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Abstract: In order to solve the influence of uncertain photovoltaic power (PV) on the stable
operation of microgrid (MG), demand response (DR) and battery energy storage system (BESS)
need to be introduced simultaneously into the operation optimal scheduling of PV-based microgrid
(PV-MG). Therefore, it is of great significance for commercial investment decisions of PV-MG to
consider the influence of DR on BESS optimal sizing. Under the peak-valley time-of-use (TOU)
price, this paper builds cross-time DR models based on price elasticity matrix. Furthermore, through
the introduction of DR and BESS into PV-MG scheduling optimization, the MG investment and
benefit model is proposed. Considering the constraint condition such as co-ordination of supply and
demand, electricity price elasticity and energy loss of storage system, the improved non-dominated
sorting genetic algorithm II (NSGA-II) is utilized to solve the multi-objective optimal allocation
model of the BESS with the target of maximum PV consumptive rate and annual net profits.
The optimization method was applied to a PV-MG in Guangdong. Through the regulation and
control effect of demand response and BESS on load distribution, the uncertainties PV power can be
suppressed so as to improve the PV system consumptive level, which is of great guiding significance
for BESS optimal sizing under this situation.

Keywords: time-of-use (TOU) price; multi-period demand response (DR); battery energy storage
system (BESS); photovoltaic consumptive rate; investment and benefit model; multi-objective
optimization; non-dominated sorting genetic algorithm II (NSGA-II) algorithm

1. Introduction

In recent years, the energy crisis and deteriorating living environment have promoted the
development of new energy resources. Compared with hydro, nuclear and wind power generation,
photovoltaic power (PV) generation is less restricted by geography, resources, manufacturing
materials and long-distance transmission. Thus, the PV industry has achieved rapid development.
International Energy Agency (IEA) and the European Joint Research Centre (JRC) predicted that the
global PV generation capacity would account for 2% of the total electricity power generation by 2020.
This proportion will be even more than 10% by 2030.

The output power of PV generation is intermittent and random, which causes the difficulties
and complexities of PV-based microgrid (PV-MG) [1]. As for the island PV-MG, particularly with
high penetration of PV, there is the problem of power supply reliability. For grid-connected PV-MG,
is the bulk power system fault will lead to off-network operation. Therefore, battery energy storage
system (BESS) is necessary to smooth and stabilize its output, meet the load demand, and improve the
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power quality. BESS has dual property of load and power resource. By virtue of flexible charge and
discharge characteristics, BESS has prospects in smoothing and stabilizing the output of PV system,
peak load shifting, operating reserve, improving power quality and scheduling flexibility of PV-MG.
Therefore, optimal sizing of BESS with reasonable volume can significantly improve the efficiency of
PV system and promote the local PV consumptive rate [2].

Currently, due to the high price of BESS devices, the optimal sizing of BESS capacity should not
be too large, which could significantly increase investment cost. However, excessively small energy
optimal sizing cannot guarantee the stable operation of PV-MG and promote PV power consumption.
Therefore, the reasonable optimal sizing of BESS system in PV-MG has become one of the focus
researches of many scholars. At present, research of BESS capacity optimization is mainly focused on:
(1) BESS optimal sizing method under two scenarios of single and hybrid BESS systems [3,4]; (2) BESS
optimal sizing principle under the off-grid and gird-connected operation of MG [5,6]; (3) BESS
optimization analysis methods, such as the difference supplement method, fluctuation smoothing
analysis method [7,8]; (4) for particular types of PV-MG, such as industrial and commercial MG,
quantitative analysis is carried out on the economic benefits of BESS system optimal sizing [9,10].
[10] focused on the optimization of the capacities of components in the PV-based BSS (battery switch
stations) with consideration of battery swapping requirement and maximally utilizing PV energy.

DR refers to the electricity consumers’ response on power price signal or incentive mechanism to
change the market participation behavior of normal power consumption mode, which is an important
means in optimal operation of PV-MG. Research of Pacific Northwest National Laboratory indicated
that, under the condition of the fluctuant electricity price, users would be willing to change their
consumption behaviors and adjust the power consumption of controllable equipment. Demand
response technology can be used to optimize the operation of MG [11,12], frequency and connection
line power [13,14], as well as support emergency fault [15,16]. DR can significantly improve the
economy, reliability and flexibility of MG system [17]. With the improvement of the electric power
market and the widespread application of the communication, the load optimization of the demand
response has become the important factor that can not be ignored in the MG’s planning and operation.
Therefore, it is needed to consider the influence of the demand response when the energy storage
optimal sizing is carried out.

In the BESS optimal configuration, in order to clarify the benefits and advantages of the
proposed model, the features are compared to several related papers [18–22], in terms of optimization
objectives, constraints, solving algorithm, connected or disconnected to grid, whether the demand
response factors are considered. The comparison result is shown in Table 1 below. With respect
to the optimization objectives, most contrastive papers focus on one specific function of BESS, such
as compensate for power fluctuations, while this paper proposes multi-objectives optimal model of
maximum PV consumptive rate and annual net profits. As the basic data and scenarios in these
papers are different, their simulation constraints and solving algorithms are not comparable. In
addition, the proposed model introduces DR and BESS simultaneously into the operation optimal
scheduling of grid-connected PV-MG, and has a relatively superior guiding significance for the
commercial investment of BESS in PV-MG.

There are mainly two kinds of methods to analyze DR of users: one is fitting DR curve through
historical data [23,24]; the other is by obtaining elastic matrix to analyze the response of users to the
price change [25–27]. Since the latter is more suitable for quantitative analysis, it is widely used in the
analysis of DR. [25] described how the consumers behavior can be modeled using a matrix of self and
cross elasticity, and how elasticity can be taken into consideration when scheduling generation and
setting the price of electricity in a pool based electricity market. [26] introduced the impact of price
elasticity matrix of demand side on power purchase decision-making under time-of-use (TOU) price
into the optimization of power supply company power purchase from weekly market. However,
the elasticity coefficients in these papers are artificially given without calculation through reasonable
method or model. [27] established multiple regression model of electricity consumption and price
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based on the electricity market statistics, and analyzes the price elasticity of electricity demand by
the difference between SD and control group LADWP. However, it only considers self-elasticity, not
cross-elasticity. Given the BESS configuration is made at the planning stage of PV-MG, so it demands
less on real-time performance and TOU is the most principle DR project implemented. Thus, this
paper explores the DR’s influence on BESS configuration under TOU price scenario.

Table 1. Comparison with several related papers.

Properties [18] [19] [20] [21] [22] This paper
Optimization
objectives

Compensate
for power
fluctuations

Total cost of
BESS

Economic
benefits of
microgrid
(MG), user
satisfaction

Operation
cost
minimization
of MG

Power
compensation
to loads

Maximum PV
consumptive
rate and net
profits of MG

Constraints BESS
physical
properties,
operational
boundary

Frequency
control
with load
shedding
scheme

BESS
constraints,
energy
permeability,
Power
transmission

Power
capacity of
DG, BESS
operation,load
satisfaction

BESS
locations,
frequency
and voltage
regulation

BESS
constraint,
operation
boundary,
users expense

Solving
algorithm

Guideline
and current
control
algorithm

Particle
swarm
optimization

Combinatorial
optimization
combining
with PSO

Grey wolf
optimization

Artificial
neural
network
(ANN)

Non-dominated
sorting
genetic
algorithm
II(NSGA-II)

Connected
to grid

Yes No Yes Yes Yes Yes

Demand
response

No Yes Yes No No Yes

Based on the above analysis, this paper establishes multi-period DR model based on price
elasticity matrix under TOU price and introduces DR and BESS system operation into PV-MG
scheduling optimization to analyze the impact of DR on BESS optimal sizing, which is of
significant effect on commercial investment decisions of PV-MG. The contribution mainly includes
following aspects.

(1) The multi-period DR model based on price elasticity matrix under TOU price is established,
which can reflect the impact of TOU price on users’ electricity consumption.

(2) The DR and BESS system operation are included into PV-MG scheduling optimization to build
the MG investment profit model, and the PV consumptive rate and annual net profits are taken
as greatest objectives.

(3) Considering the constraint conditions such as power supply and demand balance, side electricity
price elasticity, loss of BESS systems, NSGA-II algorithm is utilized to solve the DR-based BESS
capacity optimize optimal sizing model in PV-MG.

2. System Architecture of PV-Based Microgrid (PV-MG)

The System Architecture of PV-MG is shown as Figure 1. The demand side response resources in
PV-MG mainly include four categories of PV resources, BESS resources, load resources and electricity
price resources [28,29]. The PV-MG is connected to bulk power system at the point of common
coupling (PCC), the electricity power generated in PV-MG is preferentially supplied to meet the local
loads, and exchange electricity with the bulk power system if in need.
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Figure 1. Typical structure of PV-based microgrid (PV-MG).

(1) PV resource: PV power generation is considered as the renewable energy generation resources
most suitable to popularized and applied in the user side [30]. PV system is composed of
PV array and PV DC/AC inverters. According to the sunshine situation, PV system adopts
maximum power point tracking (MPPT) to improve the solar efficiency as much as possible [31].

(2) BESS resource: BESS in MG generally is mostly composed of lithium ion battery or lead acid
battery system equipped with appropriate bidirectional DC/AC inverters. Its functions in
PV-MG can be divided into two categories: one is power quality (PQ) mode, which cites out
power adjustment in short time scale to meet the power quality requirements; the other is power
shaving (PS) mode, which could meet the power output requirements in hour time scale [32].
The economic benefits considered in this paper mainly include PS mode of BESS, and the power
adjustment of power adjustment in hour time scale.

(3) Load resource: Load species is characterized by diversity. It is mainly divided into residential,
commercial and industrial loads. Residential loads mainly include heating, ventilation and air
conditioning (HVAC), refrigerator, water heater as well as other household appliances [33].
Commercial loads mainly include lighting, HVAC, office computers and other types of
commercial appliances [34]. Industrial loads are dominated by long-term continuous loads
concerning production process, such as machinery, electrolysis, and electric heating.

(4) Electricity price resource: Electricity price generally includes TOU price, real time price, critical
peak price, etc. This paper studies the impact of DR on BESS optimal sizing under TOU
price [35].

During the operation of PV-MG, the four categories of demand side resources combine closely
with each other. Therefore, the BESS capacity optimal sizing should not only consider the BESS and
PV-MG operation strategy, the impact of electricity price and loads DR cannot be ignored, which can
improve the actual operation adaptability of BESS optimal sizing.

3. Demand Response Model

DR projects include electricity price mechanism and compensation incentive mechanism, and
both means change electricity consumption by price change or economic compensation. As a special
commodity, the price change of electricity will affect consumption behaviour. When users participate
in market electricity price response, the demand curve will be left oblique and bending, as shown in
Figure 2.
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Figure 2. Impact of demand response (DR) to market price.

[36] pointed out that, based on the balance of commodity supply and demand elasticity,
commodity price and deal quantity (correspond to electricity price and electricity consumption
separately in this paper) present linear relation near the electric power market equilibrium point.
Its expression is

q = −a · p + b (1)

Based on the equilibrium relationship between commodity supply and elastic demand as well
as the price elasticity matrix of electricity price in multi time period, the users’ DR behaviors can be
more accurately and comprehensively described under TOU price. Electricity price elasticity refers
to the function relationship between electricity consumption change rate and electricity price change
rate. The actual function expression of the typical demand curve usually needs to be considered in
different factors for regression analysis. In order to simplify this complex process, it is treated as a
linear function.

In practical, users will not only consider the electricity prices at current and other moments.
Self-elasticity coefficient is utilized to express the impact of current moment electricity price change
rate on current moment electricity consumption, while cross-elasticity coefficient means the impact
that on the other moment electricity consumption. The formula for the relationship between
the change rates the electricity quantity and electricity prices expressed in elasticity coefficient is
as follows:

εii =
∆qi/qi
∆pi/pi

(2)

εij =
∆qi/qi
∆pj/pj

(3)

For time periods 1 ∼ n, the elastic matrix can be constructed as:
∆q1/q1

∆q2/q2

. . .
∆qn/qn

 =


ε11 ε12 . . . ε1n
ε21 ε22 . . . ε2n
. . . . . . . . . . . .
εn1 εn2 . . . εnn




∆p1/p1

∆p2/p2

. . .
∆pn/pn

 (4)
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This paper takes the assumption in [37] that the elastic matrix is symmetrical to the y diagonal,
which means electricity price has the same effect on electricity consumption between two time
periods with the same distance.

εij = ε ji (5)

Theoretically, the price tariff can be divided into single pricing, TOU pricing, real time pricing,
critical peak pricing and so on, which can be implemented in the PV-MG and have influence on
the BESS optimal sizing considering the demand response. Real time pricing is ideal instantaneous
dynamic prices in space, which requires almost instantaneous match of price and cost in power grid,
and users can’t timely and effectively arrange their loads in the short term [38]. Thus, quasi real time
pricing is generally implemented, and can effectively mobilize the users’ DR to real time pricing.
Quasi real time pricing means that, the time interval division and price scheme of 24 h in D day is
set based on data mastered in D− 1 days, put on execution at 0:00 in D, thus users can arrange their
consumptions more effectively. Then, the prices corresponding to loads in each time point is:

pt(t) =
P′L(t)
Pav

· pav = α(t) · pav

Pav =
1
24

∫ 24

0
PL(t)dt

(6)

where pt(t) is the price at time t with time intervals of 15 min, P′L(t) and PL(t) is the load at time t
with time intervals of 15 min and one hour respectively, pav is the single price, Pav is the daily average
load in D− 1 day, α(t) is the floating rate of quasi real time pricing at time t.

One day is divided into 24 time intervals, and then the elastic matrix can be constructed as:
∆q1/q1

∆q2/q2

. . .
∆q24/q24

 =


ε11 ε12 . . . ε124

ε21 ε22 . . . ε224

. . . . . . . . . . . .
ε241 ε242 . . . ε2424




∆p1/p1

∆p2/p2

. . .
∆p24/p24

 (7)

∆qi = q′i − qi (8)

where q′i and qi is the electricity consumption before and after DR of quasi real time pricing.
Substitute Equation (8) into Equation (7), then:

q′1
q′2
. . .
q′24

 =


q1

q2

. . .
q24




ε11 ε12 . . . ε124

ε21 ε22 . . . ε224

. . . . . . . . . . . .
ε241 ε242 . . . ε2424




∆p1/p1

∆p2/p2

. . .
∆p24/p24

+


q1

q2

. . .
q24

 (9)

Based on the definition of quasi real time pricing, there is:{
pi = pav

∆pi = (α− 1) pav
(10)

Substitute Equation (10) into Equation (9), then:
q′1
q′2
. . .
q′24

 =


q1

q2

. . .
q24




ε11 ε12 . . . ε124

ε21 ε22 . . . ε224

. . . . . . . . . . . . .
ε241 ε242 . . . ε2424




α1 − 1
α2 − 1

. . .
α24 − 1

+


q1

q2

. . .
q24

 (11)
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The elastic coefficient in the elastic matrix can be obtained by using the relevant historical
electricity consumption and the historical electricity price coefficient of the power supply department,
or the data obtained from the user survey. Then, we can obtain the load curve before and after DR
with the implement of quasi real time pricing, and the influence of quasi real time on the BESS optimal
configuration can be analyzed through the multi-objectives model proposed in this paper.

Given the BESS configuration is made at the planning stage of PV-MG, so it demands less on
real-time performance and TOU is the most principle DR project implemented. Thus, this paper
explores the DR’s influence on BESS configuration under TOU price scenario. Then, the following
formula can be constructed: ∆qp/qp

∆q f /q f
∆qv/qv

 =

εpp εp f εpv

ε f p ε f f ε f v
εvp εv f εvv


∆pp/p0

∆p f /p0

∆pv/p0

 (12)

Set the flat price as reference value, and simplify the parameters in Equation (6). ∆pp f represents
the difference between peak and flat price instead of ∆pp, ∆pv f represents the difference between
valley and flat price instead of ∆pv, and set ∆p f = 0 for simplification. Then, it can be constructed as:∆qp/qp

∆q f /q f
∆qv/qv

 =

εpp εp f εpv

ε f p ε f f ε f v
εv f εvp εvv


∆pp f /p0

0
∆pv f /p0

 (13)

In order to simplify the problem, this paper assumes that electricity consumption only shits
before and after TOU power price, and the total electric quantity will stay constant. The reduced
electricity consumption in peak price period can be transferred to flat and valley price period:

∆qp

qp
= εpp ·

∆pp f

p0
+ εpv ·

∆pv f

p0
= −

(
−εpp − εpv

)
·

∆pp f

p0
− εpv ·

∆ppv

p0
(14)

Equation (13) can be expressed as:

∆qp = −Kp f ·
∆pp f

p0
· qp − Kpv ·

∆ppv

p0
· qp (15)

where Kp f = −εpp − εpv, Kpv = εpv = εvp, Kp f ·
∆pp f

p0
· qp is the electricity consumption transferred

from peak to flat period, Kpv ·
∆ppv

p0
· qp is the electricity consumption transferred from peak to

valley period.
Simultaneously, the electricity consumption increased in flat price period increased is from the

peak period, and part of the load is transferred to the valley price period.

∆q f = Kp f ·
∆pp f

p0
· qp − K f v ·

∆p f v

p0
· q f (16)

∆qv = Kpv ·
∆ppv

p0
· qv + K f v ·

∆p f v

p0
· qv (17)

where K f v =
(
−εvp − εvv

)
.

According to consumer psychology, the users have minimum and maximum value of electricity
price, namely the lower and upper limit of threshold. When the price is lower than the minimum
threshold, users won’t respond to price, and when price is higher than the maximum threshold, they
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will also not further respond to the upper price. Based on this, the transfer rate can be modified
as follow:

λpv =


0 0 ≤ ∆p ≤ ∆pmin

Kpv (∆p− ∆pmin) ∆pmin ≤ ∆p ≤ ∆pmax

λpv max ∆pmax ≤ ∆p

(18)

λpv =


0 0 ≤ ∆p ≤ ∆pmin

Kp f (∆p− ∆pmin) ∆pmin ≤ ∆p ≤ ∆pmax

λp f max ∆pmax ≤ ∆p

(19)

λ f v =


0 0 ≤ ∆p ≤ ∆pmin

K f v (∆p− ∆pmin) ∆pmin ≤ ∆p ≤ ∆pmax

λ f v max ∆pmax ≤ ∆p

(20)

where λpv = Kpv ·
∆ppv

p0
, λ f v = K f v ·

∆p f v
p0

, λp f = Kp f ·
∆pp f

p0
, p0 is taken as the reference value 1.

Thus the loads in peak, valley and flat price period after the application of TOU power price
strategy are:

Lp1,t = Lp0,t − λpv L̄p0 − λp f L̄p0 (21)

Lv1,t = Lv0,t + λpv L̄p0 ·
np

nv
+ λ f v L̄ f 0 ·

n f

nv
(22)

L f 1,t = L f 0,t + λpv L̄p0 ·
np

n f
− λ f v L̄ f 0 (23)

4. Joint Operation of PV-MG

4.1. Operation Strategy of PV-MG

DR and BESS system can alter the load distribution, and further affect the optimal operation of
PV-MG’s scheduling. The operation of PV-MG is shown in Figure 3. The BESS capacity which is
configured for meeting expected stable running time of island PV-MG is called rigid capacity QRC,
and when the remaining BESS capacity equals to the rigid capacity the state of charge (SOC) of storage
is set at M, and the upper and lower limits of SOC are SOCmax and SOCmin separately. The BESS
capacity which is configured for promoting PV consumptive rate of PV-MG is called flexible capacity
QFC. Then, the total BESS capacity QB is:

QB = QRC + QRC (24)

(1) When PV output is greater than the load, Case 1: during the peak period of electricity price,
PV preferentially supply electricity for local loads, and the redundant PV is supplied for BESS
battery charging; Case 2: during the peak period of electricity price and BESS has been fully
charged, the redundant PV will be fed in distribution power network. Case 3: during the valley
period of electricity price and the SOC of BESS hasn’t reached the rated value, the redundant
PV and major network jointly supply power to charge BESS; Case 4: during the valley period of
electricity price and BESS has been fully charged, the redundant PV is feed in distribution power
network. Case 5: during the flat period of electricity price, the BESS doesn’t charge or discharge,
and redundant PV is feed in distribution power network.

(2) When PV output is less than local loads Case 6: during the peak period of electricity price, SOC
of BESS is greater than value M, and PV, BESS as well as the major grid supply electricity for
local loads together; Case 7: in case 6, when SOC of BESS is less than the value M, PV and the
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major grid jointly supply electricity for local loads. Case 8: during the valley period of electricity
price, SOC of BESS hasn’t reached the rated value, PV as well as the distribution network supply
power for local loads, and the major network supplies power to charge BESS; Case 9: during the
valley period of electricity price, when BESS has been fully charged, PV and the major network
supply power for local loads; Case 10: during the flat period of electricity price, the BESS doesn’t
charge or discharge, and PV as well as the major network supply power for local loads.

Peak price period

PPV(t)=PL(t)+Pc(t)

N

END

N

Read the generalized demand side resources 

date of PV-MG:PPV(t),PL(t),e(t),SOC(t)

SOC(t)≤SOCmax

Y

Y

Valley price periodN

SOC(t)≤SOCmax

Y

Y

PPV(t)+Pi(t)=PL(t)+Pc(t)

PPV(t)=PL(t)+Pe(t)

Pc(t)=Pdc(t)=0

N

PPV(t)=PL(t)+Pe(t)

Pc(t)=Pdc(t)=0

N

PPV(t)=PL(t)+Pe(t)

Pc(t)=Pdc(t)=0

Peak price period

PPV(t)+Pdc(t)=PL(t)

NSOC(t) SOCmin

Y

Y

Valley price periodN

SOC(t)≤SOCmax

Y

Y

PPV(t)+Pi(t)=PL(t)+Pc(t)

PPV(t)+Pi(t)=PL(t)

Pc(t)=Pdc(t)=0

N

PPV(t)+Pi(t)=PL(t)

Pc(t)=Pdc(t)=0

N

PPV(t)=PL(t)+Pe(t)

Pc(t)=Pdc(t)=0

PL(t)≤ PPV(t)

t=t+1t≤ T

t=1

Y

N

Figure 3. The flow chart of energy exchange strategy in island micro-grid.

4.2. Analysis of System Power Balance

Complex control strategies and discrete operation state of BESS make it more complex for
the implementation of optimization strategy in PV-MG. Thus, this paper adopts simple charge
and discharge strategy of BESS to promote the implement and expansion of optimization strategy.
Through comprehensive analysis on the characteristics of PV output, load and BESS as well as TOU
price, the power balance situation of PV-MG during each moment can be described as:

(1) If SOC < SOCmax, and the distribution network supply electricity power to charge the BESS,
that is,

Pgrid(t) = PL(t) + Pc(t) (25)

If SOC > SOCmax, the bulk power system only supplies electricity power to loads, that is

Pgrid(t) = PL(t) (26)
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(2) During the peak price period in the morning, the total power of PV generation is less than the
demand of load power. If BESS is featured with SOC < SOCmin, the electricity power gaps is
met by bulk power system, namely

Pgrid(t) = PL(t)− PPV(t)ηPV (27)

When BESS is featured with SOC > SOCmin, the electricity power gap is met by BESS. In view
of the energy storage discharge efficiency, discharge power of energy storage is:

Pdc(t) = [PL(t)− PPV(t)ηPV ]/ηdc (28)

Besides, the limit of depth of discharge (DOD) should be considered, and generally SOCmin is
set as 20% of the battery capacity, then:

ES(t + 1) = ES(t)− PESS(t)ηdc∆t (29)

When DOD exceeds the limit, the discharge power should be corrected as

∆PESS(t) = [ES(t)− 0.2EN ]/ηdc∆t− Pdc(t) (30)

Then, the discharge power of BESS after correction is:

P′dc(t) = PESS(t) + ∆PESS(t) (31)

The existing power gaps exist will be met by power grid, and this electricity power is equal to
the discharge power correction value, namely:

Pgrid(t) = −∆PESS(t) (32)

(3) When the PV output is greater than local loads,

PPV(t) > PL(t) (33)

BESS is featured with SOC > SOCmax, and the excess part of PV generation is supplied for bulk
power system, that is

Pgrid(t) = − (PPV(t)− PL(t)− Pc(t)) (34)

On the contrary, if SOC < SOCmax, the redundant PV generation is supplied to charge BESS,
that is:

PPV(t) = PL(t) + Pc(t) (35)

In this occasion, the charging power should be subjected to SOC of BESS, so whether the power
between the time period of t to t + 1 will excess the SOC limit should be calculated, and the
charging limit of SOC is generally 0.9. Based on the battery capacity value Es(t) at time, it can
be obtained that the battery capacity at time t + 1 should meet:

ES(t + 1) = ES(t) + ηc

∫ t+1

t
Pc(t)dt ≤ 0.9EN (36)

If the requirement of Equation (29) is met, the charging power is:

Pc(t) = PESS(t) (37)



Energies 2016, 9, 591 11 of 24

If not, the charging power should be corrected as

∆PESS(t) = [EN − ES(t)]/ηc∆t− Pc(t) (38)

Then, the discharge power of BESS after correction is:

P′c(t) = Pc(t) + ∆PESS(t) (39)

The redundant PV power can only flow into power grid, and it’s the charging power correction
value of BESS, namely:

Pgrid(t) = −∆PESS(t) (40)

Pe(t) =

{
0 Pgrid ≥ 0

Pgrid(t) Pgrid(t) < 0
(41)

Pi(t) =

{
Pgrid(t) Pgrid ≥ 0

0 Pgrid(t) < 0
(42)

According to the analysis above, the battery storage system charge and discharge twice in one
typical day under TOU price. Due to the progress of charging and discharging cycle, the available
battery storage capacity gradually reduces. The battery storage capacity retention ratio is actually the
ratio of practical capacity to rated capacity. In addition, the demarcation point of availability of BESS
is usually taken as 70%∼80%. If the BESS is lithium battery, then its serve life is 3000 times. Based
on 260 typical similar days in one year, the service life of PV-MG is 15 years. Thus the BESS system
needs once replacement within operation period.

5. Investment and Benefit Model of PV-MG

5.1. Annual Investment of PV-MG

The annual investment of PV-MG includes the PV system, BESS, BESS bidirectional converter
module and operation maintenance cost. The PV system cost is the total cost of PV panel and its PV
inverter. The maintenance contains the reasonable expenditure of maintenance, management, labor
and related upgrading and transformation [39].

CI = CPV + CB + CC (43)

CPV = QPV ·
(

IPV ·
r0(1 + r0)

m

(1 + r0)m − 1

)
+ u(A) (44)

CB = QB ·
(

IB · RE
r0(1 + r0)

m

(1 + r0)m − 1

)
+ u(B) (45)

CC = PI ·
(

II ·
r0(1 + r0)

m

(1 + r0)m − 1

)
+ u(C) (46)

where u(A), u(B), u(C) and are the operation and maintenance cost of PV system, BESS module, and
BESS inverter module separately, which are calculated as the proportion of 0.3% of construction costs;
r0 is discount rate of 0.04 in this paper.

5.2. Annual Income of PV-MG

The income of PV-MG includes three parts. The first one is earnings for power selling, which
comes from the electricity supplied to local loads. The second one is network power price, which
comes from selling extra electricity of MG to distribution network, and the last is subsidy income,
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which is supplied by nation or local government to PV system to promote its development. Then the
daily income of PV-based income CO is:

CO =
T

∑
t=1

(
eL(t)PL(t) + eePe(t)− ei(t)Pi(t) + epvPpv(t)

)
∆t (47)

This paper assumes that the price of user price is equal to electricity price of MG purchased from
distribution network, namely ed = ei.

5.3. Net Profits and PV Consumptive Rate

Annual net profits of PV-MG Cnet is

Cnet = CO× R− CI (48)

where R is the number of similar days. Considering the weather effect, the net profits of 260 similar
days can equal to that of one year in this paper.

Photovoltaic consumptive rate SPV is expressed as:

SPV =
ESC + EFC

∑T
t=1 PPV(t)

× 100% (49)

ESC =
T

∑
i=1

min
{

Ppv(t), PL(t)
}

(50)

6. Multi-Objective Optimization Optimal Sizing Model and Solution

6.1. Objective Function

In the demand response based multi-objective capacity optimal sizing model of battery storage
in PV-MG, the annual net profits and photovoltaic consumptive rate are selected as the dual
optimization objectives-, shown as:

max Y = max [Cnet, SPV ]

s.t. h(x) = 0

g(x) ≤ 0

umin ≤ u ≤ umax

(51)

where Y is the objective function vector, x is decision variable, h, g is the equality and inequality
constraints separately. u is the decision variable dimension with its upper and lower limit of umax

and umin separately. In this paper, the decision variable is the capacity of BESS.

6.2. Constraint Conditions

(1) Reliability constraints of PV-MG

In order to ensure the stable operation time in off-grid operation of PV-MG:

QB ≥ QRC. min (52)

(2) BESS performance constraints

BESS performance constraints mainly include charge and discharge power constraint, charge
and discharge status constraint, BESS capacity constraint and so on. Combining with [40], the
charge and discharge model expression of BESS can be described as:
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

Es (t + ∆t) = Es(t) + εcPc(t)∆t · ηc − εdcPdc(t)∆t/ηdc

SOC (t + ∆t) = [Es(t) + ∆Es(t)]/EN

SOCmin ≤ SOC ≤ SOCmax
T

∑
t=1

ηcPc∆t =
T

∑
t=1

Pdc
ηdc

∆t

DOD ≤ 0.8

ηc + ηdc = 1, ηc, ηdc ∈ {0, 1}

(53)

where εc and εdc are binary numbers which means the BESS charge or discharge, and one of
εc and εdc must be 1. Number 1 of εc means the charge status of BESS. DOD is the depth
of discharge of BESS. ∆Es(t) is the battery capacity value difference between the current time
and the previous time.This paper makes assumption that BESS system completes a charge and
discharge cycle in one typical day T, which means the SOC of BESS at the end of the day should
be the same as the beginning.

(3) Users’ purchasing electricity cost constraint

Users’ purchasing electricity cost constraint means that, the purchasing electricity cost after
multi-period demand response, otherwise, users won’t respond to TOU price.

EI ≤ e0 ∑
t∈T

PL(t) (54)

EI = ∑
t∈Tf

e f PL(t) + ∑
t∈Tp

epPL(t) + ∑
t∈Tg

egPL(t) (55)

where EI is the purchasing electricity cost under peak-valley TOU price; e0, e f , ep, eg are single
price, peak period price, flat period price and valley period price separately; Tf , Tp, Tg are peak
period, flat period and valley period respectively.

6.3. Model Solution

Comprehensively considering factors, such as PV output, BESS charge and discharge
characteristic, loads and TOU price, the upper and lower limit of decision variables can be decided.
Besides, based on the multi-joint scheduling operation strategy of PV-MG, this paper plans to
adopt the NSGA-II algorithm to solve the demand response based multi-objective capacity optimal
sizing model of BESS. NSGA-II algorithm is proposed by Deb et al. based on the improvement
of NSGA algorithm [41,42]. It is one of the multi-objective evolutionary algorithms with high
accreditation degree.

The process of the BESS optimal sizing by NSGA-II is shown in Figure 4. The left side is
the NSGA-II algorithm process, and the right side is the double objectives of net profits and PV
consumptive rate, whose results iterate in the NSGA-II algorithm process.

The flow chart in Figure 4 can be described as:

(1) Code: Determine the map from phenotype to genotype.
(2) Generate the initial population: Evolutionary counter is set to zero, and individuals are

randomly generated. Each string structure represents one individual, and all the individuals
make for one population.

(3) Determine quantitative method for the individual fitness: The conversion rule from the value of
objective function to the degree of fitness, which indicates the advantages and disadvantages of
the individual.

(4) Stratification: Non-dominant hierarchical approach is used to make sure that, the superior
individuals have greater chance of inheritance to the next generation, and the fitness sharing
strategy to maintain population diversity. The specific features are:
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(i) As for the rapid non-dominated sorting method based on classification, the computational
complexity is O(mN2) (Where m is the number of objective functions, and N is the number
of individuals in population )

(ii) The concept of crowding distance is proposed to indicate fitness value of different elements
after fast non-dominated sorting, so that the individuals in current Pareto front can be
extended throughout the Pareto frontier as evenly as possible, and the time complexity
of crowding distance is O(m(2N)log(2N));

(iii) Elitist mechanism is introduced.Offspring individuals compete with their parent
individuals to generate the next generation population, which can improve the overall level
of population evolution.

(5) Selection, crossover, variation: Retain individuals with high degree of adaptability according
to their fitness. Crossover operator is applied to the group, and individuals are selected by
crossover and mutation probability to generate new individuals.

(6) Calculate objective functions, and the best individuals are selected to carry on the next step.

Simulate the power exchange in 

PV-MG based on multi-joint 

scheduling optimization model

Input NSGA-II initial parameters, 

BESS capacity optimal parameters

Randomly generate initial population 

P0={NB,NC}

Calculate individuals objective 

values in current population

Fast non-dominate sort populations 

based on objective values

Calculate  crowding distance between 

every individuals in population

Select individuals in the non-

dominated solution set of population 

based on proportion 

Get the child population through 

cross over and mutation operationQn

Combine population Nn=Pn Qn

Calculate the objective values of 

individuals in the population Nn

Fast non-dominate sort populations 

based on objective values

Select the front Np individuals to 

produce parent population Pn+1

n<100

End

n=n+1

n=1

Input the generalized demand 

resources parameters

Simulate the power exchange in 

PV-MG based on multi-joint -

scheduling optimization model

Input the generalized demand 

resources parameters

End

Calculate the annual benefits and 

net benefits of PV-MG

?i      T≥

Solve  load curve after DR based 

on the multi-period DR model

i=1

i=i+1

Calculate the electricity price 

elasticity matrix under TOU price

Calculate the annual cost of PV , 

BESS and converters in PV-MG

Calculate the benefits and 

photovoltaic consumptive rate in 

one typical day 

N

Y

Y

N

Figure 4. The process of battery energy storage system (BESS) optimal sizing by non-dominated
sorting genetic algorithm II (NSGA-II).
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The multi-objective optimization results of NSGA-II algorithm are one set of solutions, which is
called non-dominated solution or Pareto optimal solution. Introduction of the non-dominated sorting
strategy, elitist keep technology, sun-crowding comparison operators and other technologies makes
the scope and efficiency of the NSGA-II algorithm expanded and improved, and the distribution of
non-dominated solutions more uniform and diverse.

7. Case Study

7.1. Basic Data

This paper chooses a PV-MG in Guangdong province of China as the object of study, and its
basic electrical topology is shown in Figure 5. The electricity price, PV output and loads in the
model are all taken from actual users. Therefore, their distribution within the optimization target time
domain is determined. Capacity and load of PV system for each power user are shown in Table 2.
The component parameters in PV-MG are shown in Table 3. In addition, the PV output, original loads
and net loads of different users are shown in Figures 6–8 respectively.
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Figure 5. Basic electrical topology of PV-MG.

Table 2. The profiles of users in the microgrid (MG).

User PV Capacity (kW) Peak Load (kW)

User-1 550 505.22
User-2 500 431.87
User-3 400 349.44
User-4 400 357.54
User-5 250 213.76
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Table 3. Parameters of the components in the MG

System Parameters Value

PV module price/(×103$/kW) 1.27
PV converter efficiency 0.97
Battery storage price/(×103$/kWh) 0.74
Battery storage efficiency 0.96
Battery inverter price/(×103$/kW) 0.9
Battery inverter efficiency 0.96
Battery storage lifetime(times) 3000
PV array lifetime(year) 20
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Figure 6. Distributed users’ photovoltaic power (PV) power curves in a typical day.
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Figure 7. Distributed users’ original power curves.
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Figure 8. Users’ power curves of net load.

Total loads, PV output and net power curves are shown in Figure 9. As can be seen, this PV-MG
is a typical commercial/office MG, the loads of which presents the characteristics of peak in day and
valley at night. The peak value of both total loads and net loads is 1573 kW at 21:00. Load rate of
total loads is 0.75, while that of net loads is 0.33, indicating that the PV system makes load rate less
desirable. The reason is that the maximum PV output usually occurs at noon, rather than the time of
peak loads. Thus, the maximum loads change slightly with PV, while the average loads are reduced
due to the cancellation of PV, and the load rate becomes smaller.
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Figure 9. Users’ total power curves and PV output.

7.2. DR Results Analysis

In this paper, the distributed PV feed-in purchase price is 0.057 $/kWh, and PV subsidy price is
0.063 $/kWh. The prices of electricity bought from power grid and sold to users are measured under
the same TOU price, as shown in Table 4. The single electricity price before the implementation of
TOU price is 0.075 $/kWh.
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Table 4. time-of-use (TOU) power price.

Type Periods Electricity Price ($/kWh)

Peak price 10:00–15:00 17:00–22:00 0.12
Flat price 07:00–10:00 15:00–17:00 22:00–24:00 0.09
Valley price 00:00–07:00 0.045

In real market, the supply curve must be obtained through detailed market research and
statistical analysis. Based on the demand elasticity coefficient in [43], the electricity price elasticity
curve parameters are shown in Table 5.

Table 5. Parameters of electricity price relation curve.

Parameters Peak Period Flat Period Valley Period

(ai, bi) (6.5, 65) (5.0, 60) (4.0, 58)

Then, the electricity price elasticity matrix is:

E =

−0.0870 0.0502 0.0201
0.0912 −0.0526 0.0211
0.0915 0.0528 −0.0211


As shown in Figure 10, peak-valley difference of loads after DR has been reduced, and the load

curve has become smoother. As shown in Table 6, the peak-valley difference reduces from 815.4 kW
to 649.3 kW after DR, which achieves the effect of peak load shifting. PV consumptive rate reduces
from 46.39% to 45.25% after DR. It can be explained that the maximum PV output occurs at noon.
However, the loads at daily peak period have been reduced after DR, and the instant PV electricity
consumption is decreased.
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Figure 10. Daily load curve of before and after DR.

Table 6. Load characters of before and after demand response (DR).

Type Peak value/kW Valley value/kW Peak-Valley Difference/kW PV Consumptive Rate

Before DR 1573 757.9 815.1 46.39%
After DR 1492 842.7 649.3 45.25%
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7.3. BESS Optimal Sizing Result Analysis

7.3.1. Rigid BESS Capacity Optimal Sizing

(1) Rigid battery storage capacity optimal sizing

This paper considers the extreme operation situation of PV-MG for the rigid battery storage
capacity optimal sizing, which means that, the rigid battery storage should guarantee the
important loads operating for 0.5 h without PV output and distribution network electricity
support. The important loads in this study case account for 20% of total loads, so the peak
values of important loads are 314.6 kW and 298.4 kW respectively before and after DR. Thus,
the rigid battery storage capacity should be at least 157.3 kWh and 149.2 kWh respectively. The
energy conversion efficiency of BESS is 0.92, and DOD of BESS should be more than 0.8. Thus
the actual rigid battery storage capacity should be separately at least 213.7 kWh and 202.7 kWh
before and after DR.

(2) Storage converter optimal sizing

In order to meet the requirements of shock loads in PV-MG, which is 389 kW in this case, the
short-term overload coefficient of bidirectional inverter is 1.2, and the rated power of selected
storage bidirectional converter should be at least 324 kW.

7.3.2. Flexible BESS Capacity Optimal Sizing

NSGA-II algorithm is utilized to solve the optimization model. In this paper, population quantity
is set as 50, the maximum iterations as 100 times, crossing-over rate as 0.9 and aberration rate as 0.1.
In the DR based multi-objective BESS capacity optimal sizing model, the multi-objectives are annual
net profits and PV consumptive rate of PV-MG, and the decision variable is flexible BESS capacity.
Based on the load curves before and after DR, the Pareto frontier is shown in Figure 11.
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Figure 11. The result of Pareto front by NSGA-II.

The Pareto frontier obtained from NSGA-II algorithm can provide significant messages for the
two compromise selected opposite objectives of improving net benefit and PV consumptive rate.
As the actual net profits of PV-MG is negative, reduction of system losses can be interpreted as
improvement of net profits. The flexible BESS capacity optimal sizing results and their corresponding
net profits under different PV consumptive rate goals before and after DR are shown in Table 7.
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Table 7. Energy capacity optimization of before and after DR.

Type Optimal Parameters PV Consumptive Rate

88% 90% 92%

Before DR

Flexible BESS (kWh) 255.6 426.8 585
Rigid BESS (kWh) 213.7 213.7 213.7
BESS total capacity (kWh) 469.3 640.5 798.7
Net profits (×104$) −38.61 −41.82 −59.79

After DR

Flexible BESS (kWh) 424.6 583.2 734.1
Rigid BESS (kWh) 202.7 202.7 202.7
BESS total capacity (kWh) 627.3 785.9 936.8
Net profits (×104$) −42.02 −44.98 47.82

As shown in Table 7:

(1) After the implementation of peak-valley TOU price, peak-valley difference has reduced. Thus,
the rigid BESS capacity, which is configured to guarantee the important loads operating for 0.5 h,
can be reduced after DR.

(2) BESS cost is still relatively expensive at present, and the rigid BESS utilized to ensure the
reliability of the system is relatively large., Thus the net profits of PV-MG will be negative
when only Figure d with rigid BESS, which will be further reduced with the increase of flexible
BESS capacity.

(3) Since the PV consumptive rate is decreased after DR, more capacity of flexible BESS should be
configured to achieve the same PV consumptive rate goal.

7.3.3. Sensitivity Analysis of BESS Subsidies

On the whole, after the optimal sizing of the BESS, the PV-MG does not generate direct
economic benefits. However, system power supply reliability benefits and environmental benefits
brought through BESS optimal sizing are significant. Therefore„ BESS optimal sizing in PV-MG is
necessary. Besides, the cost of lithium batteries and storage converter modules have been showing
downward trend.

In addition, BESS possesses potential subsidies to make reasonable compensation for PV-MG
investment costs, such as the subsidies for the investment capacity, the charge and discharge capacity,
and certain fiscal and tax preferential policies. This paper assumes that the BESS (including the
energy storage battery and the energy storage converter) is subsidized as the investment capacity,
and the subsidy investment accounts for 20%–40% of its fixed investment cost. This paper analyzes
the influence of the increase of BESS subsidy proportion on the net benefit of PV-MG before and after
DR, the results of which are shown in Table 8.

Table 8. The summary of sensitivity analysis.

BESS Subsidy Proportion Net Profits (×103$)

SPV = 88% SPV = 90% SPV = 92%

Before DR
20% −256.9 −263.4 −418.8
40% −129.4 −110.7 −242.8
60% −2.1 41.9 −66.7

After DR
20% −267.3 −273.4 −279.4
40% −116.6 −99.3 −83.0
60% 34.1 74.9 11.4

As shown in Table 8, under the situation that electricity price, PV module cost, PV consumptive
rate and other conditions are invariable, net profits of PV-MG will grow in linear relationship with
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BESS subsidy, and can be positive within a certain range. This indicates that of the economical
efficiency of PV-MG after BESS optimal sizing has been improved.

8. Conclusions

Research on the impact of DR on BESS optimal sizing has a significant effect on commercial
investment decisions of PV-MG. This paper established multi-period DR model based on price
elasticity matrix under TOU price. Besides, the DR and BESS system operation are included into
PV-MG scheduling optimization to build the MG investment profit model. Considering the constraint
conditions such as power supply and demand balance, side electricity price elasticity, loss of BESS
systems, the PV consumptive rate and annual net profits are taken as greatest objectives to utilize
NSGA-II algorithm to solve the DR-based BESS capacity optimize optimal sizing model in PV-MG.

Simulation results show that, in the electricity market environment, the needed rigid BESS
capacity and PV consumptive rate decrease after DR. Thus, more capacity of flexible BESS should
be configure d to contribute the midday PV consumption and achieve the same PV consumptive
rate goal. This paper applies an optimization method to a practical MG in Guangdong to verify
the reasonability of the proposed model and algorithm, which can be a significant reference on
commercial investment decisions of PV-MG.

In order to solve the influence of uncertain PV on the stable operation of PV-MG, DR and
BESS are introduced simultaneously into the operation optimal scheduling of PV-MG, and the
uncertainties PV can be suppressed so as to improve the PV consumptive level, which is of great
guiding significance for BESS optimal sizing under this situation. The net profits of PV-MG is poor
with relatively expensive BESS module cost at present stage. With the decrease of BESS cost or further
drive of the energy storage subsidy policy, business investment potential of PV-MG with BESS will
be further enhanced.
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Nomenclature
P Electricity price
p0 Single electricity price before the

implement of TOU price
∆pj Variable quantity of electricity price at

time period j
Q Electricity consumption
∆qi Variable quantity of electricity

consumption at time period i
a, b Power price curve parameters
εii Self-elasticity coefficient
εij Cross-elasticity coefficient
f , p, v Flat, peak, valley price periods
λpv,
λp f ,
λ f v

Load transfer rates from peak to flat
period, peak to valley period and flat
to valley period separately

L f 0,t Loads in peak price period before DR
Lp0,t Loads in flat price period before DR
Lv0,t Loads in valley price period before DR
L f 1,t Loads in peak price period after DR
Lp1,t Loads in flat price period after DR
Lg1,t Loads in valley price period after DR
L̄ f 0 Average loads of peak price period

before DR
L̄p0 Average loads of flat price period

before DR
L̄v0 Average loads of valley price period

before DR
n f Durations of peak price period
np Durations of flat a price period
nv Durations of valley price period
QB Total BESS capacity
QRC Rigid BESS capacity
QFC Flexible BESS capacity
QPV Rated PV capacity
QRC. min Minimum value of BESS rigid capacity.
PL(t) Load at time t
Ppv(t) PV generation power at time t
Pgrid(t) Electricity power supplied by

distribution network at time t
Pc(t) Charging power of BESS at time t
Pdc(t) Discharge power of BESS at time t
∆PESS(t) Power correction value of BESS

P′dc(t) Discharge power of BESS after
correction

Pe(t) Electricity exported to distribution
network.

Pi(t) Electricity imported from
distribution network

PI Total power of BESS bidirectional
inverter

ES(t) Battery capacity at time t
EN Rated battery capacity
ESC Total photovoltaic electricity power

consumed by local loads in one day
EFC Total photovoltaic electricity power

consumed by flexible BESS
ηPV PV inverter efficiency
ηc Charging power efficiency of BESS
ηdc Discharge power efficiency of BESS
CI Annual investment of PV-MG
CO Daily income of PV-MG
CPV Annual investment of PV system
CB Annual investment of battery storage
CC Annual investment of BESS

bidirectional converter module
Cnet Annual net profits of PV-MG.
IPV Unit price of PV system
IB Unit price of battery storage
II Unit price of BESS inverter module
u(A),
u(B),
u(C)

Operation and maintenance cost of
PV system, BESS module, and BESS
inverter module separately

eL User price
ee PV feed-in-tariff
ei Electricity price of MG purchased

from power grid
epv PV subsidy price
SPV Photovoltaic consumptive rate
∆t Time duration from t to t + 1
T Length of one typical day
r0 Discount rate
R Number of similar days in one year
RE Replacing times of BESS
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