —5.908 —2.125
QR —6.975 —5.304 —3.828 —2.580 —2.933 —2.100 —1.508 0.958
srm OLS 0.734 —7.094 —5.307 —3.298 —3.142 —1517 —0.250 4.692
QR 8.970 5.601 7.781 8.643 10.367 11.017 11.592 9.925
Proposed —2.367 0.028 0.470 1.249 3.929 3.971 4.289 3.527
method
Data 3 Data 4 Data 5
Method Data Number Data Number Data Number
3 4 5 (n) 3 4 5 all 3 4 5 (n)
HM OLS 1.600 0.835 0.212 0.385 —36.800 —31.438 —26.250 —21.833 —5.350 —4.717 —4.125 —2.632
QR 1215 —16928 —10.731 —6.267 —14.917 —12404 —9500 —6.875 —4.779 —2457 —1191  —1.029
vy OLS —0435 —3289 2508 1220 —14.583 —11.029 —8.067 —8.067 —5.123 —4740 —4.602 —4017
QR  0.652 2,588 2074 5195 —8.842 —6.358 —3.896 —3.896 —2332 —2546 —3.131 —2.822
ry OLS 9852 9.931 9151 9294  —28.617 —22992 —10.754 —13.588 0613 —2937 —2070 —1.238
QR 6.963 —22.089 —11.501 —3.709  14.696 12.213  9.367 8.696 3907 —0.386 3.106 4.995
Proposed _ g58 4844 —0543 0380 9.501 0784 —2198 —1.632 —3.667 —2.661 —0.781  —0.967
method
20%
—6—HM OLR
18% HM QR
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Figure 7. Comparison of Theil Inequality Coefficient (TIC) values for each dataset and various

estimating methods.

Note that the SFT may vary with depth and rock type of the formation because the corresponding
thermal stress varies with depth and rock type of the reservoir. This, however, has not been investigated
in the current study and a research plan has been embarked to further explore the possible relationship
between SFT and depth, as well as rock type.

5. Conclusions

M

A numerical method was proposed to estimate SFT from the BHT data and shut-in time.

The unknown coefficients of the model were derived from the least squares fit by the particle
swarm optimization (PSO) algorithm.
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®)

The estimation accuracy and fitting ability of the proposed method was verified using eight BHT
datasets, including synthetic, geothermal, and petroleum field data. The deviation percentages
are less than +4% and the regression coefficient R? are greater than 0.98.

A comparison among different methods was conducted. The new proposed method could
estimate SFT accurately and reliably, even by using a small number of BHT data points (the TIC
values for all datasets are less than 3%). This might be used as a practical tool to predict SFT in
both geothermal and oil wells.
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