Next Article in Journal
High Stable, Transparent and Conductive ZnO/Ag/ZnO Nanofilm Electrodes on Rigid/Flexible Substrates
Next Article in Special Issue
Hybrid Modulation of Bidirectional Three-Phase Dual-Active-Bridge DC Converters for Electric Vehicles
Previous Article in Journal
Investigation into the Catalytic Activity of Microporous and Mesoporous Catalysts in the Pyrolysis of Waste Polyethylene and Polypropylene Mixture
Previous Article in Special Issue
Development of Near Optimal Rule-Based Control for Plug-In Hybrid Electric Vehicles Taking into Account Drivetrain Component Losses
Article Menu
Issue 6 (June) cover image

Export Article

Open AccessArticle
Energies 2016, 9(6), 439; doi:10.3390/en9060439

Online Power Management with Embedded Offline-Optimized Parameters for a Three-Source Hybrid Powertrain with an Experimental Emulation Application

Chair of Dynamics and Control, University of Duisburg-Essen, Lotharstr. 1, Duisburg 47057, Germany
*
Author to whom correspondence should be addressed.
Academic Editor: K. T. Chau
Received: 29 February 2016 / Revised: 25 May 2016 / Accepted: 27 May 2016 / Published: 7 June 2016
(This article belongs to the Special Issue Power Management for Hybrids and Vehicle Drivetrains)

Abstract

Real-time power management in the presence of one or more reversible energy storage systems is a current issue with hybrid electric vehicles (HEVs). To evaluate the potentials of rule-based power management, optimization with respect to two conflicting objectives, fuel consumption and state of charge (SoC) deviation, is considered in this contribution. A modular structure of power management with decoupled offline and online parts is presented. The online part incorporates look-up tables (LUTs) with parameters from the offline optimization part. This permits an inclusion of more LUTs corresponding to different drive patterns. The goal of this contribution is to combine the real-time applicability of rule-based power management and the multi-objective optimization property of genetic algorithms in a single control strategy. Component aging problems are addressed by suitable design. The influence of sizing is investigated. Finally, an experimental setup consisting of components capable of realizing the dynamics of real powertrain components is realized and introduced. A verification/plausibility assessment of modeled dynamics based on the literature is considered. This newly-introduced concept represents a class of power management, which is easy to implement, can tackle different objectives in real time, and adapt itself to unknown driver demands. View Full-Text
Keywords: rule-based power management; optimization; HEV rule-based power management; optimization; HEV
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Moulik, B.; Söffker, D. Online Power Management with Embedded Offline-Optimized Parameters for a Three-Source Hybrid Powertrain with an Experimental Emulation Application. Energies 2016, 9, 439.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Energies EISSN 1996-1073 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top