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Abstract: In order to meet the requirements of high precision and fast response of permanent magnet
direct drive (PMDD) wind turbines, this paper proposes a fuzzy proportional integral (PI) controller
associated with a new control strategy for wind turbine converters. The purpose of the control
strategy is to achieve the global optimization for the quantization factors, ke and kec, and scale factors,
kup and kui, of the fuzzy PI controller by an improved particle swarm optimization (PSO) method.
Thus the advantages of the rapidity of the improved PSO and the robustness of the fuzzy controller
can be fully applied in the control process. By conducting simulations for 2 MW PMDD wind turbines
with Matlab/Simulink, the performance of the fuzzy PI controller based on the improved PSO is
demonstrated to be obviously better than that of the PI controller or the fuzzy PI controller without
using the improved PSO under the situation when the wind speed changes suddenly.

Keywords: permanent magnet direct drive (PMDD) wind turbine; converter; particle swarm
optimization (PSO); fuzzy PI controller

1. Introduction

With the decrease in conventional energy reserves and increased concerns about environment
pollution in recent years, it has become a primary mission for most countries to take actions to find
new kinds of clean and renewable energy for use. Wind power is one of the main clean and renewable
energy sources, and its penetration in the energy market has kept increasing in the past 20 years. The
US Department of Energy aims to achieve 20% of wind energy penetration in the utility market by the
end of 2030 [1]. The European Wind Energy Association reported that the goal is to generate 26%–34%
of the electricity from wind by 2030 [2]. China’s wind industry is forecasted to reach 216.6 gigawatts
(GW) in 2020 and at least 310.2 GW of installed capacity by 2030 [3]. The historic increase trend of
wind energy is illustrated in [4]. It is undoubtable that the global wind energy market will steadily
grow in the future.

Considering the large wind turbines installed worldwide, they are typically classified into two
types: one is with a geared generator concept, such as those equipped with doubly-fed induction
generators (DFIGs) and the other is based on a direct drive mechanism such as those using permanent
magnet generators. Each of them has advantages and disadvantages, as discussed in [5]. Their
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comparison in general was given in [4]. The direct drive wind energy conversion system (WECS)
based on permanent magnet synchronous generators (PMSGs) is one of the promising wind power
generation systems. Its advantages include higher reliability, better thermal characteristics, lower mass
per kilowatt output power, lower weight, and a smaller generator size [4]. A typical PMSG wind
power system configuration is illustrated in Figure 1. The wind turbine converts the kinetic energy of
the wind into mechanical energy and the mechanical energy is converted into electrical power through
the PMSG. The output of the PMSG is connected to the grid through a full-scale back-to-back converter.
This converter system is composed of both the generator side converter and the grid side converter. It
is an AC/DC/AC converter.

Energies 2016, 9, 343 

2 

comparison in general was given in [4]. The direct drive wind energy conversion system (WECS) 

based on permanent magnet synchronous generators (PMSGs) is one of the promising wind power 

generation systems. Its advantages include higher reliability, better thermal characteristics, lower 

mass per kilowatt output power, lower weight, and a smaller generator size [4]. A typical PMSG 

wind power system configuration is illustrated in Figure 1. The wind turbine converts the kinetic 

energy of the wind into mechanical energy and the mechanical energy is converted into electrical 

power through the PMSG. The output of the PMSG is connected to the grid through a full-scale back-

to-back converter. This converter system is composed of both the generator side converter and the 

grid side converter. It is an AC/DC/AC converter. 

 

Figure 1. Permanent magnet direct drive (PMDD) wind turbine system. 

As a key component in the interconnection of the generator and power grid in the permanent 

magnet direct drive (PMDD) wind turbines, the converter is supposed to not only control the 

generator but also transfer high quality power to the grid, and it is also required to realize the low 

voltage ride-through if needed [6]. Therefore, it is necessary to have an effective control strategy for 

the converter. Generally, the generator side converter and the grid side converter are controlled 

separately. The generator side converter is used to control the generator speed based on the 

maximum power theory by taking into account the generator current, consequently the DC voltage 

at the dc link will vary according to the wind speed. The grid side converter is to control the DC 

voltage by taking into account the grid voltage and current. Both converters are usually controlled 

by the proportional integral (PI) method [7], which is simple and practical. PI control, however, 

doesn’t have parameter optimization functions. The parameters of a PI controller cannot be adjusted 

in response to changes in the external conditions. Therefore, many scholars have made efforts to 

investigate new control methods. New control techniques and strategies associated with different 

converter architectures have been proposed and studied for different purposes. These new control 

techniques include fuzzy logic based control [8], adaptive control [9], linear quadratic control [10] 

like the disturbance accommodating control (DAC) [11] developed by the National Renewable 

Energy Laboratory (NREL) in the U.S.A. and tested in the Controls Advanced Research Turbine 

(CART)[12], quantitative feedback theory (QFT) control [13], Linear Parameter Varying (LPV) control 

[14], H∞ based control [15], sliding mode variable structure cascade control [16], state feedback control 

[17], predictive control [18], artificial neural network (ANN)-based control [19], and different hybrid 

approaches such as combination of fuzzy model and genetic algorithm (GA) and recursive least-

squares (RLS) optimization methods, combination of fuzzy ANN and particle swarm optimization 

(PSO) algorithm, hybrid of classic control and evolutionary strategy algorithm, hybrid of ANN and 

fuzzy inference system (FIS), combination of PI and sliding mode control (SMC), integration of model 

predictive control (MPC) and evolutionary computation, embedding fuzzy controller into model 

reference adaptive control framework and so on [20]. The advantages and shortcomings of each of 

these control techniques are summarized in Table 1. 

Figure 1. Permanent magnet direct drive (PMDD) wind turbine system.

As a key component in the interconnection of the generator and power grid in the permanent
magnet direct drive (PMDD) wind turbines, the converter is supposed to not only control the generator
but also transfer high quality power to the grid, and it is also required to realize the low voltage
ride-through if needed [6]. Therefore, it is necessary to have an effective control strategy for the
converter. Generally, the generator side converter and the grid side converter are controlled separately.
The generator side converter is used to control the generator speed based on the maximum power
theory by taking into account the generator current, consequently the DC voltage at the dc link will
vary according to the wind speed. The grid side converter is to control the DC voltage by taking
into account the grid voltage and current. Both converters are usually controlled by the proportional
integral (PI) method [7], which is simple and practical. PI control, however, doesn’t have parameter
optimization functions. The parameters of a PI controller cannot be adjusted in response to changes
in the external conditions. Therefore, many scholars have made efforts to investigate new control
methods. New control techniques and strategies associated with different converter architectures have
been proposed and studied for different purposes. These new control techniques include fuzzy logic
based control [8], adaptive control [9], linear quadratic control [10] like the disturbance accommodating
control (DAC) [11] developed by the National Renewable Energy Laboratory (NREL) in the U.S.A.
and tested in the Controls Advanced Research Turbine (CART) [12], quantitative feedback theory
(QFT) control [13], Linear Parameter Varying (LPV) control [14], H8 based control [15], sliding mode
variable structure cascade control [16], state feedback control [17], predictive control [18], artificial
neural network (ANN)-based control [19], and different hybrid approaches such as combination of
fuzzy model and genetic algorithm (GA) and recursive least-squares (RLS) optimization methods,
combination of fuzzy ANN and particle swarm optimization (PSO) algorithm, hybrid of classic control
and evolutionary strategy algorithm, hybrid of ANN and fuzzy inference system (FIS), combination of
PI and sliding mode control (SMC), integration of model predictive control (MPC) and evolutionary
computation, embedding fuzzy controller into model reference adaptive control framework and so
on [20]. The advantages and shortcomings of each of these control techniques are summarized in
Table 1.
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Table 1. Comparison of various control techniques applied to wind turbines.

Control techniques Advantage Disadvantage

Fuzzy logic [21] Maximizing the harvested power from the wind; improved
dynamic response; fuzzy controller is more flexible.

Context dependence on the wind site features, wind turbine types, etc.;
requiring quite consistent a priori knowledge;
may not guarantee an optimal response [22].

Adaptive
Does not need a priori information about the bounds on those

uncertain or time-varying parameters of a dynamic system, mainly for
pitch control, turbine and generator shaft torque control.

Require an adequate initialization of
the controller parameters and detailed system data [23].

Linear quadratic Linear quadratic performance indicator is regarded as the objective
function to determine the relationship between variables. The resulting control is not optimal, but it is feasible and effective.

Quantitative feedback theory (QFT) [21] For robust control; effective for nonlinear systems with parameter
uncertainty using both linearized and nonlinear model.

Based on the frequency-domain analysis; requires a lot of
computational and graphical analysis.

Linear parameter varying (LPV)
Nonlinear dynamic system, only the parameters are variable,

commonly used measure performance based on norm,
stable and robust control.

Complex modeling; a large amount of calculation;
complex control strategies.

H8
Good robust control; the design idea is clear, especially

for multi-input multi-output system to use.
Theory complexity; large calculation cost

and limited parameter change scope.

Sliding mode variable structure cascade control Fast response, simple, robust. Prone to buffeting.

State feedback control Fully reflect the characteristics of the internal system; effectively
improve the system performance.

State variables often cannot be measured directly from outside of the
system; as a result, its implementation is often more complex.

Predictive control Convenience for modeling, not require in-depth understanding of the
internal mechanism of the process; robust control.

Stability constraints may affect the achievement of the control
performance and it will also affect the real-time algorithm. For

nonlinear systems, state trajectory generation
tends to be more difficult.

Artificial neural network (ANN)-based control With parallel processing and self-learning ability.
Requires a lot of training samples to train the network; preparation of
datasets for ANN training is largely user- dependent; ANN models do

not yield explicit mathematical formulae [24].
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Among the control techniques summarized in Table 1, fuzzy logic control is a basic modern control
method that is often used. Its advantages include that it does not require complicated mathematical
calculations and it can cope well with uncertainties and nonlinearities, as discussed in many research
articles. Reference [25] is one of them, for example, where PI and fuzzy controllers were tested to
extract the maximum power from the wind. Simulation results were given to show the performance
of the proposed fuzzy control system in maximum power points tracking (MPPT) in a WECS under
various wind conditions. In [26], the fuzzy logic based voltage and speed controller for autonomous
PMSG-WECS was discussed, where the dynamic performance of the proposed controller was tested
under the situations of decreasing, increasing and constant wind speed with balanced/unbalanced
non-linear load. In [8], a fuzzy-logic based MPPT method for a standalone wind turbine system was
proposed. The hill climb searching (HCS) method was used to achieve the MPPT of the PMSG wind
turbine system. In [27], two fuzzy controllers were proposed. The first one is dedicated to the MPPT
of a variable speed PMSG wind turbine and the second fuzzy controller has the objective to manage
both the production and the storage of electricity for optimum performance of the system in respect
of load demand. A sliding mode voltage control strategy was proposed in [28] for capturing the
maximum wind energy based on fuzzy logic control, which was illustrated to have higher overall
control efficiency than the conventional proportional integral derivative (PID) control. In [29], fuzzy
logic is implemented to determine the torque command by using the inertia of a wind turbine. The
inputs of the fuzzy logic are given by the operating point of the rotational speed of the PMSG and
the difference between the wind turbine torque and the generator torque. With this method, the
generator torque is smoothed and kinetic energy generated by the inertia of the wind turbine is used
to smooth the PMSG power fluctuations. A novel control strategy based on fractional-order PIµ

controller for the variable-speed operation of wind turbines with PMSG and full-power converters
is given in [30] where the SMC strategy is applied as it can present some attractive features in wind
turbine control and operation. One of these features is the robustness to parametric uncertainties
of the WECS as well as to grid disturbances [31]. Li et al. [32] presented a direct-current based d-q
vector control technique by integrating fuzzy, adaptive and traditional PID control technologies into
an optimal control configuration. The proposed control approach was demonstrated to have superior
performance in various aspects and to be effective not only in achieving the desired PMSG control
objectives but also in improving the overall system performance. A short technical review of WECSs
is given in [33] where the control strategies of controllers for both DFIG-WECS and PMSG-WECS
and various MPPT technologies for efficient production of energy from the wind are discussed. It
is clearly shown that to develop new control strategies for various controllers applied to different
platforms of wind turbines is still a developing trend. It is noted that the most suitable and optimized
solutions/approaches to extracting maximum power of the installed systems are each of an ad-hoc
nature, rather than generalized solutions [33].

In order to meet the requirements of high precision and fast response of PMDD wind turbines,
this present paper proposes a fuzzy PI controller based on an improved PSO. Different from other
references like [20] and [34], four parameters of the fuzzy controller including the quantization factors
of ke and kec, and scale factors of kup and kui, are optimized at the same time using the improved PSO.
The parameters of the fuzzy controller can be adjusted in real time according to environment changes
to improve the robustness and precision of the controller for achieving the control target. Overshoot
and regulating time are two indicators for evaluating the merits of the controller when wind speed
step changes occur [35]. As wind speed varies continuously, Root-Mean-Square Error (RMSE) is used
to measure the deviation of the calculated values with the reference value. The validity of the control
algorithm developed has been verified through simulation for a 2 MW PMSG-WECS.

2. Analysis of Converter Control Strategy

The running of the PMDD wind power generation system can be divided into three states
including starting, MPPT and constant power production. This paper focuses on the MPPT stage
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when the wind speed is mainly below the rated wind speed. At this time, the rotational speed of the
generator needs real-time adjustment according to the wind speed so as to realize the tracking control
of maximum power [36]. For higher efficiency of the wind turbines, the rotor flux orientation vector
control method is applied to the generator side converter control. At the same time, when the wind
speed and external circumstances change, the voltage orientation control strategy is used to control the
grid side converter in order to maintain the voltage stability of the DC side capacitance and realize
the decoupling control of active power and reactive power. Space vector pulse width modulation
(SVPWM) [37] is adopted in both the generator side converter and the grid side converter control.

2.1. The Control Strategy of Generator Side Converter

The generator side converter generally adopts vector control based on rotor flux orientation [38].
The d-axis is oriented to the direction of the rotor flux, and q-axis is 90˝ ahead of d-axis. Assuming
the direction of current flowing into the generator is positive, the d-axis and q-axis components
of inductance of the stator winding are equal to Ls, the voltage equation of the stator of PMSG in
synchronous rotating d-q coordinate system can be expressed as:

#

ud “ Rsid ` Ls
did
dt ´ωrLsiq

uq “ Rsiq ` Ls
diq
dt `ωrLsid `ωrψf

(1)

where, ud, uq, id, and iq are d-axis and q-axis components of the stator’s terminal voltage and current;
Rs and Ls are resistance and inductance of stator winding, respectively;ωr is electrical angular velocity
of generator; and ψf is flux linkage of the rotor.

When id is zero (i.e., id* = 0), the electromagnetic torque of PMSG, Te, is:

Te “
3
2

Npiqψf (2)

where, Np is the pole pairs of generator.
PMDD wind turbines don’t have gear boxes. The wind wheel is directly connected with the

generator rotor through the rotation shaft so that the generator rotor speed is equal to the speed of
the wind wheel. The mathematical model of transmission system of PMDD wind turbines can be
expressed as:

dωm

dt
“

1
J
pTe ´ Tm ´ Bωrq (3)

where, ωm is mechanical angular velocity of rotor; J is moment of inertia of rotor; B is damping
coefficient; and Tm is mechanical torque of wind turbine.

Equation (2) shows that the electromagnetic torque Te can be controlled by controlling iq.
Equation (3) shows that the rotor speed ωm can be further controlled by controlling Te to realize
the tracking control of maximum power.

Equation (1) gives that the stator currents, id and iq, are coupled with each other. The precise
linearization control can be achieved by decoupling of id and iq through the feed-forward compensation
ofωr Ls iq and ´ωr (Ls id + ψf). Define:

#

ud
˚ “ Rsid ` Ls

did
dt “ ud `ωrLsiq

uq
˚ “ Rsiq ` Ls

diq
dt “ uq ´ωrLsid ´ωrψf

(4)

They can be calculated through the PI controller as:

#

ud
˚ “ kpdpid

˚
´ idq ` kid

r
pid
˚
´ idqdt

uq
˚ “ kpqpiq˚ ´ iqq ` kiq

r
piq˚ ´ iqqdt

(5)

where, id* is the current reference value of id, and kpd, kid, kpq and kiq are constants.
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The control of the generator side converter is designed as shown in Figure 2. Using the vector
control strategy of rotor flux orientation with id* = 0, the double-closed loop control system including
outer speed loop and inner current loop can be established. To obtain good dynamic performance, the
new proposed controller is adopted in the speed closed-loop and PI controller is adopted in the current
closed-loop. The speed ωref can be obtained according to the best tip-speed-ratio λopt (λopt =ωref R/v,
where R is radius of wind turbine rotor, v is wind speed); and then compared with the measured
speed, ωm. The current reference value iq* can be obtained by the speed loop controller through
adjusting the electromagnetic torque. Through the actually measured phase current, id and iq can be
calculated through the Clarke transform and Park transform. After comparing id* with id, iq* with iq;
the deviations are adjusted by the inner current loop of PI controller. The voltages, ud* and uq*, are
then obtained, and ud and uq can be calculated. After conversion, uα and uβ can be known. In such a
way as mentioned above, the generator side converter can be controlled through SVPWM.
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Figure 2. Control schematic of the generator side converter.

2.2. The Control Strategy of Grid Side Converter

For the grid side converter, this present paper adopts an oriented vector control technique based
on the grid voltage. The basic control objectives are: (1) ensuring the stability of DC voltage and
(2) ensuring the power up to the standard to incorporate into the grid.

In this study, the direction of grid side voltage vector is selected as d axis and 90˝ ahead of the
direction of the voltage vector is as q axis. Then the voltage equation of grid side converter can be
written as follows [39]:

#

ugd “ ´Lg
digd
dt ´ Rgigd `ωgLgigq `Vgd

ugq “ ´Lg
digq
dt ´ Rgigq ´ωgLgigd `Vgq

(6)

where, Rg and Lg are the grid side equivalent resistance and inductance, respectively; ugd and ugq are
the control voltage components of d-axis and q-axis, respectively, in grid side converter; igd and igq

are grid side current components of d-axis and q-axis, respectively; Vgd and Vgq are the grid voltage
components of d-axis and q-axis, respectively; ωg is synchronous electrical angular velocity of the grid.
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For Vgq = 0 and Vgd = |Vg|, the active power and reactive power delivered to the power grid
can be expressed as:

#

Ps “
3
2 pVgdigd `Vgqigqq “

3
2 Vgdigd

Qs “
3
2 pVgqigd ´Vgdigqq “ ´

3
2 Vgdigq

(7)

Regardless of converter power loss, the DC side capacitor voltage can be expressed as:

CUdc
dUdc

dt
“ Pgen ´ Ps (8)

where, C is capacity value; Udc is voltage of the DC side capacitor; Pgen is the active power output of
the generator side converter.

From Equations (7) and (8), it is known that the active power can be controlled by controlling
the d-axis component, igd, DC voltage is further controlled, and finally the stability of DC voltage is
realized. The output reactive power can be controlled by controlling the q-axis component, igq. If igq is
zero, the control of unity-power factor can be established.

Equation (6) shows that igd and igq are coupled with each other. Decoupling control of igd and igq

can be realized by feed-forward compensation of ´(ωg Lg igq + Vgd) and ωg Lg igd (Vgq = 0), which is
similar to the control of generator side converter. Define:

u˚gd “ Lg
digd
dt ` Rgigd

u˚gq “ Lg
digq
dt ` Rgigq

(9)

They can also be calculated through PI controller as shown below:

#

ugd
˚ “ kpgdpigd

˚
´ igdq ` kigd

r
pigd

˚
´ igdqdt

ugq
˚ “ kpgqpigq

˚
´ igqq ` kigq

r
pigq

˚
´ igqqdt

(10)

where, kpgd, kigd, kpgq and kigq are selected constants of PI controller.Energies 2016, 9, x 5 of 14 
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The control of grid side converter is designed as shown in Figure 3. Using the grid voltage
orientation control strategy, the grid side control is a double-closed loop system including an outer
voltage loop and inner current loop. The proposed controller is adopted in the voltage closed loop and
PI controller is adopted in the current closed-loop. Through the comparison of DC bus voltage Udc
with the given reference voltage, Udcref, the current igd* can be obtained by adjusting the controller. igd
and igq can be set up through transforming of the converter output current. For igq* = 0, ugd* and ugq*
can be obtained. Similarly, Vgd can be obtained through transformation of the three-phase voltages Va,
Vb and Vc; and then the output voltages ugd and ugq can be calculated. After conversion, uα and uβ

can be obtained. In such a way, the grid side converter can be controlled through SVPWM.

3. Fuzzy PI Controller of the Converter Based on Improved Particle Swarm Optimization

3.1. The General Fuzzy PI Controller

The “controller” as shown in Figures 2 and 3 can be a PI controller, fuzzy PI controller or another
new type of controller (like the fuzzy PI controller based on improved PSO). As mentioned above, the
PI controller is simple and practical; however, it doesn’t have parameter optimization functions. In
order to overcome the shortcomings of the PI controller, people usually use the fuzzy PI controller
in the converter outer loop. The general structure of the fuzzy PI controller is shown in Figure 4. In
order to achieve good control performance, the fuzzy PI controllers are designed for the generator side
converter and the grid side converter. They both have two inputs and two outputs. The error and the
error rate of the reference speed and the actual speed are the inputs to the generator side controller
and the outputs are the variations of the speed loop PI parameters. The error and the error rate of
the reference voltage and the actual voltage are the inputs to the grid side controller and the outputs
are the variations of the voltage loop PI parameters. The membership functions of the controllers all
adopt triangle membership functions. After determining the reasonable quantization factors and scale
factors of input variables and output variables, the parameters of PI controller based on the fuzzy rules
can be adjusted. In this paper, the quantization factors are represented by ke and kec, and the scale
factors are expressed by kup and kui, respectively, see Figure 4.
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Figure 4. Structure of fuzzy PI controller.

The fuzzy PI controller does not require a precise mathematical model of controlled object, and
is suitable for nonlinear systems. It has strong robustness with appropriate fuzzy control rules [26],
but the fixed fuzzy control is usually not the best under all kinds of states due to the instability of
the system input. Thus the fuzzy control rules or parameters need to be automatically adjusted and
modified during operation in order to get the best control [40], which, however, cannot be achieved
by a general fuzzy PI controller. Therefore, in this paper, the fuzzy control parameters (quantization
factors of ke and kec, scale factors of kup and kui) are dynamically regulated using improved PSO for
the fuzzy controller as described below. The designed controller is called fuzzy PI controller based on
IPSO, which ensures the fuzzy controller will have optimal parameters automatically when the wind
changes suddenly.
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3.2. Improved Particle Swarm Optimization

As a new kind of global optimization algorithms, PSO was first proposed by Eberhart and
Kennedy in 1995 [41]. Compared with other optimization techniques such as the ones based on genetic
algorithms (GA) and ANNs, PSO has the merits of high search speed, high efficiency, easy to find
the optimal solution, less set parameters, etc. It has been widely utilized due to its simple structure.
The PSO as well as the PSO combined with fuzzy logic or genetic algorithms have been reported to
be applied to power systems for various purposes, for example, for reactive power planning [42],
Automatic Generation Control (AGC) of multi-area power systems with different energy resources [43],
compensation of parametric and non-parametric uncertainties arising in modern power systems [44],
enhancing power quality [45], damping of power system oscillations [46], and long-term generator
maintenance scheduling [47]. The application of PSO to wind turbine control problems has been
mentioned [48], but the research work found is limited.

The main idea of the PSO is to find the optimal solution of a complicated problem through
iterations by initialization of a group of random particles. The particles update themselves by tracking
two extrema in each iteration. One is the optimal solution produced by the self-iteration of particles
namely individual extremum pbest and the other is the globally optimal solution, namely the global
extremum gbest.

The position and velocity of particles are updated according to the following equations:

Vpk` 1q “ Vpkq ` c1r1pkqppbestpkq ´ Ppkqq ` c2r2pkqpgbestpkq ´ Ppkqq (11)

Ppk` 1q “ Ppkq `Vpk` 1q (12)

where V is velocity of the particle; c1 and c2 are learning factors (in general, c1 = c2 = 2); r1 and r2 are
random numbers between 0 and 1; P is position of the particle; and k is the current iteration number.

The previous research shows that the optimization effect becomes better when the basic velocity
V is multiplied by the inertia weight coefficient w [49], so that the PSO formula of the velocity can be
written as:

Vpk` 1q “ wVpkq ` c1r1pkqppbestpkq ´ Ppkqq ` c2r2pkqpgbestpkq ´ Ppkqq (13)

In the initial stage of optimization, a large inertia weight is beneficial to strengthening the global
search ability of the algorithm; but in the later stages of optimization, a small inertia weight can
strengthen the local search ability. This present paper adopts the method of calculating the inertia
weight coefficient, w, according to number of iterations, k:

wpkq “ wmax ´
wmax ´wmin

N
ˆ k (14)

where, wmax is the maximum and wmin is the minimum value of the inertia weight coefficient; N is the
maximum number of iterations.

In the same way, in order to allow the algorithm to search in the whole optimization space and
avoid falling into local minima, and enhance the algorithm convergence speed and accuracy in the
late, this present paper adjusts the learning factors in the searching process according to the following:

c1 “ c1max ´
pc1max´c1minq

N ˆ k
c2 “ c2min `

pc2max´c2minq
N ˆ k

(15)

where, cmax is the maximum and cmin is the minimum value of the corresponding factor, c.
Here, an improved PSO (IPSO) is defined by Equation (13) associated with Equations (12), (14)

and (15). During the updating, the particle position P and velocity V are restricted in the allowable
range. When the maximum number of iterations or the performance index is reached, the output gbest
is the global optimal solution.
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3.3. The Design of Fuzzy PI Controller Based on Improved Particle Swarm Optimization

The structure of an adaptive fuzzy PI controller based on IPSO is shown in Figure 5. The specific
steps of realization of the PSO are as follows [50]:

(1) Initializing the particle swarm. The initial position and velocity of every particle are randomly
generated in the allowable range. Then the individual extremum pbest is the initial position and
global extremum gbest is the optimal value of the individual extremum.

(2) By bringing the initial values into Equations (12)–(15); new position and velocity of the particle
(for next iteration) will be determined. A new individual extremum and global extremum can be
then obtained after calculating the fitness function F “

r
tpeptqq2dt. If the new global extremum

is better than the last one, the global extremum is updated with the new one.
(3) Particles continue searching in the search space until the performance index of the system is

satisfied or the maximum number of iterations is reached. After that, the program stops and the
particle position renders the optimal values of the four parameters of ke, kec, kup and kui of the
fuzzy controller. Otherwise, the program goes back to step (2) for further searching.
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4. Simulation Analysis

4.1. Simulation Model

Through the analysis of PWM converter control, in this paper the simulation model of the whole
unit is built using Matlab/Simulink. The quantization factors and scale factors of the fuzzy controller
are optimized by the improved PSO to guarantee the tracking of the optimized rotating speed and the
stability of the DC voltage.

The simulation parameters of the wind turbines are: radius of wind turbine rotor, R = 38.7 m;
rated wind speed, v = 12 m/s; air density, ρ = 1.225 kg/m3; the best tip-speed-ratio, λopt = 8; equivalent
moment of inertia, J = 500 kg¨m2; rated power is 2 MW; number of pole pairs of generator, Np = 40;
inductance Ls = Lg = 2.56 mH; stator resistance, Rs = 0.01 Ω; grid side equivalent resistance, Rg = 80 Ω;
flux of permanent magnet, ψf = 1.67 Wb; viscosity coefficient of transmission, B = 0.005 N/(m/s).

According to [49,51], we select a range that contains the corresponding parameter value of one
parameter of the fuzzy controller. Then the initial value of the IPSO can be determined in that range.
The length of the selected interval has little effect on the optimization results, but has an impact on
the optimization time. Of course, in order to save time, a small interval may be selected. As a result,
the improved PSO parameters of generator side converter are selected as: w = 0.8–1.2; c1 = 2.5–5.0;
c2 = 0.5–2.5; N = 20; the number of particles is 10. The initial position of one particle is [ke(0), kec(0),
kup(0), kui(0)], the components are random numbers between [0, 0.6], [0, 0.2], [5, 40] and [50, 300],
respectively. The initial velocity of one particle is [ve(0), vec(0), vup(0), vui(0)], the components are of
random numbers between [´0.02, 0.02], [´0.02, 0.02], [´4, 4] and [´30, 30], respectively.
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Similarly, the improved PSO parameters of the grid side converter are selected as: w = 0.8–1.2;
c1 = 2.5–5.0; c2 = 0.5–2.5; N = 30; the number of particles is 10. The components of the initial position
of one particle are random numbers between [0, 0.25], [0, 0.01], [0, 10] and [0, 50], respectively.
The components of the initial velocity of one particle are random numbers between [´0.025, 0.025],
[´0.001, 0.001], [´1.000, 1.000], and [5.000, 5.000], respectively.

4.2. Analysis of Simulation Results

When the wind speed suddenly changes, a comparison of control effects among the IPSO-fuzzy
PI controller, the conventional PI controller (kpd = kpq = 550, kid = kiq =5000, kpgd = kpgq = 10,
kigd = kigq =100, these parameters are obtained by trial and error method) and the fuzzy PI controller
(generator side: ke = 3/10, kec = 6/100, kup = 110/6, kui = 1000/6, grid side: ke = 6/500, kec = 6/2000,
kup = 20/6, kui = 20/6 (these parameters are obtained by calculation and tests) can be made. An
extreme case is used to demonstrate the response of the controller. The changing of wind speed is
shown in Figure 6. The wind speed is 8 m/s before t = 1 s and increases suddenly to the rated speed
12 m/s at t = 1 s, then it remains till at t = 2 s, it increases suddenly to 14 m/s, and then it remains till
at t = 3 s, then it decreases suddenly to 10 m/s.
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Figure 7. Changing of generator speed.
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Figure 8. Changing of DC voltage.

The overshoot and regulation time of the generator speed controlled by the three controllers are
shown in Figure 7 and Table 2. It can be seen that the control for achieving the generator rated speed is
realized by the generator side converter when the step change of wind velocity occurred. The overshoot
and regulation time of the IPSO-fuzzy PI controller are less than that of the fuzzy PI controller and
conventional PI controller. The overshoot given by the IPSO-fuzzy PI controller is reduced 3.3%
compared with the fuzzy PI controller and 4.8% from the PI controller while the regulation time is
reduced 41 ms from the fuzzy PI controller and 51 ms from the PI controller, respectively, when the
wind speed changes suddenly from 8.0 m/s to 12.0 m/s. The overshoot given by the IPSO-fuzzy PI
controller is reduced 1.8% by comparing with the fuzzy PI controller and 2.7% from the PI controller
while the regulation time is reduced 45 ms from the fuzzy PI controller and 55 ms from the PI controller,
respectively, when the wind speed changes suddenly from 12.0 m/s to 14.0 m/s. The overshoot given
by the IPSO-fuzzy PI controller is reduced 4.3% compared with the fuzzy PI controller and 6.2% from
the PI controller while the regulation time is reduced 39 ms from the fuzzy PI controller and 48 ms
from the PI controller, respectively, when the wind speed changes suddenly from 14.0 m/s to 10.0 m/s.

Table 2. Overshoot and regulation times of the generator speed.

Wind speed (m/s)
Overshoot (%) Regulating time (s)

PI Fuzzy PI IPSO-Fuzzy PI PI Fuzzy PI IPSO-Fuzzy PI

8 36.2 29.5 18.4 0.399 0.233 0.203
12 12.5 11 7.7 0.183 0.173 0.132
14 6.7 5.8 4.0 0.179 0.169 0.124
10 12.3 10.4 6.1 0.182 0.173 0.134

The overshoot and regulation time of the DC voltage controlled by the three controllers are shown
in Figure 8 and Table 3. The control effect of IPSO-fuzzy PI controller can be clearly observed to have
less overshoot and faster regulation. The overshoot given by the IPSO-fuzzy PI controller is reduced
to 12.6% from 15.3% and 17.7% compared with the fuzzy PI controller and the PI controller while
the regulation time is reduced to 0.234 s from 0.239 s and 0.242 s from the fuzzy PI controller and
the PI controller, respectively, when the wind speed changes suddenly from 8.0 m/s to 12.0 m/s.
The overshoot given by the IPSO-Fuzzy PI controller is reduced to 6.5% from 10.9% and 15.1% in
comparison with the fuzzy PI controller and the PI controller while the regulation time is reduced to
0.233 s from 0.236 s and 0.240 s from the fuzzy PI controller and the PI controller, respectively, when
the wind speed changes suddenly from 12.0 m/s to 14.0 m/s. The overshoot given by the IPSO-fuzzy
PI controller is reduced to 9.5% from 13.1% and 16.9% in comparison with the fuzzy PI controller and
the PI controller while the regulation time is reduced to 0.241 s from 0.249 s and 0.258 s from the fuzzy
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PI controller and the PI controller, respectively, when the wind speed changes suddenly from 14.0 m/s
to 10.0 m/s.

Table 3. Overshoot and regulation times of the DC voltage.

Wind speed (m/s)
Overshoot (%) Regulating time (s)

PI Fuzzy PI IPSO-Fuzzy PI PI Fuzzy PI IPSO-fuzzy PI

8 44.4 24.1 18.5 0.312 0.308 0.3
12 17.7 15.3 12.6 0.242 0.239 0.234
14 15.1 10.9 6.5 0.240 0.236 0.233
10 16.9 13.1 9.5 0.258 0.249 0.241

Figure 9 shows actual wind speed data collected in a wind farm. Comparisons of generator
speed change and DC voltage change among the IPSO-fuzzy PI controller, fuzzy PI controller and
conventional PI controller are shown in Figures 10 and 11.
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In Figure 10, the RMSE of the IPSO-fuzzy PI controller is 6.38 r/m, while the RMSEs of the fuzzy
PI controller and the PI controller are 7.35 r/m and 8.56 r/m. In Figure 11, the RMSE of the IPSO-fuzzy
PI controller is 239.01 V, while the RMSEs of the fuzzy PI controller and the PI controller are 304.61 V
and 360.67 V. When RMSE is smaller, the output of the controller is closer to the ideal reference value.
The obtained RMSEs also show the advantages of the IPSO-fuzzy PI controller.

5. Conclusions

In this paper, a new way of combining the PSO and fuzzy control is discussed. This strategy gives
full play to the rapidity of improved PSO by global optimization of the four parameters of the fuzzy PI
controller. The new method is used in the control of the generator side and grid side converter for a
PMDD wind turbine. Compared with the PI controller and fuzzy PI controller, the proposed fuzzy
PI controller based on IPSO not only meets the requirements under the situation when wind speed
changes suddenly, but also ensures the fuzzy PI controller to have optimal parameters to achieve the
optimum control, which makes the adjustment process faster.

Based on the simulation, the specific results have been observed and discussed in Section 4.2 in
terms of overshoot and regulation time of generator speed and DC voltage for different ranges of wind
speed change. It is evidenced that the IPSO-fuzzy PI controller can give better performance than a
fuzzy PI controller or PI controller when there is a sudden change of wind speed in power production.

With the actual wind speed recorded from a wind farm in the simulation, the RMSE of the
generator speed given by the IPSO-fuzzy PI controller is reduced to 6.38 r/m from 7.35 r/m and
8.56 r/m by comparing with the fuzzy PI controller and the PI controller while the RMSE of the DC
voltage is reduced to 239.01 V from 304.61 V and 360.67 V from the fuzzy PI controller and the PI
controller, respectively.

This paper focuses only on the new control strategy of a wind turbine converter for the MPPT
stage when the wind speed is mainly below the rated level. There is potential to extend the study
to other stages. Meanwhile, the actual operation of the system may drop in grid voltage or load
imbalance, but the present paper only considers the normal situation. Moreover, the IPSO also needs
time to run and it might require new hardware to be installed in practical implementation. As a
result, when implementing the controller in reality in a microprocessor, the calculation speed of the
microprocessor needs to be higher in order to complete the complex arithmetic operations during the
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wind speed sampling interval. In fact, however, the wind speed is usually sampled every minute in
the current industry practice, completing the intelligent control algorithm in microprocessor in such a
short time is difficult so that, in actual operation, enquiry tables should be generated offline according
to different simulations and then the microprocessor can query the lookup table online. How much or
how long after the wind speed change before using the IPSO needs to be tested and verified before the
real application. Therefore, further research will be pursued on practical application of the developed
fuzzy PI controller based on improved PSO.
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