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Abstract: In this paper, advanced equivalent circuit models (ECMs) were developed to model large
format and high energy nickel manganese cobalt (NMC) lithium-ion 20 Ah battery cells. Different
temperatures conditions, cell characterization test (Normal and Advanced Tests), ECM topologies (1st
and 2nd Order Thévenin model), state of charge (SoC) estimation techniques (Coulomb counting and
extended Kalman filtering) and validation profiles (dynamic discharge pulse test (DDPT) and world
harmonized light vehicle profiles) have been incorporated in the analysis. A concise state-of-the-art
of different lithium-ion battery models existing in the academia and industry is presented providing
information about model classification and information about electrical models. Moreover, an
overview of the different steps and information needed to be able to create an ECM model is
provided. A comparison between begin of life (BoL) and aged (95%, 90% state of health) ECM
parameters (internal resistance (R,), polarization resistance (Rp), activation resistance (R2) and
time constants (7) is presented. By comparing the BoL to the aged parameters an overview of the
behavior of the parameters is introduced and provides the appropriate platform for future research
in electrical modeling of battery cells covering the ageing aspect. Based on the BoL parameters 1st
and 2nd order models were developed for a range of temperatures (15 °C, 25 °C, 35 °C, 45 °C). The
highest impact to the accuracy of the model (validation results) is the temperature condition that
the model was developed. The 1st and 2nd order Thévenin models and the change from normal to
advanced characterization datasets, while they affect the accuracy of the model they mostly help in
dealing with high and low SoC linearity problems. The 2nd order Thévenin model with advanced
characterization parameters and extended Kalman filtering SoC estimation technique is the most
efficient and dynamically correct ECM model developed.

Keywords: lithium ion; nickel manganese cobalt (NMC); equivalent circuit model (ECM); validation
profile; modelling; begin of life (BoL) parameters; cell characterization; dynamic discharge pulse test
(DDPT); worldwide harmonized light vehicle test procedure (WLTC)

1. Introduction

Academic research and applications of lithium-ion batteries have seen a growth in interest
during the past decade [1-19]. This is mainly due to the increased use of applications ranging from
small to high energy and power demanding systems [4], stationary applications encompassing grid
energy storage, uninterruptible power supply and renewable power management systems [20]. The
automotive industry is investing in the research and development of electric vehicles (EV) based on
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new batteries and driveline technologies to transition their market from fully internal combustion
engine (ICE) to a more environmental and efficient fleet of hybrid electric vehicles (HEVs), plug-in
electric vehicles (PEVs) which encompass extended range electric vehicles (EREV), plug-in hybrid
electric vehicles (PHEVs) and battery electric vehicles (BEVs) [1-3,21-23]. The development of EREV
and PHEYV electric applications has led to vastly different required battery properties regrading both
the power and energy needed in these type of vehicles, compared to conventional HEVs and pure
BEVs. The development of lithium-ion batteries to fulfil these demanding properties and in this way
enable these type of vehicles has been a great achievement.

Thus, to understand and to control the behavior of the battery in terms of its chemical, electrical
and thermal aspects during the different operational conditions is of high importance. Moreover
equivalent circuit model (ECM) models not only are needed to manage the cells inside a battery pack
with the battery management system (BMS), but also for the development and creation of efficient
and proper battery packs [24-26]. The jump from an individual cell to a battery pack needs proper
development and correct power, energy and heat management design and operation [24].

In this paper, an initial overview of the different lithium-ion battery models found in the literature
is presented. The cell chemistry under investigation is a pouch nickel manganese cobalt (NMC) 20 Ah
lithium ion with a nominal voltage 3.65 V as seen in Table 1. The manufacturer of these cells is EIG
(Cheonan, South Korea) and all the characteristics mentioned in Table 1 are taken from the datasheet
of the C020 model, available on the company website [27].

Table 1. Characteristics of the nickel manganese cobalt (NMC) cell.

Characteristics Values Unit
Length 217 (mm)
Width 130 (mm)
Thickness 7.1 (mm)
Weight 428 (8)
Nominal voltage 3.65 V)
Nominal capacity 20 (Ah)
Specific energy 174 (Wh/Kg)
Energy density 370 (Wh/L)
Specific power 2300 (W/Kg)
Power density 4600 (W/L)

The analysis starts by providing a concise state-of-the-art of lithium ion battery models. A
categorization of these models is proposed and further information regarding electrical models is
presented. The analysis continues with a summary of the different tasks and activities performed
before the creation of electrical models. A review of the various parameters used for the creation of the
ECM models is included continuing with the overview of the different electrical models based on ECM
topologies of the NMC chemistry at different temperatures conditions and validation profiles. The
models developed have been created with two types of state of charge (50C) estimation techniques,
Coulomb counting and extended Kalman filtering.

2. Overview of the State of the Art of Lithium Ion Models

Investigating the scientific literature regarding the modelling of lithium-ion batteries behavior, it
is found that different models have been already created and used for the different interdisciplinary
sciences based on battery system operation. The different types of existing models can be separated
mainly by the different issues and phenomena the model should investigate. In Table 2 the different
model types have been separated into:

e  Electrochemical models;
e Electrical models;
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e  Thermal models;
e  Mechanical/fatigue models;
e Interdisciplinary models.

Table 2. Classification of different lithium-ion models [28]. ECM: equivalent circuit models; RC:
combination of resistances and capacitance; PNGV: partnership for a new generation of vehicles.

Model Type Model Empirical Semi-Empirical Physical

Pure electro-chemical -
ECM electro-chemical -
Peukert’s model
Rakhmatov and vrudula -
Sheperd other iterations

State space v
v

Electro-chemical

Analytical

IS S N

Simple rint

Enhanced rint
RC -
PNGV/FreedomCAR -
ECM 1st Order (thevenin model) -
2nd Order (thevenin model) -
Enhanced PNGV (2nd order) -
Noshin model -
Neural nets 4
Frequency Frequency domain v/
Analytical thermal -
Thermal EC}II\/I Thermal -
Mechanical /Fatigue Fatigue/Mechanical -
Electro-thermal -
Combined models Thermo-electrochemical -
Thermo-mechanical -

Electrical

LR L R R R Rk

When modelling the behavior of a physical system, it is possible to identify three main general
model categories. Depending on the method how the inputs are related to the outputs of the model
they can be categorized in: empirical, physical and semi-empirical models [29].

Empirical models are based on the “black-box” approach, where the inner physical behavior of
the system is unknown and the relations between the inputs and outputs of the model are only based
on experimental results and relations.

An example of the empirical models is the neural network model, which can capture the dynamic
behavior of the battery and learn the relationship between the inputs to the outputs only through
experimental data found prior to the creation of the model. Another example of empirical modelling
of batteries is the analytical model called Peukert’s model which can simulate the time needed to
discharge the battery and to investigate the discharge rate capability of a battery. The main constants
of the mathematical equation governing the Peukert’s model have to be defined with the use of
experimental activities [30,31].

Physical models are based solely on theoretical and physical knowledge of the system under
investigation. No experimental activities regarding the relation between the inputs and outputs of
the system have to be performed in order to determine the behavior of your system. Depending on
the knowledge of the specific inner characteristics and physical process of the system a model can be
created to simulate the performance of your system. An example of a physical model of a lithium-ion
battery is the pure electrochemical model [32-34]. Depending on the knowledge of the specific material
composition and the properties of the chemical reactions, a set of physical equations were originally
developed [35,36]. The fact that the model equations are based on physical relations, which describe
real physical effects taking place in the battery, includes the pure electrochemical model in the category
of physical modelling.

Finally, semi-empirical models lay between the physical and the empirical models. This category is
a hybrid modelling category. The system under investigation is to a certain extent treated as a black-box
where the relation of the inputs to your outputs and inner behavior of the system is investigated
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through experimental methods, as performed for empirical modelling. The difference being that, a link
with some of the real physical effects inside the system can be implemented in the model. Examples of
semi-empirical models are ECMs (e.g., dual polarization, partnership for a new generation of vehicles
(PNGYV)) that can be linked to in this case to the polarization effect and the different behavior during
charging and discharging processes [9,14,19,28,37,38]. The models implemented to simulate the NMC
cells for this publication belong to the semi-empirical model category. These kind of models are mainly
created for the beginning of life (BoL) of cells were ageing phenomena have not yet affected the creation
of the model parameters. When including in these type of models ageing phenomena to be echoed in
the parameters created from the characterization tests the development of more advanced models is
performed, thus diverging from the definition of semi-empirical models.

2.1. Battery Management System

Electric applications using a battery as their primary energy (i.e., a BEV) and a power source (i.e.,
HEV), will be typically accompanied by a BMS. This is mostly implemented in vehicle applications
where the need to manage the battery performance, control internal parameters of the battery and
inform the user of vital battery information is needed. The accurate prediction of SoC, state of heath
and other characteristics (temperature, voltage, and current) are the main needed information to be
calculated by a BMS. In addition, the proper management of the charging and discharging behavior
of the battery by the BMS, will help to maintain for a longer period the rated capacity of the battery
and increase its lifetime. This will keep the battery in good operating and stable conditions for a
longer period. Thus, it is very important for the BMS software to be based on a battery model, which
can calculate efficiently and accurate the battery states and characteristics and can run with low
computational power and time [39].

2.2. Electrical Models

Models that describe the electrical behavior of the battery have been extensively studied and
developed in academia [19,40-45]. There exist multiple models that can be used to describe the
electrical response of the battery and in this study those have been categorized as follows:

e  Analytical models;
e  Electrical ECM models;
e Frequency domain models.

Electrical models are mainly semi-empirical models where characterization techniques are
performed to identify the different parameters of the battery. Those characterization techniques
have been extensively described in different standardization documents [44-49] and they are generally
composed of:

e Capacity test: defining the discharge/charge capacity of the battery;
e  Open circuit voltage (OCV) versus SoC test: relating the SoC levels with the open circuit voltage

of the battery;

e  Hybrid pulse power characterization (HPPC) test: to define the internal resistances and SoC of
the battery;

e  Electrochemical impedance spectroscopy (EIS) test: define the internal resistance and impedance
of the battery.

2.3. Creation of an Electrical Equivalent Circuit Model

In Figure 1, a schematic representation is presented showing the different theoretical steps that
have to be taken to achieve a complete development of a model and validate it afterwards. Initially, the
choice of the electrical model to use should be considered carefully. Depending on the model chosen,
the creation of appropriate parameters have to be developed to represent the different components
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of the ECM model. These parameters would be collected and re-arranged in the appropriate format
to create a lookup table, which would be in function of current, SoC, temperature and lifetime.
Implementing correctly the variables inside the model would provide the required information to
the model to simulate the behavior of the studied lithium ion cells. Based on these parameters a
preliminary simulation can be performed taking as validation profile the different pulses performed
during the HPPC test. This preliminary analysis can be observed for the 0.5 C pulse at the 70% SoC
level in Figure 2. This comparison show us that the analysis of the characterization results can be
correctly and easily performed while it gives the possibility to check the parameters created for each

SoC level of the HPPC test.

Considering a electrical model

(1=t Order Thevenin Madel, 2 Order Thevenin

Measured Voltage
response to Current
pulses (HPPC test)

Vallldatlon load ‘
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Figure 1. Schematic representation of the activities to create an equivalent circuit model (ECM) model.
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Figure 2. Measured voltage vs. simulated voltage during the 0.5 °C rate pulse at the 70% state of

charge (SoC) level of a hybrid pulse power characterization (HPPC) test at 25 °C: (a) Charge pulse;
and (b) discharge pulse.
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In this paper the ECM topologies used during the simulations performed are the 1st order and 2nd
order Thévenin battery models. The 1st order Thévenin battery model consists of a resistance (internal
resistance (R,)) connected to a branch in series, which consists of a second resistance (polarization
resistance (Rp)) in parallel with a capacitor (polarization capacitor (Cp)). The 2nd order Thévenin
model, which in theory should be more accurate than the 1st order Thévenin battery model consists
of a resistance (internal resistance (R,)) connected with two parallel branches in series. Each branch
incorporates a resistance and a capacitor simulating the chemical behavior of the cell. The first branch is
composed of an activation resistance and capacitor while the second one is composed of a concentration
resistance and a capacitor. In Table 3 a list of the different parameters needed for the parameterization
of the ECM models is presented. From this table, we can observe the difference in required number of
parameters between the 1st and 2nd order Thevenin model. In particular, the polarization resistance
and time constants of the 1st order Thevenin model are separated in the activation and concentration
chemical behavior of the cell in the case of the 2nd order Thevenin model.

Table 3. List of parameters for 1st and 2nd order Thevenin Models. OCV: open circuit voltage; Ro:
internal resistance; Rp: polarization resistance; Rpa: activation resistance; Rpcz concentration resistance;

tp: polarization time-constant; tpa: activation time-constant; tpc: polarization time-constant.

Model Parameters 1st Order Thevenin 2nd Order Thevenin Units
ocy v v V)
Ro v i (mOhms)
Rp i - (mOhms)
Rpa - i (mOhms)
Rpe - i (mOhms)
tp - (s)
tpa - v (s)
tpe - v (s)

2.4. State of Charge Estimation

The calculation of the correct SoC during simulation of any battery model is a key issue and
is of great importance to determine the correct characteristics of the battery and to achieve good
results [50-54]. Specifically, battery models that are to be implemented in BMS systems for automotive
and stationary applications need to estimate the SoC of the battery pack with high accuracy. In parallel,
a proper BMS system implemented with a very accurate SoC estimator could be affected by the
required high computational power and runtime.

There exist different types of techniques for determining the actual SoC [55]. These different
methods can be separated into experimental and adaptive techniques. This categorization is also
utilized when describing the different techniques used in state-of-health (SoH) estimations [54]. The
experimental technique, which is a function of capacity, current and temperature called the Coulomb
counting technique [9]. The adaptive technique is called Kalman filtering and takes into consideration
the output (simulated voltage) and input (load current and temperature) of the model to recalculate
and update the SoC value in the model value back to the model [56]. In this study a more advanced
technique is used which is the extended Kalman filtering [16,53,57].

The Coulomb counting SoC estimation technique has been used extensively in the
literature [50,56,58-60] and can be used to determine and update the battery cells SoC during
simulations. It counts the charge transferred from or to the battery in order to calculate the remaining
available capacity, expressed as the SoC [54]. The proper implementation of the measured capacity
values from the capacity test allows calculating the SoC through Coulomb counting technique in an
accurate way. The Coulomb counting equation is described in Equation (1):

t
2 (1) =Z(f0)—ﬁf I(t)dt 1)

fo
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where:

z(t): The SoC at time t;

z(tp): Initial SoC (at time t = ty);

C: Estimated battery cell available capacity as function of temperature, current rate and
charge/discharge state (Ah);

I(t): Battery current (A) assumed positive when discharging.

In general, the concept behind Kalman filtering is that, at each time step, an initial prediction of
the state vector is made, which is used to predict the corresponding model output (i.e., the terminal
voltage) [61,62]. The true terminal voltage is then measured and compared to the battery model output.
Based on the error and output noise covariance, the predicted state vector is optimally corrected via
the Kalman gain to obtain the corrected or posterior state estimate [16]. It is important to mention that,
in contrast to the Coulomb counting-based SoC estimation, the Kalman filter-based SoC estimation,
also requires a voltage measurement.

3. Results

3.1. Comparison of Aged and Begin of Life 2nd Order Thévenin Model Parameters for Nickel Manganese Cobalt
Battery Cells

The SoH of a battery cell has been defined as the health condition of a battery at a reference
temperature and a reference current rate. The battery 100% SoH corresponds to the BoL state of a
fresh cell (available discharge capacity) and the 0% SoH corresponds with the end of life (EoL) of the
battery. As a general rule it is accepted in the automotive industry that the 80% SoH is the EoL of the
battery [46,63]. In Equation (2), the SoH relation with the measured capacity and the initial capacity of
a cell is given:

SoH = 100 x Cmessured @)
initial

where:

Cactual: measured available discharge capacity (Ah);
Cinitial: Initial available discharge capacity (Ah).

The SoH of a battery pack inside an automotive application is being calculated through the BMS.
By calculating the SoH of the battery cells used we can quantify the level of aging of the cell, which
is caused by a capacity fade and/or power fade. Thus having the possibility to understand at which
point it would be more appropriate to replace the battery cells. This analysis can be also applied
to the different parameters that are created when performing ECM modelling activities to observe
their variation.

A state of health analysis on all the parameters utilized to simulate the 2nd order Thévenin model
has been performed. The comparison of the parameters was conducted at 45 °C. By choosing a high
temperature to compare our parameters we can observe parameters that are affected by increased
aging phenomena due to the extreme temperature condition. In Figure 3, the behavior of the capacity
values can be observed as a function of the number of full equivalent cycles. It is observed that the
capacity values are slightly increasing for the initial 200 equivalent cycles but as the cell, further
ages the total available discharge capacity is decreasing. The capacity values of the cell have been
determined by performing a capacity test at recommended manufacturer C-rate (0.5 C). Every 100
equivalent cycles the cell performs a series of characterization tests including the capacity test, OCV
and HPPC test. From an initial capacity value of 20.03 Ah for the fresh cell, we note a decreased value
to 18.05 Ah after 700 equivalent cycles. This corresponds to a SoH level of 90.11%.
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Figure 3. Capacity behavior of a lithium ion cell throughout its lifetime.
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The OCV difference between an aged and new battery cell is presented in Figure 4. Due to the
small difference between the BoL OCV and the aged OCV in Table 4, the absolute difference between
the lines is calculated. A higher difference can be observed between the discharge than the charge BoL
and aged OCV curves. It should be noted that the discharge/charge capacity should differ between
the aged and the fresh battery cell due to ageing phenomena. This effect is not reflected in Figure 4 as
the SoC is used instead, to plot the evolution of the OCV.

Table 4. SoC-OCYV values for charge and discharge for a fresh and aged (90% state-of-health (SoH))

NMC 20 Ah.

Charge SoC (%) Charge AV (mV) Discharge SoC (%) Discharge AV (mV)
0 10.00 100 10.00
2 297 98 13.91
4 5.88 96 13.88
6 6.62 94 14.83
8 4.93 92 15.79
10 4.98 90 16.63
15 5.82 85 16.59
20 5.80 80 17.59
25 522 75 21.15
30 2.55 70 31.58
35 1.57 65 18.13
40 0.49 60 12.93
45 0.24 55 10.94
50 0.71 50 9.49
55 1.89 45 9.51
60 2.20 40 10.96
65 1.45 35 14.02
70 3.62 30 13.74
75 0.10 25 11.92
80 1.73 20 12.41
85 0.22 15 11.83
90 3.07 10 11.61
92 3.99 8 13.25
94 5.00 6 16.78
96 6.77 4 17.35
98 7.48 2 13.48

100 8.00 0 10.00
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Continuing the analysis on the battery models parameters, it should be noted that the values
presented in Figures 5-7 are from parameters, which are a function of SoC, current rate, expressed
in C-rate and temperature. In the cases of the battery models parameters the 95% SoH values are
also presented. The values observed are the mean value of the parameters for all C-rates at which the
HPPC was performed at each SoC level. Due to the complex representation, the time constants graph
(Figure 8) incorporates the total value of the 11 and 7y. It should be noted that the value of 11 are much
lower than the values of T,. Moreover the creation of the R,, Rp and R, parameters are more easily
created because they are based on the behaviour of a resistance while the values 1, and T, are based
on a capacitor behaviour which is more difficult to simulate [14,64].

OCV Charge OCV Discharge

—Blue = Begin of Life
4" —Red = Aged 90% SoH

—Blue = Begin of Life
—Red = Aged 90% SoH

0 20 40 60 80 100 0 20 40 60 80 100

Figure 4. OCV difference between a fresh begin of life (BoL) and aged (90% SoH) lithium ion cell:
(a) OCV charge; and (b) OCV discharge.
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2 53
02- a
o 2
© 4

0 1

0 20 40 60 80 100 0 20 40 60 80 100
SoC (%) SoC (%)

(@) (b)

Figure 5. R, difference between a fresh BoL and aged (95% and 90% SoH) lithium ion cell: (a) R,
charge; and (b) R, discharge.
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Figure 6. Activation Ry, difference between a fresh BoL. and aged (95% and 90% SoH) lithium ion cell:
(a) Rp charge; and (b) R, discharge.
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Figure 7. Concentration Rp,» difference between a fresh BoL and aged (95% and 90% SoH) lithium ion

cell: (a) Rp, charge; and (b) R, discharge.
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Figure 8. Total time constants () difference between a fresh BoL and aged (95% and 90% SoH) lithium
ion cell: (a) Total T charge; and (b) total T discharge.

In Figure 9 the internal resistance under 1 current rate for different temperatures (15 °C, 25 °C,
35 °C and 45 °C) is shown to represent the temperature dependency of the parameter. The behavior of
the parameters is as expected having a higher resistance for low temperatures and lower as one goes
to higher temperatures [65].

3% 1073 Ro Charge for different temperatures 3 %107 Ro Discharge for different temperatures
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Figure 9. Internal resistance (R,) for different temperatures (15 °C, 25 °C, 35 °C and 45 °C): (a) R,

charge; and (b) R, discharge.
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3.2. Equivalent Circuit Model Nickel Manganese Cobalt Models

As mentioned previously, a set of ECM models have been created to simulate the behavior of
the battery cell under different ECM topologies, validation profiles and temperatures conditions. In
addition different SoC estimation techniques (Coulomb counting and extended Kalman Filter) are
incorporated into the battery models.

The battery models created are based on parameters calculated from two types of characterization
tests. Normal and advanced characterization tests have been developed to acquire a better
understanding of the high and low SoC levels battery cell behaviors. The normal characterization
tests consists of performing a specific test (i.e., HPPC, OCV-S0C) at each 5% step of the total SoC while
advanced characterization tests consists of separating the total SoC window into three parts where the
high SoC’s (100% to 90%) and the low SoC’s levels (10% to 0%) tests are performed in 2% steps of the
SoC while the middle SoC’s (90% to 10%) with 5% steps. Two types of ECM topologies were utilized,
the 1st order and the 2nd order Thévenin battery models. The extended Kalman filtering technique
was applied only on the 2nd order Thévenin battery model while it was the only topology that was
validated with the more dynamic profile called the worldwide harmonized light vehicle test procedure
(WLTC). With the exception of the WLTC, the validation of all models were created from 15 °C, 25 °C,
35°Cand 45 °C.

Only the battery models at 25 °C for each category is being shown while a table showing the
validation errors (Tables 5-8) for each temperature is incorporated at the end of each category. For each
battery models (25 °C 1st and 2nd order Thevenin models with dynamic discharge pulse test (DDPT)
and WLTC validation profiles Coulomb counting and extended Kalman filtering SoC estimation
technique) presented the first figure (Figures 10, 13, 16, 19, 22) where the whole SoC window simulation
results is shown. This is followed by the figures where the validation errors are revealed (Figures 11,
14,17, 20, 23). The error is calculated according to the Equation 3 below. For each model, a third figure
(Figures 12, 15, 18, 21, 24) is included where we can observe the dynamic behavior of the model created.

err % = 100 x Vmeasured — Vsimulated (3)

Vmeasured

3.2.1. 1st Order Thévenin Model with Normal Characterization
‘ —Blue = Measured Voltage ‘
4 m —Red = Simulated Voltage |

Figure 10. 1st order Thévenin model measured and simulated dynamic discharge pulse (DDP)

Voltage(V)
w w w
e (2] (o]

et
N
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Time(min)

comparison at 25 °C with Coulomb counting and normal characterization.
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Figure 11. Error of the 1st order Thévenin model measured and simulated DDP comparison at 25 °C
with Coulomb counting and normal characterization.
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Figure 12. Dynamic behavior of the 1st order Thévenin Model measured and simulated DDP
comparison at 25 °C with Coulomb counting and normal characterization.

Table 5. Results of the models where the SoC window is less than the proposed error.

Temperature SoC Window <Error
15°C 100%-16% +2%
25°C 100%-10% +2%
35°C 100%-12% +2%
45°C 100%-5% +2%

3.2.2. 1st Order Thevenin Model with Advanced Characterization

T

—Blue = Measured Voltage
4 | —Red = Simulated Voltage

240 260 280 300 320 340 360 380 400
Time(min)

Figure 13. 1st order Thévenin model measured and simulated DDP comparison at 25 °C with Coulomb
counting and advanced characterization.
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Figure 14. Error of the 1st Order Thévenin model measured and simulated DDP comparison at 25 °C
with Coulomb counting and advanced characterization.
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Figure 15. Dynamic behavior of the 1st order Thévenin Model measured and simulated DDP
comparison at 25 °C with Coulomb counting and advanced characterization.

Table 6. Results of the models where the SoC window is less than the proposed error.

Temperature SoC Window <Error
15°C 100%—-9% +2%
25°C 100%—7% +2%
35°C 100%-10% +1%
45°C 100%—4% +1%

3.2.3. 2nd Order Thévenin Model with Advanced Characterization

—Blue = Measured Voltage
4 —Red = Simulated Voltage

28t L I . .
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Time(min)

Figure 16. 2nd order Thévenin model measured and simulated DDP comparison at 25 °C with Coulomb
counting and advanced characterization.
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Figure 17. Error of the 2nd order Thévenin model measured and simulated DDP comparison at 25 °C
with Coulomb counting and advanced characterization.
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Figure 18. Dynamic behavior of the 2nd order Thévenin model measured and simulated DDP
comparison at 25 °C with Coulomb counting and advanced characterization.

Table 7. Results of the models where the SoC window is less than the proposed error.

Temperature SoC Window <Error
15°C 100%-5% +2%
25°C 100%—-0% +2%
35°C 100%-3% +1%
45°C 100%—-0% +1%

3.2.4. 2nd Order Thévenin Model with Advanced Characterization Validated under Worldwide
Harmonized Light Vehicle Test Procedure Profile

—Blue = Measured Voltage
—Red = Simulated Voltage

50 100 150 200 250
Time(min)

Figure 19. 2nd order Thévenin model measured and simulated worldwide harmonized light vehicle
test procedure (WLTC) comparison at 25 °C with Coulomb counting and advanced characterization.
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Figure 20. Error of the 2nd order Thévenin model measured and simulated WLTC comparison at 25 °C
with Coulomb counting and advanced characterization.
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Figure 21. Dynamic behavior of the 2nd order Thévenin model measured and simulated WLTC
comparison at 25 °C with Coulomb counting and advanced characterization.

3.2.5. 2nd Order Thévenin Model with Advanced Characterization Extended Kalman
Filtering Technique

—Blue = Measured Voltage
—Red = Simulated Voltage
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Figure 22. 2nd order Thévenin model measured and simulated DDP comparison at 25 °C with
advanced Kalman filtering and advanced characterization.
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Figure 23. Error of the 2nd order Thévenin model measured and simulated DDP comparison at 25 °C
with advanced Kalman filtering and advanced characterization.

Table 8. Results of the models where the SoC window is less than the proposed error.

Temperature SoC Window <Error
15°C 100%-15% +2%
25°C 100%-7% +2%
35°C 100%—-8% +2%
45°C 100%—4% +2%
3.75 ;Blue = Méasured Vol.lage
—Red = Simulated Voltage
3.7
=
(0]
[*)]
£365
O
>
3.6
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Time(min)

Figure 24. Dynamic behavior of the 2nd order Thévenin model measured and simulated DDP
comparison at 25 °C with advanced Kalman filtering and advanced characterization.

4. Discussion

Examining the 2nd order Thévenin parameters compared in Section 3, a clear difference can
be observed between the values corresponding to the fresh cell BoL and to the aged cell (90% SoH).
The loss of total capacity throughout the lifetime of the NMC cells and the difference in the model
parameters between a fresh BoL and aged (90% SoH) cell can be explained by different degradation
mechanisms which are mainly due to structural changes in the cell, the chemical composition or
dissolution reaction and surface film modifications [59,66,67]. The degradation mechanisms can be

separated into:

e  Loss of lithium inventory (LLI);
e Loss of active material (LAM);
e Increase of the solid electrolyte interphase (SEI) layer.
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The values of Ro, Rp and Rp2 are higher for the aged cell (90% SoH) than the values corresponding
to the fresh cell BoL in contrast to the time constant values T, where the fresh cell BoL values are slightly
higher than the aged cell (90% SoH) values. We observed a mean difference of 71.3% at the 100% SoC
value and 61% of the 0% SoC value for the charge and discharge parameters of Ro and Rp, while 59.4%
at the 100% SoC value and 43% at the 0% SoC value of the charge and discharge parameters of Rp2. For
the total time constants, we observed a mean difference of 24.07% at the 100% SoC value and 13.33% at
the 0% SoC value. The behavior of the internal resistance of the model and the time constant of the
models RC’s branches was as expected. In this analysis we have considered the total time constant
(T1 and 1) which are directly related with the total relaxation time of the cell. As a cell gets aged
it is expected to see an increase in internal resistance due to the increased cycling numbers where
lithium ions are intercalated between the anode and the cathode of the cell which increases the SEI
layer, degrades the active materials (LLI and LAM) and decompose the electrolyte [68]. Additionally,
it is also expected that an aged cell has a smaller relaxation time than a new cell due to the formation
of definite structure inside the cell including the anode, electrolyte and cathode, thus explaining the
lower values for the total time constants (t; and 17) parameter at 95% and 90% SoH when observing
them in Figure 8a,b [66].

It can be concluded that even if the values of the total time constants are lower for an aged
compared to a new cell, thus having a faster behavior during relaxation phases, it is compensated
by the high increase of the internal resistance values Ro, Rp and Rpp. This high increase of internal
resistance is due to the different degradation mechanisms explained earlier. These effects can be also
observed in the decreasing of the capacity value of the cell during its lifetime as seen in Figure 3 [69,70].

Additionally, we observe the difference of the total time constant values (t; and 17) at low SoC to
respect the values at high SoC this can be explain as follow. When observing the relaxation phases
after a specific current pulse at low SoC we see a faster saturation of the voltage measured to the rest
Voltage value than what we observe in the middle or high SoC values. This can explain why we have
lower Tau values at low SoC’s and higher at higher SoC’s. Meaning that we have a faster relaxation
at low SoC’s than at high SoC’s. This is the opposite for the internal resistance as we can observe at
Figure 5 where we have higher internal resistance R, at low SoC and lower R, at high SoC’s.

Parameters like the ones described above were also calculated for other temperatures at BoL.
Those parameters were used to create the models described in Section 3.2 while additional parameters
were created for the other temperatures under investigation. Observing the results of Section 3.2 some
general observations regarding the comparison of the simulated to the measured results of the models
can be mentioned:

e Increasing the temperature condition will create more efficient NMC lithium ion ECM models;

e Complex ECM topologies will increase the accuracy of NMC lithium-ion ECM models;

e  Alter SoC estimation techniques to more complex will increase the accuracy of NMC lithium-ion
ECM models;

e  The models created can co-op with more dynamic profiles, like the WLTC profile.

The main condition that is predominantly affecting the accuracy of the models is the temperature.
This effect can be observed on all topologies, for both types of characterization results used and
for both the Coulomb counting and the extended Kalman filtering SoC estimation technique. This
phenomenon can be explained by the fact that when performing the characterization tests at a higher
temperature value, the different parts of the cell becomes more homogeneous, making the behavior of
the cell during this condition more pronounced compared to that at lower temperatures. Thus, when
creating parameters from these tests, the models will have less non-linear errors during the simulation.
Moreover, when increasing the temperature condition, an increase in available capacity of the cell is
observed, as shown in Figure 25.
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Figure 25. Discharge capacity evolution at different temperatures and different C-rates of NMC 20 Ah
lithium ion cells.

Thus, when creating the parameters for these high temperatures, we have a better match between
the energy used during our HPPC test (characterization test for the creation of Ro, Rp, Ry and ©
parameters) and the energy used during our DDP validation test. The increasing mismatch occurring
at lower temperatures between the energy used, together with increasing time step of the simulation
have been identified as sources of increasing errors during the simulation.

The main errors that have been encountered during the simulations can be identified at the high
and low SoC window of the simulations. This effect as described above is minimized when increasing
the temperature condition at which the models were created. Moreover, a clear improvement is
observed in the models when changing the topology of the models from 1st to 2nd order Thévenin
model. This effect can be observed between the 1st and 2nd order Thévenin model at 25 °C models
while also at the others temperatures. The 1st order Thévenin model at 25 °C using advanced
characterization datasets has identical accuracy as the 2nd order Thévenin model at 25 °C using
advanced characterization datasets. But we see that the high and low SoC errors of the 2nd order
Thévenin model is less pronounced specifically for the discharge behavior of the cell while there isn’t
any increase in high errors (4%), as the 1st order Thevenin mdoel, at the very end of the simulation.

Inspecting the 2nd order Thévenin models with Coulomb counting and extended Kalman filtering
SoC estimation technique we observe a clear improvement in the accuracy of the model. Due to the
extended method used by Kalman filtering to re-calculate and actualize the SoC of the cell in the
model, the accuracy of our models is increased while we observed a clear improvement in the dynamic
representations of the models presented in Figure 18. Comparing the 1st order models created with
normal characterization and advance characterization datasets we observed that the accuracy of the
models is increased but is not substantial as it is when changing temperature, topologies and SoC
estimation techniques. Furthermore, the dynamic behavior has been affected more than the total
accuracy of these models by the change of the characterization datasets from normal to advanced.

Collecting all these observations the model that should have created the best simulation accuracy
and dynamic behaviors during the simulation should be models that are at high temperatures with
complex topologies. In this regard, the most efficient model created for this study was the 2nd
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order Thévenin model with advanced characterization datasets and extended Kalman filtering SoC
estimation technique at 45 °C. Future work will investigate more in depth the development of ECM
models based on a high number of cells creating average parameters for a batch of cells and comparing
them to average validations profiles provided by the combination of the validations results (average
DDP and WLTC profiles for a batch of cells). This analysis will provide a better understanding of
the behavior of a set of NMC cells which represents with higher fidelity the situation observed in an
automotive battery pack combined with a BMS.

Additionally, in future publications, the incorporation of in-depth analysis of the simulation time
needed to run such models in a specific CPU-based platform (i.e., automotive on-board computer) will
be provided. Performing a preliminary investigation, it can be observed that the more complex the
topology and extensive the parameters are, the longer it takes for a computer system to run the model.
This time is in the order of 1 minute for the 1st and 2nd order Thevenin model combined with Coulomb
counting SoC estimation technique. In contrast, with the use of the extended Kalman filtering where
the computer system has to acquire and input the SoC values while he simulates the validation profile,
we can observe a substantial increase in the simulation time needed to run the model. This time is in
the order of 5 minutes. These simulations were performed by a computer with a Central Processing
Unit (CPU) at 2.8 Ghz, with 16 GB Memory and a NVIDIA (Santa Clara, CA, USA) Quadro K2 100 M
graphic card.

5. Conclusions

The proper simulation of lithium-ion batteries in today’s automotive and electric applications is
of great important for an efficient use and correct understanding of the electrical, thermal, chemical
behavior of the system under investigation. Different models exist in the industry and literature, each
having their own advantages and disadvantages. ECMs are mainly used in electrical lithium ion
battery models for the simulation of the electrical and thermal behavior of the cell. The 1st and 2nd
order Thévenin model are used to simulate a large format and high energy NMC lithium-ion battery
with a capacity of 20 Ah for different temperatures. The models are created by using the Coulomb
counting and the extended Kalman Filter SoC estimations and different type of validation profiles
like the dynamic discharge pulse (DDP) and world harmonized light duty profiles were taken into
account. Moreover, a different set of parameters were created based on two types of characterization
tests performed (normal and advanced characterization). The creation of aged parameters was also
developed based on the same characterization tests procedures and they were compared to the BoL
parameters used in the parameterization of the ECM models. The behavior of the aged parameters
with respect to the BoL were as expected mainly observing higher internal resistances for a battery cell
that has aged versus a fresh cell while an opposite relation was observed for the total time constant t
(t1 and 1), with higher values for a fresh cell than a cell that has aged.

The temperature condition, the models were created, has a great effect on the validation results.
The higher the temperature at which the characterization tests were performed, the more accurate
the parameters are, providing a better validation result of the model. The difference in the topology
of the 1st and 2nd order Thévenin model while the difference between the normal and advanced
characterization test methods will decrease the error of the validation results but mainly they will
allow for better dynamic representations and less linear errors at high and low SoC levels of the cell.
The 2nd order Thévenin model at 45 °C with advanced characterization and extended Kalman filtering
is found to be the most accurate model.
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Abbreviations
BEV Battery electric vehicle
BMS Battery management system
BoL Begin of life
cur Central Processing Unit
DDP Dynamic discharge dynamic pulse test
ECM Equivalent circuit models
EIS Electrical impedance spectroscopy
EoL End of life
EREV  Extended range electric vehicle
HEV Hybrid electric vehicle
HPPC  High pulse power characterization test
ICE Internal combustion engine
LAM Loss of active material
LLI Loss of lithium inventory
NMC Nickel manganese cobalt
oCcv Open circuit voltage
PEV Plug-in electric vehicle
PHEV  Plug-in hybrid electric vehicle
PNGV  Partnership for a new generation of vehicles
RC Combination of resistances and capacitance
SEI Solid electrolyte interphase
SoC State of charge
SoH State-of-health
WLTC  Worldwide harmonized light vehicle test procedure
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