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Abstract: The day-ahead electricity market is closely related to other commodity markets such as the
fuel and emission markets and is increasingly playing a significant role in human life. Thus, in the
electricity markets, accurate electricity price forecasting plays significant role for power producers and
consumers. Although many studies developing and proposing highly accurate forecasting models
exist in the literature, there have been few investigations on improving the forecasting effectiveness
of electricity price from the perspective of reducing the volatility of data with satisfactory accuracy.
Based on reducing the volatility of the electricity price and the forecasting nature of the radial
basis function network (RBFN), this paper successfully develops a two-stage model to forecast
the day-ahead electricity price, of which the first stage is particle swarm optimization (PSO)-core
mapping (CM) with self-organizing-map and fuzzy set (PCMwSEF), and the second stage is selection
rule (SR). The PCMWwSEF stage applies CM, fuzzy set and optimized weights to obtain the future
price, and the SR stage is inspired by the forecasting nature of RBFN and effectively selects the best
forecast during the test period. The proposed model, i.e., CM-PCMwSEF-SR, not only overcomes the
difficulty of reducing the high volatility of the electricity price but also leads to a superior forecasting
effectiveness than benchmarks.

Keywords: selection rule (SR); reducing volatility; self-organizing-map; fuzzy logic; particle swarm
optimization (PSO); forecasting

1. Introduction

Electricity is one of the most essential energy inputs to the industry and has increasingly significant
influences on modern industry. Meanwhile, the management of operation process is more sensitive
and vulnerable to the electricity supply fluctuations and its cost changes more than ever before.
This demands more stable and reliable energy supply, cost management, as well as risk management.
There is rising demand for more accurate analysis and forecasting of the electricity price movement [1].
To obtain accurate estimated electricity prices, modeling and prediction techniques are frequently
applied to bid or hedge against the volatility of electricity prices [2,3]. Overall, it is not difficult to
find that the electricity price is not only related to the interests of market participants but also affects
many aspects of society and the economy. Thus, it is necessary to explore its nature in order to aid
participants of the electricity market.

To show the significance of this paper better, some effective forecasting approaches for the
electricity price from previous research investigations will be introduced here. One forecast strategy is
a new two-stage feature selection (FS) algorithm, which is proposed by Keynia [4] and is based on the
mutual information (MI) criterion; it selects representative features of the composite neural network
(CNN) among feature candidates. Yan et al. [5,6] applied a multiple support vector machine (SVM)
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to forecast mid-term electricity price and developed a hybrid mid-term electricity price forecasting
model by combining SVM and auto-regressive moving average with external input (ARMAX) modules.
The Markov-switching generalized autoregressive conditional heteroskedasticity (MS-GARCH) model
was developed to forecast low and high volatility electricity prices by Cifter [7]. Anbazhagan and
Kumarappan proposed feed-forward neural network (FFNN) featured by one-dimensional discrete
cosine transforms (DCT) and day-ahead electricity price classification using three-layered FFNN,
cascade-forward neural network (CFNN) and generalized regression neural network (GRNN) [8-10].
A novel grey model was proposed using particle swarm optimization (PSO) algorithm by Lei and
Feng [11]. Based on panel co-integration and particle filter (PCPF), Li et al. [12] investigated a two-stage
hybrid model to achieve two main goals: (1) to expand the dimension of the dataset; and (2) to consider
the model parameters as a time-varying process. Zhang and Tan [13,14] proposed new hybrid methods
based on wavelet transform (WT), autoregressive integrated moving average (ARIMA) and least
squares support vector machine (LSSVM) optimized by PSO and WT, chaotic least squares support
vector machine (CLSSVM) and exponential generalized autoregressive conditional heteroskedastic
(EGARCH) to predict electricity prices. Liu et al. [2] applied various autoregressive moving
average (ARMA) models with generalized autoregressive conditional heteroskedasticity (GARCH)
processes, namely ARMA-GARCH models, along with their modified forms, ARMA-GARCH-in-mean
(ARMA-GARCH-M), to model and forecast hourly-ahead electricity prices. Najeh Chadbane, based on
the idea of choosing forecasting models, proposed a model that exploited the feature and strength of the
auto-regressive fractionally integrated moving average (ARFIMA) model, as well as the feedforward
neural networks model [15]. A new hybrid ARIMA-ANN model for the prediction of time series data
based on the linear ARIMA and nonlinear artificial neural network (ANN) models was proposed by
Babu et al. [16]. Shrivastava et al. [17] investigated the performance of extreme learning machine (ELM)
in the price forecasting problem. Shayeghi et al. [18] proposed a new combination of the FS technique
based on the MI technique and WT in. The delta and bootstrap methods were employed for the
construction of prediction intervals (PIs) for uncertainty quantification by Khosravi et al. [19-21].
Bordignon et al. [22] studied combined versus individual forecasts for the prediction of British
electricity prices. Grimes et al. [23] showed that simply optimizing price forecasts based on classical
regression error metrics did not work well for scheduling. Nowotarski et al. [24] applied seven
averaging and one selection scheme and performed backtesting analysis on day-ahead electricity
prices in three major markets. From a dynamical system perspective, Sharma and Srinivasan [25]
proposed a hybrid model that employed a synergistic combination of recurrent neural network (RNN)
and coupled excitable system for electricity price forecasting. Dev and Martin [26] proposed an
approach for the predictive capacity of neural networks and applied Australian National Electricity
Market data to test their model. Wang et al. [27] proposed a forecasting model of electricity price using
chaotic sequences for forecasting short-term electricity prices. The forecasting performances of four
ARMAX-GARCH models for five MISO pricing hubs (Cinergy, First Energy, Illinois, Michigan, and
Minnesota) were analyzed by Hickey et al. [28]. Christensen et al. [29] focused on the prediction of
price spikes using a nonlinear variant of the autoregressive conditional hazard model. Amjady and
Keynia [30] proposed a strategy that included a new closed-loop prediction mechanism composed of
probabilistic neural network (PNN) and hybrid neuro-evolutionary system (HNES) forecast engines to
forecast Pennsylvania—New Jersey—Maryland (PJM) electricity prices. Dudek [31] applied Multilayer
perceptron for GEFCom2014 probabilistic electricity price forecasting. Panapakidis and Dagoumas [32]
reviewed recent literature related to electricity price forecasting and applied ANN to predict future
electricity prices. The K-support vector regression (K-SVR), a hybrid model to combine clustering
algorithms, SVM, and SVR to forecast electricity price of PJM, is presented by Feijoo et al. [33].
Abedinia et al. [34] proposed a Combinatorial Neural Network-based forecasting engine to forecast
the electricity price. The curvelet denoising-based approach was proposed to improve the forecasting
effectiveness of the electricity price by He et al. [35]. Ziel et al. [36] gave an introduction of an
econometric model for the hourly time series of electricity prices that incorporated specific features
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such as renewable energy. Hong et al. [37] applied a principal component analysis (PCA) network
cascaded with a multi-layer feedforward (MLF) network for forecasting locational marginal prices
(LMPs). By combining statistical techniques for pre-processing data and a multi-layer neural network,
a dynamic hybrid model was proposed by Cerjan et al. [38] for forecasting electricity prices and price
spike detection. Monteiro et al. [39] showed comparisons of forecasts, which led to the identification
of the most important variables for forecasting purposes. By relying on simple models, forecasting
approaches were derived and analyzed by Jénsson et al. [40]. Weron [41] reviewed literature related to
electricity price forecasting and speculated on the directions electricity price forecasting should take in
the next decade or so.

In this paper, based on reducing the volatility of the electricity price and the forecasting nature of
the radial basis function network (RBFN), we successfully develop a two-stage model to forecast the
day-ahead electricity price, of which the first stage is PSO-core mapping (CM) with self-organizing-map
and fuzzy set (PCMwSF) and the second stage is selection rule (SR). The PCMwSF stage aims to
apply CM, fuzzy set and optimized weights to obtain the future price, and the SR stage is inspired
by the forecasting nature of RBEN and effectively selects the best forecast during the test period.
The highlights of this paper are as follows:

> We successfully overcome the volatility of the electricity price through the CM method.

> Improvement from reducing the volatility is obvious during the test period.

>  Self-organizing map (SOM) is assigned to divide the original data into three parts: low, medium
and high.

> Divided price is weighted by the PSO algorithm and performs well during forecasting.

> SRis based on three new defined criteria and effectively selects the forecasting model.

2. Self-Organizing-Map
Figure 1 shows an application of SOM.
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Figure 1. A self-organizing map showing U.S. Congress voting patterns visualized in Synapse. The first
two boxes show clustering and distances, while the remaining ones show the component planes.
Red means a yes vote, while blue means a no vote in the component planes (except the party component,
where red is Republican and blue is Democratic) [42].
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Because this paper focuses on the pre-process of forecasting, RBFN, i.e., the main forecasting
tool, will not be introduced. Details of this method are described in [43], and the introduction of
fuzzy logic and PSO can be found in [44-47]. As an ANN, SOM maps the training samples into
low dimensional (typically two-dimensional), discretized representations in the input space using
unsupervised learning. Unlike the other ANNs, SOM can preserve the topological properties of the
input space by introducing a neighborhood function. Thus, SOM is able to visualize high-dimensional
or multi-dimensional data as low-dimensional vectors. [48]. Besides, the ability of handling a high
number of nodes makes SOM a powerful tool in clustering [49]. Details of the learning algorithm of
SOM can be found in [50].

3. Core Mapping-Particle Swarm Optimization-Core Mapping with Self-Organizing-Map and
Fuzzy Set-Selection Rule for Electricity Price Forecasting

To illustrate these approaches specifically, this section will give details of these models for
forecasting electricity price.

3.1. Core Idea of This Paper

To demonstrate the core idea of this paper, the reason why high forecasting errors occur will be
shown initially. In the process of forecasting, data firstly will be pre-processed to suit for model, which
will be obtained by training through pre-processed data. Then, this trained model is utilized in the
forecast. From research related to forecasting, it is apparent that the volatility of data has a huge effect
on forecasting accuracy, which means that the volatility of data directly determines the accuracy level
the model can reach. Thus, legitimately reducing volatility is an important problem in forecasting
and is also the inspiration of this paper. However, from the above section, many researchers have
concentrated on the promotion of algorithms, such as BP neuron network, LSSVM, ARIMA, GARCH
and so on, rather than on the pre-processing of data or initial transformation of data. To improve this
part of the entire forecasting process, mapping f is proposed in this paper:

f(x)zjxln(t+1)dt (1)

0

Thus, for discrete data, Equation (1) can be expressed by:

f (price (x)) = Zx] In (price (i) +1) (2)
i=1

that means:

f:price (x) — Y In(price (i) +1) (©)]

-

i=1

This mapping is also called CM in this paper.
Furthermore, to reduce the volatility of the electricity price, it is divided into high price, low price
and medium price by a SOM. Then, a fuzzy logic is established:

IF price(i) IS High price, THEN price(i) equals price(i) x Highweight;
IF price(i) IS Medium price, THEN price(i) equals price(i) x Mediumweight; and
m  IF price(i) IS Low price, THEN price(i) equals price(i) x Lowweight.

Thus, the CM will be changed to:

: price — HIGHWeight x In (price + 1)+
p 8 p
High_price )
2 In(price+1)+ Y, LOWWeight x In (price + 1)

Medium_price Low_price
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Finally, PSO is used to optimize Highweight and Lowweight to make sure that a greater
forecasting accuracy can be obtained. In post-processing, the formula of post-processing is as follows
(where n is the length of forecasting series):

pre-processed pre-processed /.

Priceqorecast (1) = eV forecast (1) _ ePrictiorecast (=1 _ 1,i=2,.,n ®)

Thus, the CM method and PSO-CM with SOM and fuzzy logic (PCMwSF) method are proposed
and used to pre-process price data in this paper. The pre-processed data will be given to RBFN to
forecast the day-ahead electricity price. Mean absolute percentage error (MAPE), mean absolute error
(MAE) and root mean square error (RMSE) obtained from the forecasting results demonstrate that the
proposed model can efficiently forecast the price.

Furthermore, to obtain excellent forecasting accuracy of electricity prices, a rule of model
selection is proposed to choose which model should be used. The final forecasting model, named
CM-PCMWSE-SR, outperforms the others in each season of 2002 in the PJM power market, which is
commonly recognized as one of the most successful markets in the US.

3.2. Basic Pre-Process

Before introducing proposed methods, simple pre-processes of data need to be defined first.
In this paper, basic pre-processes can be expressed by:

N
max (price(i)), price (i) > 10 x % > price (i)
i=1

price (i) = { 0<i<N (6)
price (i), otherwise
then: . o o
przce(z—l)-;przce(z-i—l), 0.8 < ﬁ% <1
price (i) = Prinf(i—l)erPVin(iJrl)/ price (i) <1 @)
price (i), otherwise

where N is the length of the electricity price, which is prepared to train RBFN and i =1, 2, ..., N.
Equations (6) and (7) indicate that if the gap of price(i) and mean of price(i — 1) and price(i + 1) are
less than 20% or if price(i) is too small, price(i) will be changed to the mean value of price(i — 1) and
price(i + 1). This can be observed in Figure 2. Obviously, the linearized line is smoother than the
actual line.
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Figure 2. Actual and linearized one day Pennsylvania-New Jersey-Maryland (PJM) electricity price on
7 April 2002.
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3.3. Core Mapping Method

In this section, the CM approach will be described using an actual example. Taking the electricity
price of 26 June 2002 in the PJM electricity market as an example, the data are first linearized and then
mapped by CM. The mapped data are shown in Figure 3.
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Figure 3. (a) Actual price; and (b) core-mapped price of 26 June 2001 in PJM electricity market.

It is obvious that the volatility of mapped data is smaller than the volatility of actual data.
This means that the CM method can reduce the volatility of data and consequently makes the accuracy
of the forecasted electricity price much higher than that of the original method, which is shown in the
experiments in Section 4.

3.4. Swarm Optimization Algorithm-Core Mapping with Self-Organizing Map and Fuzzy (Particle Swarm
Optimization-Core Mapping with Self-Organizing-Map and Fuzzy Set) Method

Although the CM method can reduce the volatility of the electricity price, there are always high
prices or low prices, which increase this volatility of the electricity price. In this section, PCMwSF is
proposed to address this problem.

3.4.1. Forecasting Rules

To evaluate the effectiveness of the methods, this paper uses three rules in the forecasting process:

(1) A previous month’s data are used to forecast the price of the target day.

(2) There is only the historical electricity price considered in this paper (without data of demand or
environmental data (for the environmental data, we do not find the corresponding dataset (24 h
in one day))).

(3) All forecasting results are day-ahead forecasting, and the forecasting mode is shown in Figure 4.

Remark 1. In some literatures related to electricity price forecasting, electricity demand is regarded as a feature
to predict the electricity price. However, adding electricity demand as one of the features cannot help to improve
forecasting effectiveness after the experiment (the final experiment shows that the forecasting results with
electricity demand is similar to the results without it, which means that electricity demand is not a key factor to
influence the forecasting effectiveness). Thus, this paper does not select the electricity demand as one of features
in our paper, which is the reason why there is only the historical electricity price considered in this paper.
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Figure 4. Forecasting mode.

3.4.2. Classification of Price with Self-Organizing Map and Fuzzy Logic

Before linearizing the price and applying CM, the PCMwSF method is used to divide the processed
price into three categories: High price, Medium price and Low price by using SOM. The price
mentioned above is the historical price prior to the price that needs to be forecasted. For example, if
the price data on 26 April 2002 need to be forecasted, the PCMwSF method will divide the price data
that are between 1 January and 25 April into three categories.

In the introduction section, a fuzzy logic was established to change CM to ensure good forecasting
accuracy. When three classifications of the historical price are obtained, Highweight and Lowweight
need to be determined to forecast the next spot price. How to determine both of them is a very
important problem in the predication process, and the PSO algorithm, which is a powerful tool for
optimizing parameters, is used to solve this problem.

3.4.3. Applying of Swarm Optimization Algorithm Algorithm

In the process of PSO, the fitness function is key to the optimization problem. Before identifying
the fitness function, the index of measuring the degree of volatility needs to be established.

Definition 1. The identity of volatility of price is defined as:

vop (i) = var <[var (price (i, 1: %)) , var (price (i, % +1: %)) , ..., var (prz'ce (i, % : T))D (8)

where vop(i) is the volatility of price of the ith day, T represents the number of points observed in one day, and
var refers to the variance of a specific series in the ith day.

Then, another index to evaluate the forecasting accuracy is proposed for PSO algorithm.

Definition 2. The index to evaluate the in-sample forecasting effectiveness can be expressed as following:

T
L1 . . . .
aob (l) = f Z (prlceforecast (l -1, t) — Pricactual (l -1, t))z (9)
t=1

where T represents the number of points observed in one day, pricesorecast represents the forecasting value at time
point t of the ith day, and price, a1 represents the observed value at time point t of the day.
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This index is the forecasting accuracy of the previous day of the day the needs to be forecasted.
Next, the fitness function of PSO is identified as follows.

Definition 3. The fitness function ®(-) of PSO algorithm used in PCMwSF model is defined as:
D; (-) = aob (i) x vop (i) (10)

where i represents the ith day and this definition indicates that lower fitness values can represent lower values of
vop and aob, indicating lower volatility and higher forecasting accuracy.

We assign Ind to represent the output values of ®(-). In the last step, Highweight and Lowweight
are changed by the PSO algorithm to make sure Ind reaches a minimum. Then, the optimized
HIGHWeight and Lowweight are used to forecast the next-day price with RBFN.

3.5. Selection Rule Based on Forecasting Nature of Radial Basis Function Network

The CM method and PCMwSF method have different merits when forecasting the electricity
price. Thus, it is important to correctly select a method to pre-process the original data. To solve this
problem, this paper studies the properties of the RBF network in forecasting.

e  RBF Network in Forecasting

Initially, this paper applies the RBF network to forecast price with the CM method and compares
results with the previous day’s actual price. Then, it is observed that the forecasting values of RBFN
have little changes compared with the former day’s electricity prices (shown in Section 4.2). Thus, the
index of changes of price (ICP) is proposed as a criterion to measure the magnitude of price changes.

Definition 4. ICP is defined as follows:

Py ( t :
ICP (Py, Py; i, j) = 2‘ 1 (0 i t) P2 (G, Bl 11)

where P.(i, t) is the ith day’s price (actual or forecasted) at t hour (c =1, 2).

Based on Equation (11), we define a criterion to evaluate what extent the former day’s electricity
price changes.

Definition 5. Index of changes of actual price (ICP-P) is defined as follows:

P P i, t
ICP — P( ) _ ICP(  ctuals Pactual; i—1 Z ‘ actual ) actual (l/ )l (12)
actual ( -1, t)

where Pycyal(i, t) is the ith day’s actual price at t hour (c =1, 2).

Additionally, if we obtain the forecasting values of the electricity price, we can define another
criterion to evaluate to what extent the forecasting electricity price changes from the former day.

Definition 6. Index of changes of forecasting price (ICP-F) is expressed as follows:

) Pforecast (i/ t)l

actual ( -1, t) (13)

T
‘ i 1 1 (
ICP — F (i; Prorecast) = ICP (Pactuals Porecast; 1 — 1,1 T Z e

where Pociual(i, t) is the ith day’s actual price at t hour (c = 1, 2) and Py recast(i, t) is the ith day’s forecasting
price at t hour (c =1, 2).
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From Definition 4, it is obvious that different forecasting values have their own ICP-F, meaning
that this new criterion can help us select the best forecasting models under the condition that we do
not know the actual electricity price of the ith day. Thus, this paper proposes a SR to choose the best
forecasting model based on ICP-F.

Definition 7. When forecasting the electricity price of the ith day, the SR can be expressed as follows:

1cp— F(i; P ) (14)

forecast

SR (i) = {m|ICP— F(i; P{)).,.,) = max

where M is the number of forecasting models and Py_ [ . .

mth model.

is the forecasting values of the ith day obtained by the

It is obvious that the SR is an integer series. Thus, for the ith day, we should select PSR a5 the

forecast
forecasting values of this day. Algorithm 1 demonstrates the Pseudo code of forecasting the electricity

price of the ith day using the CM-PCMwSF-SR model.

Algorithm 1 Pseudo code of forecasting the electricity price of the ith day using the
CM-PCMwSEF-SR model.

P: The electricity price series

T: Number of time points in one-day electricity price series.

Iter: Number of iterations.

t=1

1  Assign Equations (6) and (7) to pre-process P

According to CM method, map P to Pcm

Divide Pcy into T subseries and denote them by Pcyi, Powma, - - -, PomT

According to CM method, map P to Ppcm

Divide Ppcy into T subseries and denote them by Ppcmi, Peema, - - - » Ppemr

Whilet<T +1

Assign Pcm; and RBEN, forecast the time t of electricity price of ith day and denote it by

pfem(i, t).

8 | Assign Ppcm; and RBFN, forecast the time ¢ of electricity price of ith day and denote it by
pfpem(i, t).

9 |t=t+1

10 End

11 Calculate ICP-F(i; pfcm) and ICP-F(i; pfpcm)

12 IF ICP-F(i; pfem) > ICP-F(i; pfpcm)

NG WD

13 ‘ Pf = pfem
14 Else

15 ‘ Pf = pfpem
16 End

17 Return Pf
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3.6. Forecasting Principle and Evaluation Criteria

Because the input of RBFN must be between 0 and 1, the processed data need to be changed by

the following formula:
. Price — Ppin
Price = ————— 15
b max — P min ( )
where Ppyip, is the minimum value of the training data of RBFN and Ppax is the maximum value of the
training data of RBFN. To evaluate the accuracy of the forecast, the MAPE, MAE and RMSE are all

used. The MAPE, MAE, and RMSE are defined as:

T tual forecast
1 G [Pl — pporecast|
MAPE = TZ pactual (16)
t=1 t
T
MAE = 12 Pactual _ Pforecast (17)
T t t
t=1
T
1 1 I 2
RMSE = TZ }Ptactua _ Ptorecast| (18)

t=1

where PActal j5 the actual price at time t and Pforet js the forecasted price at time t. The range of
Highweight is 0.9-1.05 and the range of Lowweight is 0.9-1.05 in the PSO algorithm.

4. Data Analyses and Numerical Results

PJM electricity price is selected to test the proposed methods. In Case 1, the forecasting results
show that the PCMwSF method is better than the CM method. In Case 2, we illustrate the forecasting
natures of RBFN, ICP-P and ICP-F, which lay a strong foundation for SR. In other cases, weeks in
different seasons are selected to test models. The details of each case are shown in Table 1.

Table 1. Six cases to evaluate effectiveness of the forecasting models.

Case Forecasted Data Remarks
1 26 June 2002 Test data 1
2 28 June 2002 Test data 2
3 18-22 March 2002 Spring week
4 24-28 June 2002 Summer week
5 23-27 September 2002 Autumn week
6 23-27 December 2002 Winter week

4.1. Study of Case 1

Figure 5 shows the day-ahead price forecasting results of RBFN for Case 1. Figure 6 shows the
day-ahead price forecasting (CM method) for Case 1. Figure 7 shows the day-ahead price forecasting
(PCMwSF method) for Case 1. The forecasting results are compared with the actual LMP value.
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Figure 5. Actual PJM electricity price and forecasted values using radial basis function network (RBFN)
in Case 1. MAPE: mean absolute percentage error; MAE: mean absolute error; and RMSE: root mean
square error.
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Figure 6. Actual PJM electricity price and forecasted values using CM in Case 1.
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Figure 7. Actual PJM electricity price and forecasted values using particle swarm optimization
(PSO)-core mapping (CM) with self-organizing-map and fuzzy set (PCMwSF) in Case 1.

Obviously, the forecasting result with the PCMwSF method is better than the others in Case 1.
Details of the forecasting process are shown in Table 2. Table 2 collects data of the forecasting process
with the PCMwSF method. The optimal Lowweight, optimal Highweight, optimal Ind, vop, accuracy
of price forecasting on 25 June with optimized weight, actual price and forecasted price on 26 June,
MAPE in the forecasting process and lower limit, upper limit of high price, medium price and low price
are shown. It is obvious that Ind and vop are well optimized. The forecast on 25 June achieves desired
results with the optimal Highweight and Lowweight, which means that the PCMwSF method has the
ability to improve the forecasting effectiveness of the electricity price. The MAPE of the forecasted
price in this model varies from a low of 0.01% at 20:00 to a high of 16% at 7:00. Figure 8 shows a
flowchart of the PCMwSF method.
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Figure 8. The flowchart of PCMwSF method. The “forecasting model” part illustrates how to predict

24-h eletricity prices for the next day. The “detailed procedures of the proposed models” demonstrates

procedures of PCMwSF model and provides fitness function of PSO algorithm. The table in this figure

demonstrates details of forecasting process on 26 June 2002.
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Table 2. Details of forecasting process on 26 June 2002.

. Lowprice Mediumprice Highprice
Optimized  Optimized .. Accur.acy Pf Price Actual The . The . P P il

Hour Lowweight Highweight Optimized Ind vop F.orecast%ng. in 25 ]qne Price Forec.astmg MAPE in L(.)w.er UPp.er Lc?w.er UPp.er L(.)w.er UPP?I
with Optimized Weight Price Forecasting  Limit Limit Limit Limit Limit Limit

1 1.05 1.05 3.00 x 10~7 3 x107° 0.009871573 30.042584 28.88083544  0.038670061  13.35 16.38 16.47 19.99 20.33 21.77
2 0.9 1.05 1.17 x 10~° 0.00175 0.000669503 23.227286 22.82923041 0.017137413  6.21 11.06 12.04 15.06 15.18 15.19
3 0.9 1.05 0.0012057 0.00625 0.192873029 19.417743 18.27777973  0.0587073 5.00 8.95 10.57 14.55 14.64 14.85
4 0.9 1.05 2.93 x 10> 0.0072 0.004063085 19.021642 19.81686622  0.041806287  3.54 5.77 8.17 14.21 14.38 14.43
5 1.05 1.05 0.0003397 0.0018 0.188687235 19.093959 17.87229801 0.063981545  4.01 6.89 8.77 15.26 15.29 15.43
6 1.00835979  1.04092133 9.99 x 10~8 0.00025 0.000405769 22.249014 22.09561104 0.006894821  4.41 16.51 16.67 22.09 22.59 23.07
7 1.04058413  0.99407597 9.68 x 10~7 0.00032 0.003064402 28.075555 23.42978837  0.165473724  6.00 21.77 22.34 31.85 32.00 33.01
8 1.03214508  1.00030193 2.97 x 10~7 0.00012 0.002570408 32.14557 27.37297416  0.148468229  17.61 24.62 24.90 32.37 32.80 35.30
9 0.9 1.05 4.64 x 10~° 0.00214 0.02169611 41.589847 41.75262301  0.00391384 18.89 25.44 2591 31.62 32.38 33.14
10 1.05 1.05 7.69 x 10~7 0.0002 0.003894983 55.481059 57.52763013  0.036887745  20.34 27.72 27.85 36.03 37.15 37.15
11 1.00195217  1.03870054 2.96 x 10~7 0.0006 0.000496936 66.185004 65.30751722  0.013258091  21.59 27.90 28.32 37.55 38.21 40.35
12 0.90571775  1.03406808 1.29 x 10> 0.00418 0.003094359 72.513762 71.32707075 0.016365049  20.56 27.00 27.26 39.80 43.01 50.29
13 0.9 1.04443826 3.01 x 10~° 0.00517 0.000581067 81.512989 80.9840073  0.006489539  19.09 25.91 26.73 39.84 41.21 50.82
14 1.05 1.0372643 8.39 x 10~7 0.00123 0.000680358 84.263068 84.35103019  0.0010439 18.09 25.96 26.52 41.51 42.30 55.67
15 0.9 1.05 0.0002566 0.00578 0.044364121 111.008751  108.5720506  0.021950525  17.09 23.93 24.70 40.01 42.29 55.44
16 1.05 1.05 1.78 x 10— 0.00455 0.003898985 121.142204  122.1447286 0.008275601  17.00 24.62 24.88 42.53 45.56 57.86
17 0.9 1.05 1.26 x 102 0.00347 0.00364351 123.608716  128.2363494  0.03743776 17.53 27.01 27.54 44.36 46.35 58.49
18 1.04960601 1.03794031 3.66 x 10~° 0.00207 0.001768166 104.870005  102.8891348 0.018888816  20.34 29.15 29.68 43.58 44.09 44.09
19 0.9640085 1.03333071 5.44 x 10~° 0.00321 0.001697436 82.145528 80.21448758  0.023507554  20.96 29.12 29.45 39.76 40.66 42.57
20 1.05 1.05 891 x 10~7 0.0008 0.001107933 77.622871 77.63220279  0.00012022 20.64 27.92 28.19 36.50 37.18 37.52
21 0.91415609  1.04028055 2.80 x 10~7 0.00087 0.000322583 67.682837 65.96782212  0.025338992  19.61 27.96 28.21 44.06 46.67 58.77
22 0.94192706  1.03463809 1.52 x 107 0.00071 0.000214754 54.653942 55.93324169  0.023407272  17.17 23.54 23.60 30.80 31.32 32.11
23 1.0092341 1.03129197 9.25 x 10~7 0.00032 0.002874501 44.597215 42.1100053  0.055770516  15.33 19.96 20.35 25.52 27.83 29.15

24 0.9 1.05 3.35 x 1072 0.00118 0.028342292 35.380436 35.16495484  0.006090404  14.92 18.27 18.50 2292 24.78 2522




Energies 2016, 9, 618 14 of 27

4.2. Study of Case 2

In this case, we will illustrate ICP-P, ICP-F and the forecasting results of CM and PCMwSF and
show that the SR is an effective tool to select the best model to forecast the next-day electricity price.

Figure 9 shows the day-ahead price forecasting from the CM method for Case 2. Figure 10 shows
the day-ahead price forecasting from PCMwSF for Case 2. The forecasted results are compared with
the actual LMP value, including the price on 27 June. It is obvious that the CM method is better than
the PCMwSEF method and that both methods are able to forecast the price changing trend. Thus, it is
important to select a method of pre-processing correctly. Based on the SR defined in Section 3, the
ICP-F of CM is more than that of PCMwSF; thus, CM is the selected model, indicating that the SR
correctly selects the model with higher precision.

Mo L. Forecasted —&— Actual(27 June)

120+

MAPE=23.71%
MAE=11.0092
RMSE=13.5559

LMP($\Mwh)

Figure 9. Actual PJM electricity price and forecasted values using CM in Case 2.
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Figure 10. Actual PJM electricity price and forecasted values using PCMwSF in Case 2.

From Figure 11, it is obvious that the RBF network is conservative in the forecasting process.
It makes little change in the forecasting process, and the change in price is observed to be relatively
larger than that of the forecasted price in this figure.
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Figure 11. Illustration of ICP-F (index of changes of forecasting price) and ICP-P (index of changes of

actual price).
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4.3. Study of Case 3

In this section, the forecasting effectiveness of each model is highlighted. Figure 12 shows the
day-ahead price forecasting for 18 March using both forecasting methods. It is apparent that the
forecasted values of PCMwSF change more significantly than that of CM. Thus, PCMwSF is chosen to
forecast the electricity price, and the MAPE, MSE and RMSE are 9.71%, 2.8821 and 3.6112, respectively.
Figure 13 shows the day-ahead price forecasting for 19 March using both forecasting methods. The price
from PCMwSF is selected as the final forecasted price because CM’s forecasted price changes within a
small range. The MAPE, MSE and RMSE are 6.25%, 1.6700 and 1.9214, respectively.

459 ----CM Method
—— PCMwSF Method
40 Actual (18 March)

7

LMP($/Mwh)

554

504 =----CM Method
—— PCMwSF Method
454 Actual (18 March)

LMP($/Mwh)
@ w B
8 & 38
T

N
a
1

Figure 13. Actual PJM electricity price and forecasted values of 19 March.

In Figure 14, the forecasted price from the CM method is chosen because it changes more
significantly than the forecasted price from the other method, and the MAPE, MSE and RMSE are
3.67%, 1.0212% and 1.1589%, respectively. The forecasted price from PCMWwSF is selected as the final
chosen price because the ICP-F of PCMwSF is larger than the index of the CM method. The MAPE,
MSE and RMSE are 2.53%, 0.8096% and 1.1965%, respectively (Figure 15). By using the SR in Figure 16,
the forecasted price from PCMWwSF is regarded as the final result of forecasting, and the MAPE, MSE
and RMSE are 13.40%, 4.9012% and 5.3977%, respectively.

55

""" CM Method Actual (19 March)
| ——PCMwSF Method
Actual (20 March)

T T
0 10 20
Hour

Figure 14. Actual PJM electricity price and forecasted values of 20 March. The blue area represents the
actual electricity prices of 19 March.
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Figure 15. Actual PJM electricity price and forecasted values of 21 March. The blue area represents the
actual electricity prices of 20 March.
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Figure 16. Actual PJM electricity price and forecasted values of 22 March. It is obvious that actual
electricity prices of 21 March are less than those of 22 March.

The details of the forecasting results of Case 3 are shown in Table 3 and Figure 17 illustrates the
forecasting results. In Table 3, the forecasting details from 18 March to 22 March are demonstrated.
It is clearly seen that four days are forecasted using the PCMwSF method. For 18 March, the MAPE
ranges from 1.6% at 1:00 to 19.7% at 10:00. The average MAPE is 9.70%. The MAPE of the PCMwSF
forecasting model on 19 March varies from a low of 0.6% at 23:00 to a high of 11.2% at 24:00, and the
average MAPE of this day is 6.25%. The MAPE varies from 0.2% at 1:00 to 7.5% at 9:00. The average
MAPE on 21 March is 2.53%. Similarly, the lowest MAPE on 22 March is 2.7% at 21:00, and this day’s
highest MAPE is 26.1% at 24:00. The average MAPE of this day is 13.40%. The CM method is chosen to
forecast the price on 20 March, and the MAPE of this day varies from a low of 1.2% at 9:00 to a high of
8.0% at 7:00. The average MAPE on 20 March is 3.67%. Thus, the lowest MAPE of Case 3 is 0.2% at 2:00

on 21 March, and the highest MAPE of this case is 26.1% at 24:00 on 22 March.
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Figure 17. Actual PJM electricity price and forecasted values of Case 3. In this figure, the area represents

the actual electricity prices of this week and the line is the forecasted values.
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Table 3. Details of forecasting process for Case 3.

17 of 27

- 18 March (PCMwSF) 19 March (PCMwSF) 20 March (CM) 21 March (PCMwSF) 22 March (PCMwSF)
o Actual Forecasted MAPE Actual Forecasted MAPE Actual Forecasted MAPE Actual Forecasted MAPE Actual Forecasted MAPE
1 16.03 15.774 0.016 18.51 16.898 0.087 17.72 17.227 0.028 17 17.038 0.002 24 19.967 0.168
2 15.45 14.524 0.06 17.51 15.878 0.093 16.72 16.222 0.03 16.01 16.046 0.002 22.33 18.79 0.159
3 15.207 14.256 0.063 16.79 15.403 0.083 16.15 15.703 0.028 16.16 15.861 0.018 21.9 18.856 0.139
4 15.312 14.254 0.069 16.94 15.472 0.087 16.58 15.946 0.038 16 15.904 0.006 22 18.852 0.143
5 16 15.082 0.057 18.01 16.295 0.095 17.43 16.778 0.037 16.58 16.606 0.002 23.5 19.555 0.168
6 20.27 18.624 0.081 21.01 19.687 0.063 20.51 20.001 0.025 20.356 20.084 0.013 35 26.786 0.235
7 33 29.261 0.113 31 29.958 0.034 35 32211 0.08 30.177 31.02 0.028 45 36.19 0.196
8 37 32.009 0.135 33.51 32.574 0.028 34.164 33.182 0.029 39.109 36.824 0.058 54.255 48.145 0.113
9 32.42 27.554 0.15 36.917 36.381 0.015 33.144 32.734 0.012 38.668 35.768 0.075 51.7 46.633 0.098
10 35.146 28.222 0.197 36.345 38.725 0.065 34.75 33.562 0.034 36.114 36.264 0.004 50.447 43.354 0.141
11 36.94 37.145 0.006 37.09 40.525 0.093 35.1 34.246 0.024 33.785 34.628 0.025 47.568 39.927 0.161
12 33.005 27.715 0.16 31.724 34.423 0.085 31.889 30.771 0.035 33.101 33.054 0.001 45.617 39.734 0.129
13 28.522 24.293 0.148 28 29.776 0.063 27.981 27.152 0.03 30.465 29.432 0.034 41.289 36.414 0.118
14 26.891 23.162 0.139 26.033 27.753 0.066 26.677 25.695 0.037 28.066 27.746 0.011 37.516 33.067 0.119
15 23.95 21.386 0.107 25.03 25.276 0.01 26.565 24.861 0.064 26.811 27.337 0.02 31.726 29.668 0.065
16 23.685 21.376 0.097 23.233 24.273 0.045 25.415 23.799 0.064 25.212 26.002 0.031 30.707 28.166 0.083
17 26.071 23.105 0.114 25.011 26.981 0.079 26.54 25.115 0.054 24.998 26.637 0.066 31.55 28.129 0.108
18 34.44 29.583 0.141 29.573 28.589 0.033 31.429 29.819 0.051 28.076 28.791 0.025 37 32.474 0.122
19 44.535 36.006 0.192 54.635 53.567 0.02 45.681 44.629 0.023 40.057 43.06 0.075 45 41.186 0.085
20 43.06 40.996 0.048 41 45.297 0.105 39.436 38.278 0.029 41.064 40.447 0.015 45 43.544 0.032
21 34.96 33.898 0.03 35.51 38.372 0.081 34.421 33.04 0.04 39.486 37.466 0.051 409 41.984 0.027
22 27.41 24.028 0.123 28 29.499 0.054 28 26.745 0.045 28.537 28.673 0.005 40.242 34.35 0.146
23 21 19.499 0.071 22.44 22.312 0.006 21.65 21.129 0.024 23 22.493 0.022 38.26 30.501 0.203
24 17.03 16.82 0.012 20.7 18.375 0.112 19 18.599 0.021 19 18.713 0.015 35.31 26.084 0.261
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By applying two forecasting models and SR, Cases 4-6 can be solved. Figures 18-20 separately

illustrate the forecasting results of CM-PCMwSEF-SR in the three cases.

4.4. Study of Cases 4-6
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Figure 18. Actual PJM electricity price and forecasted values of Case 4. In this figure, the area represents
Figure 19. Actual PJM electricity price and forecasted values of Case 5. In this figure, the area represents

the actual electricity prices of this week and the line is the forecasted values.
the actual electricity prices of this week and the line is the forecasted values.
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Details of the forecasting results of Cases 4-6 are shown in Tables 4-6. Table 4 shows the forecasting
details from 24 June to 28 June. It is clearly seen that three days are forecasted using the PCMwSF
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method. For 25 June, the MAPE ranges from 0.1% at 2:00 to 30.6% at 6:00. The average MAPE is 6.0%.
The MAPE of the PCMWwSF forecasting model on 26 June varies from a low of 0.012% at 20:00 to a high
of 19.8% at 7:00, and the average MAPE of this day is 3.78%. Similarly, the lowest MAPE on 27 June is
0.8% at 1:00, and this day’s highest MAPE is 13.4% at 20:00. The average MAPE of this day is 6.32%.
The CM method is chosen to forecast the prices on 24 June and 28 June. The MAPE of the previous day
varies from a low of 1.5% at 2:00 to a high of 22.80% at 23:00. The average MAPE on 24 June is 15.30%.
The other day’s MAPE ranges from 0.1% at 12:00 to 18.10% at 17:00, and the average MAPE is 8.48%.
Thus, the lowest MAPE of Case 4 is 0.012% at 20:00 on 26 June, and the highest MAPE of this case is
30.6% at 6:00 on 25 June.

The forecasting details from 23 September to 27 September are shown in Table 5. It is obvious
that three days are forecasted using the CM method. For 24 September, the MAPE ranges from 0.019%
at 6:00 to 20.9% at 19:00. The average MAPE is 8.74%. The MAPE of the CM forecasting model on
25 September varies from a low of 0.6% at 24:00 to a high of 35.7% at 4:00, and the average MAPE
of this day is 8.30%. The MAPE varies from 0.009% at 15:00 to 8.4% at 4:00. The average MAPE on
27 September is 3.10%. The PCMwSEF method is chosen to forecast the prices on 23 September and
26 September. The MAPE of 23 September varies from a low of 0.016% at 13:00 to a high of 12.4% at
22:00. The average MAPE is 4.61%. The MAPE of 26 September ranges from 0.011% at 12:00 to 13.1%
at 4:00, and the average MAPE of this day is 4.34%. Thus, the lowest MAPE of Case 5 is 0.009% at 15:00
on 27 September, and the highest MAPE of this case is 35.7% at 4:00 on 25 September.

Table 6 lists the details of the forecasting result from 23 December to 27 December. It is easy to
see that three days are forecasted using the CM method. For 24 December, the MAPE ranges from
2.6% at 24:00 to 37.1% at 16:00. The average MAPE is 14.04%. The MAPE on 25 December varies
from a low of 6.0% at 2:00 to a high of 47.1% at 7:00, and the average MAPE of this day is 24.43%.
Similarly, the lowest MAPE on 26 December is 0.3% at 24:00, and this day’s highest MAPE is 17.3% at
7:00. The average MAPE of this day is 4.94%. 23 December and 27 December use the PCMwSF method
as their forecasting method. The MAPE of 23 December varies from a low of 0.5% at 3:00 to a high
of 14.9% at 20:00. This day’s MAPE is 7.60%. The last column of this table shows that the MAPE of
27 December ranges from 1.7% at 22:00 to 17.3% at 7:00, and the average MAPE is 6.98%. Thus, the
lowest MAPE of Case 6 is 0.3% at 24:00 on 26 December, and the highest MAPE of this case is 47.1% at
7:00 on 25 December.
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Table 4. Details of forecasting process for Case 4.

20 of 27

- 24 June (CM) 25 June (PCMwSF) 26 June ( PCMwSEF) 27 June (PCMwSF) 28 June (CM)

o Actual Forecast MAPE Actual Forecast MAPE Actual Forecast MAPE Actual Forecast MAPE Actual Forecast MAPE
1 18.901 18.338 0.03 23.573 22.374 0.054 30.043 28.881 0.04 33.965 34.238 0.008 32.087 28.339 0.132
2 16.62 16.365 0.015 19.062 19.075 0.001 23.227 22.829 0.017 24.03 25.41 0.054 21.035 19.954 0.054
3 15.51 10.128 0.347 18.238 14.721 0.239 19.418 18.278 0.062 19.814 20.565 0.037 19.06 17.323 0.1
4 14.8 15.295 0.033 17.64 17.48 0.009 19.022 19.817 0.04 18.8 19.973 0.059 18.43 17.126 0.076
5 14.92 9.917 0.335 17.651 14.32 0.233 19.094 17.872 0.068 18.96 19.873 0.046 18.43 16.809 0.096
6 16.17 16.076 0.006 19.268 14.759 0.306 22.249 22.096 0.007 23.35 24.628 0.052 21.14 20.013 0.056
7 19.966 18.865 0.055 23.186 22.684 0.022 28.076 23.43 0.198 31.55 32.574 0.031 31.41 27.63 0.137
8 23.219 22.491 0.031 25.918 25.693 0.009 32.146 27.373 0.174 36.25 37.572 0.035 22.376 24.931 0.102
9 29.326 26.367 0.101 34.028 34.768 0.021 41.59 41.753 0.004 49.29 49.998 0.014 31.538 33.637 0.062
10 44.447 35.531 0.201 49.044 48.853 0.004 55.481 57.528 0.036 58.442 61.623 0.052 41.975 43.397 0.033
11 55.216 43.013 0.221 54.909 57.439 0.044 66.185 65.308 0.013 72.358 77.943 0.072 51.399 52.636 0.023
12 61.1 49.62 0.188 60.652 64.9 0.065 72.514 71.327 0.017 78.544 81.822 0.04 58.915 58.952 0.001
13 56.153 50.403 0.102 66.413 67.902 0.022 81.513 80.984 0.007 85.559 91.998 0.07 64.995 64.462 0.008
14 64.393 59.737 0.072 71.894 75.777 0.051 84.263 84.351 0.001 104.294 102.081 0.022 67.832 70.257 0.035
15 71.692 62.255 0.132 80.659 84.246 0.043 111.009 108.572 0.022 102.227 118.042 0.134 73.239 75.898 0.035
16 81.962 67.378 0.178 97.686 97.306 0.004 121.142 122.145 0.008 122.228 136.956 0.108 71.587 80.658 0.112
17 89.208 75.863 0.15 104.657 105.039 0.004 123.609 128.236 0.036 114.878 130.954 0.123 60.741 74.127 0.181
18 82.122 66.567 0.189 84.824 89.533 0.053 104.87 102.889 0.019 96.25 110.481 0.129 57.986 66.78 0.132
19 72.609 56.682 0.219 67.768 72.747 0.068 82.146 80.214 0.024 77.466 86.297 0.102 53.425 57.771 0.075
20 57.966 44.994 0.224 62.682 62.609 0.001 77.623 77.632 1.16E 71.847 82.991 0.134 44.856 50.84 0.118
21 53.88 42471 0.212 54.379 56.513 0.038 67.683 65.968 0.026 68.396 74.936 0.087 39.225 45.684 0.141
22 52.403 41.59 0.206 49.969 53.021 0.058 54.654 55.933 0.023 57.934 58.991 0.018 37.543 41.408 0.093
23 38.681 29.851 0.228 35.46 37.805 0.062 44.597 4211 0.059 46.488 50.42 0.078 26.801 31.185 0.141
24 24.805 19.889 0.198 30.043 29.191 0.029 35.38 35.165 0.006 41.45 41.919 0.011 25.081 27.661 0.093
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Table 5. Details of forecasting process for Case 5.

- 23 September (PCMwSF) 24 September (CM) 25 September (CM) 26 September (PCMwSF) 27 September (CM)
o Actual Forecast MAPE Actual Forecast MAPE Actual Forecast MAPE Actual Forecast MAPE Actual Forecast MAPE
1 17.93 17.77 0.01 16.05 16.15 0.01 14.12 14.93 0.06 15.59 14.97 0.04 15.72 15.59 0.01
2 16.39 16.26 0.01 14.41 14.64 0.02 12.06 13.15 0.09 13.52 13.09 0.03 14.17 13.84 0.02
3 15.50 15.29 0.01 13.79 13.85 0.01 9.16 11.19 0.22 13.08 11.88 0.09 13.84 13.03 0.06
4 15.00 14.90 0.01 13.55 13.56 0.00 7.33 9.94 0.36 12.71 11.04 0.13 13.59 12.44 0.08
5 15.73 15.33 0.03 13.80 13.89 0.01 9.00 11.11 0.24 13.14 11.87 0.10 13.74 12.97 0.06
6 17.83 17.34 0.03 15.90 15.91 0.00 15.11 15.31 0.01 16.33 15.51 0.05 16.96 16.49 0.03
7 25.75 23.80 0.08 21.76 21.66 0.00 19.87 20.50 0.03 22.13 20.86 0.06 24.37 22.95 0.06
8 30.90 27.53 0.11 20.81 22.77 0.09 20.47 21.30 0.04 21.68 21.03 0.03 25.58 23.64 0.08
9 32.88 29.91 0.09 21.59 24.14 0.12 22.23 22.86 0.03 23.61 22.72 0.04 27.51 25.49 0.07
10 37.70 35.46 0.06 26.34 28.96 0.10 26.47 27.29 0.03 26.60 26.34 0.01 29.85 28.60 0.04
11 42.22 40.73 0.04 28.96 32.51 0.12 28.20 29.85 0.06 28.48 28.50 0.00 31.27 30.46 0.03
12 42.24 41.36 0.02 28.54 32.55 0.14 28.32 29.93 0.06 28.59 28.59 0.00 31.98 30.85 0.04
13 43.55 43.56 0.00 28.91 33.66 0.16 28.16 30.36 0.08 28.15 28.59 0.02 31.48 30.59 0.03
14 46.80 46.07 0.02 33.04 37.01 0.12 31.19 33.48 0.07 31.32 31.65 0.01 33.16 33.04 0.00
15 51.12 49.93 0.02 35.99 40.15 0.12 32.83 35.79 0.09 31.01 32.57 0.05 33.89 33.89 0.00
16 52.72 50.01 0.05 36.09 40.21 0.11 33.49 36.18 0.08 31.71 33.11 0.04 33.96 34.21 0.01
17 52.62 49.39 0.06 35.58 39.70 0.12 33.07 35.72 0.08 30.09 32.06 0.07 33.27 33.31 0.00
18 45.78 43.83 0.04 30.70 34.84 0.14 29.15 31.43 0.08 26.01 27.99 0.08 29.86 29.46 0.01
19 42.10 39.39 0.07 24.37 29.45 0.21 23.98 26.24 0.09 23.69 24.41 0.03 26.12 25.72 0.02
20 46.69 44.22 0.05 32.30 35.68 0.10 31.72 33.17 0.05 32.94 32.27 0.02 34.17 33.90 0.01
21 46.91 43.38 0.08 31.12 34.75 0.12 30.93 32.31 0.05 28.67 29.75 0.04 30.96 30.97 0.00
22 38.92 34.11 0.12 23.18 26.72 0.15 23.02 24.47 0.06 22.74 23.09 0.02 25.28 24.62 0.03
23 28.09 25.11 0.11 18.24 20.44 0.12 18.54 19.20 0.04 20.07 19.23 0.04 21.57 20.74 0.04

24 18.48 18.33 0.01 16.19 16.47 0.02 16.24 16.15 0.01 17.38 16.42 0.06 18.27 17.62 0.04
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Table 6. Details of forecasting process for Case 6.

22 of 27

- 23 December (PCMwSF) 24 December (CM) 25 December (CM) 26 December (CM) 27 December (PCMwSF)
o Actual Forecast MAPE Actual Forecast MAPE Actual Forecast MAPE Actual Forecast MAPE Actual Forecast MAPE
1 20.129 21.535 0.07 17.91 14.333 0.2 15.723 16.953 0.078 15.8 16.669 0.055 18.516 17.551 0.052
2 18.492 18.993 0.027 15.245 13.179 0.136 14.128 14.972 0.06 14.117 14.8 0.048 16.394 15.562 0.051
3 18.295 18.391 0.005 14.528 12.476 0.141 13.517 14.35 0.062 13.859 14.358 0.036 15.983 15.135 0.053
4 18.99 18.707 0.015 14.426 12.426 0.139 13.41 14.325 0.068 13.858 14.348 0.035 16.076 15.174 0.056
5 20.425 20.885 0.023 15.632 13.304 0.149 13.884 15.284 0.101 14.789 15.314 0.035 16.932 16.087 0.05
6 33.275 32.466 0.024 19.035 24.49 0.287 14.386 18.253 0.269 18.242 18.603 0.02 22.397 20.394 0.089
7 61.526 56.038 0.089 19.331 23.353 0.208 14.234 20.942 0.471 22.959 22.372 0.026 32.67 27.019 0.173
8 53.876 50.023 0.072 23.866 27.451 0.15 15.085 22.029 0.46 25.22 24.063 0.046 34.544 28.811 0.166
9 51.101 45.891 0.102 28.265 26.419 0.065 16.427 23.424 0.426 26.332 25.36 0.037 33.155 28.97 0.126
10 47.329 43.639 0.078 34.867 27.883 0.2 17.952 25.459 0.418 29.655 28.061 0.054 35.156 31.376 0.108
11 43.324 41.221 0.049 29.488 28.192 0.044 17.395 23.729 0.364 25.718 25.205 0.02 32.18 28.453 0.116
12 38.111 35.248 0.075 23.901 22.755 0.048 18.277 22.203 0.215 24.337 23.696 0.026 29.215 26.286 0.1
13 32.935 30.741 0.067 21.015 18.606 0.115 17.323 20.269 0.17 22.202 21.599 0.027 24.851 23.144 0.069
14 30.412 28.817 0.052 20.133 24.026 0.193 16.185 19.104 0.18 20.307 20.038 0.013 20.983 20.483 0.024
15 30.398 27.43 0.098 19.868 24.496 0.233 15.47 18.407 0.19 19.698 19.362 0.017 20.201 19.756 0.022
16 30.43 27.764 0.088 19.642 26.931 0.371 15.573 18.471 0.186 20.017 19.552 0.023 20.769 20.13 0.031
17 47.471 41.881 0.118 27.353 25.298 0.075 16.743 23.011 0.374 31.276 27.336 0.126 32.265 29.666 0.081
18 76.514 66.692 0.128 47.185 45.225 0.042 26.72 37.133 0.39 48.81 43.524 0.108 50.867 46.992 0.076
19 74.707 64.847 0.132 43.588 36.176 0.17 24.514 34.632 0.413 47.498 41.472 0.127 49.224 45.126 0.083
20 63.244 53.816 0.149 37.947 31.452 0.171 24.05 31.629 0.315 42.577 37.508 0.119 39.31 38.351 0.024
21 55.39 48.473 0.125 31.732 32.804 0.034 23.802 29.33 0.232 38.793 34.46 0.112 30.677 32477 0.059
22 43.07 38.821 0.099 25.028 22.954 0.083 20.914 24.556 0.174 26.971 26.261 0.026 27.121 26.657 0.017
23 31.186 28.374 0.09 20.14 18.346 0.089 18.203 20.089 0.104 19.084 19.963 0.046 21.076 20.49 0.028
24 26.393 25.116 0.048 18.361 17.881 0.026 15.329 17.503 0.142 18.057 18.112 0.003 18.844 18.455 0.021
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4.5. Comparison Study

In this section, a comparison study will be provided to present the forecasting effectiveness of
the proposed model. In detail, genetic algorithm (GA) will be applied to optimize weights of low and
high prices, and backward propagation neural network (BPNN), elman neural network (ENN) and
GRNN are selected as benchmarks. For the GA-based method, we use CM-GCMwSF-SR to present
it in Table 7, which shows the forecasting results of models in Cases 3-6. In addition, we provide
an experiment to show the forecasting effectiveness when electricity demand is considered as one of
features, which is represented as CM-PCMwSE-SR (with demand) in Table 7.

Table 7. Comparison with other algorithms in Cases 3—-6. SR: selection rule; BPNN: backward
propagation neural network; ENN: elman neural network; GRNN: generalized regression neural
network. MAE: mean absolute error; RMSE: root mean square error.

CM-PCMwSE-
Season  Criteria ~ CMPCMwSF- CM-GEMwWSE- "o (o oith PCMwSE  CM BPNN  ENN GRNN
SR SR
Demand)

MAPE 7.11% 7.01% 7.21% 751%  10.08%  2090%  21.75%  21.90%
Spring MAE 22568 21948 23761 25682 35268 62178 64994 6.3687
RMSE 3.119 3.098 3.202 39865 51268  7.8962  7.9463 82122
MAPE 8.03% 9.28% 8.01% 1121%  1558%  26.60%  27.81%  26.79%
Summer  MAE 3.932 48329 3917 61025 80256 148875 153582 152014
RMSE 5.8335 6.9726 5.8017 81564 101526 199902 200877  20.9055
MAPE 5.82% 7.20% 5.72% 1054%  825%  1630%  1653%  16.95%
Autumn  MAE 1.4583 1.9872 12918 28658 22139 42477 43638 44515
RMSE 1.9458 28977 1.3681 40213 29684 58511 61312 6.0429
MAPE 11.59% 12.29% 12.33% 1568%  12.86%  29.16%  3057%  29.21%
Winter MAE 2985 3.6298 3.7288 42681 30254 7.29 7.3474 7.5995
RMSE 3.9215 47892 44025 59812 41285 96061 100723 100547
MAPE 8.14% 8.95% 8.32% 11.24%  11.69%  2324%  24.16%  23.71%

Average  MAE 266 3.16 283 3.95 420 8.16 8.39 8.41

RMSE 3.70 4.44 3.69 5.54 5.59 10.84 11.06 11.30

In Table 7, it is obvious that the proposed model has better performance than benchmarks and the
following conclusions can be made:

(@) PSO is a better selection to optimize the weights of low and high electricity prices than GA
because CM-PCMwSEF-SR has better overall forecasting effectiveness than CM-GCMwSF-SR.

(b) PCMwSF and CM have ability to improve the forecasting accuracy.

(c) The electricity price of autumn can be predicted more precisely.

(d) Although some literature regard the electricity demand as features to predict electricity price,
adding the electricity demand data as a feature cannot help to improve forecasting effectiveness
of prices in this paper (forecasting results are similar in Table 7).

As a demonstration of (d), regarding electricity demand as a feature cannot improve the
forecasting effectiveness, which is different with some electricity price forecasting methods. The main
reasons are demonstrated as following:

(1) The proposed model mostly concentrates on reducing the volatility of electricity price for a higher
accuracy, which means the electricity demand is not important compared to the pre-processed
electricity price.

(2) Model performance under specific conditions should be analyzed and understood and
incremental improvements made based on knowledge gained. Moghram and Rahman review
five short-term load forecasting methods:

(i) multiple linear regression;

(ii) time series;
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(iii) general exponential smoothing;
(iv) state space and Kallman filter; and
(v) knowledge-based approach.

The forecasting results show that no one method was determined to be superior. The transfer
function approach was the second worst predictor over the winter months but was the best method
over the summer months. The authors conclude that because of its strong dependency on historical
data, the transfer function approach did not respond well to abrupt changes as did the knowledge
based approaches. The conclusion reached is that there is no one best approach, which means that it is
possible that regarding electricity demand as a feature cannot improve the forecasting effectiveness [51].

Thus, the proposed method combining PCMwSF method, CM method and SR is better than
traditional approaches according to the numerical calculating results. Concretely, the CM method is
helpful to reduce the volatility of the electricity price and, consequently, to improve the forecasting
effectiveness. For other techniques presented in this paper, PSO aims to obtain the best weights of
high and low electricity prices, and SOM and Fuzzy logic are effective tools to confirm three levels of
electricity prices (high, medium and low), and the purpose of SR is to select the best model for each
day based on the nature of RBFN.

5. Conclusions

Forecasting electricity is a key problem for generators and consumers in a deregulated electricity
market, and the difficulty of an accurate forecast is due to the high volatility of the electricity price.
The reduction of this volatility is the key to improving prediction accuracy. In this paper, based
on SOM, Fuzzy logic, PSO and the forecasting nature of the RBF network, the PCMwSF method,
CM method and SR were developed to reduce the volatility of the electric price and to improve the
accuracy of the forecast. The final model, CM-PCMwSEF-SR, successfully reduced the volatility of
the electricity price and was able to obtain a higher accuracy compared to other benchmarks. In the
numerical simulation of four seasons, the proposed model exhibited the best performance, where the
MAPEs are 7.11%, 8.03%, 5.82%, and 11.59% for each season (spring, summer, autumn and winter
respectively). The PCMwSF method and CM method were the best models (except when using the
SR approach) for two different seasons. The BP network, i.e., a classical neuron network method
for forecasting the electricity price, did not have a good performance compared to the other models
in these four seasons. The experimental results showed that reducing the volatility and effectively
selecting forecasting models not only improve the forecasting effectiveness of the electricity price but
also obtained a satisfactory forecasting accuracy.
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Abbreviations

RBEN Radial basis function network

PCMwSF Particle swarm optimization-core mapping with self-organizing-map and fuzzy set
CM Core mapping

SR Selection rule

MI Mutual information

CNN Composite neural network

SVM Support vector machine

ARMAX Auto-regressive moving average with external input

MS-GARCH Markov-switching generalized autoregressive conditional heteroskedasticity



Energies 2016, 9, 618

DCT Discrete cosine transforms

FENN Feed-forward neural network

CENN Cascade-forward neural network

GRNN Generalized regression neural network

PSO Particle swarm optimization

PCPF Panel cointegration and particle filter

WT Wavelet transform

ARIMA Autoregressive integrated moving average

LSSVM Least squares support vector machine

CLSSVM Chaotic least squares support vector machine

EGARCH Exponential generalized autoregressive conditional heteroskedastic
ARMA Autoregressive moving average

GARCH Generalized autoregressive conditional heteroskedasticity

ARMA-GARCH-M
ARFIMA

ARMA-GARCH-in-mean

Auto-regressive fractionally integrated moving average

ANN Artificial neural network

ELM Extreme learning machine

PIs Prediction intervals

RNN Recurrent neural network

PNN Probabilistic neural network
HNES Hybrid neuro-evolutionary system
PCA Principal component analysis

MLF Multi-layer feedforward

BPNN Backward propagation neural network
ENN Elman neural network

GA Genetic algorithm
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