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Abstract: To deal with the problem of generation rate constraint (GRC) during load frequency
control (LFC) design for a multi-area interconnected power system, this paper proposes an
anti-windup controller design method. Firstly, an H∞ dynamic controller is designed to obtain
robust performance of the closed-loop control system in the absence of the GRC. Then, an
anti-windup compensator (AWC) is formulated to restrict the magnitude and rate of the control
input (namely power increment) in the prescribed ranges so that the operation of generation unit
does not exceed the physical constraints. Finally, the anti-windup LFC is tested on the multi-area
interconnected power systems, and the simulation results illustrate the effectiveness of the proposed
LFC design method with GRC.

Keywords: load frequency control (LFC); generation rate constraint (GRC); anti-windup control;
robust controller

1. Introduction

In a multi-area interconnected power system, it is important for the system’s operation to keep
the active power balance and regulate the tie-line power at the scheduled value. Load frequency
control (LFC) plays several key roles in the active power control of the interconnected power
system [1,2], such as counteracting the load fluctuation, stabilizing the system frequency, regulating
the tie-line power, and narrowing the area control error (ACE). Thus, the LFC is vital for the security
and stability of power system.

On the issue of LFC design for a power system, an amount of work has been done in recent years.
The conventional LFC usually adopts the proportional-integral (PI)-type controller because it has
simpler structure and fewer tuning parameters. However, this kind of controller has shortcomings
in terms of coping with the operating point change and the load disturbance, since they are
designed on nominal operating points with fixed parameters. In order to obtain better performance
of the PI-type LFC, the parameter optimization methods of the PI-type controller are proposed
in [3–5]. To enhance the robustness and reliability of the control system, some fuzzy-logic-based
LFC methods are introduced in [6–9]. In addition, some advanced control technologies are utilized to
improve LFC performance, such as sliding mode methods [10–12], optimal or suboptimal feedback
control methods [13–16], and robust control methods [17–19]. Considering the delay in the open
communication network, the authors in [20–22] analyze the influence of time delay on the LFC
and present the relevant controller design methods. To guarantee compliance with the control
performance standards (CPS) of North American Electric Reliability Council (NERC) and reduce
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wear and tear of generators, a decentralized model predictive control method is used to deal with
the LFC problem [23]. For accommodating unexpected load change and faults, the supervisory
control strategies in [24,25] are proposed to solve the load and frequency set-point problem. It is well
known that due to physical limitations, generation units have inherent generation rate constraints
(GRC), such as ramp rate constraints and upper-lower bound constraints. If GRC is not considered
adequately in LFC design, the controller will not yield excellent performances, and even the
closed-loop system stability may be destroyed under disturbances [26–28]. In the aforementioned
research work, some studies make tentative consideration on the GRC problem. In [1,7,8,12], GRC is
considered in the simulation, but neglected in the controller design. Therefore, the validity of these
methods to deal with GRC lacks theoretical support. Towards LFC design with GRC, the extended
integral control method in [26], the biased PI dual mode control method in [27], the Type-2 fuzzy
approach in [28], and the anti-GRC PI-type controller in [29,30] are adopted to deal with the GRC
problem. Unfortunately, the strict mathematical proof in the above methods is still absent.

Focusing on the LFC design with GRC, this paper proposes an anti-windup LFC design method
for the multi-area interconnected power system. The designed LFC consists of a robust H∞ controller
and an anti-windup compensator (AWC). The former is used to guarantee the stability and robustness
of the closed-loop system without constraints, and the latter takes charge of restricting the rate and
magnitude of control input in the prescribed ranges to make the operation of generation unit meet
the GRC requirement. For verifying the proposed method, several multi-area interconnected power
systems are employed for testing. The comparative simulation results show that the performances of
the LCF are improved by the design method of this paper.

2. Load Frequency Control Model

The large interconnected power system is usually partitioned into several areas for management
and control. Generally, for reducing the difficulty in the LFC design, each area in the LFC model
is simplified to be an equivalent generator with a turbine and a governor shown in Figure 1.
The dynamics of the generator, the turbine and the governor are described by three first-order inertial
processes, respectively. In addition, since the generation unit has the physical operation limitations,
the LFC model includes the GRC, namely the ramp rate and the upper-lower bound constraints of
the generation units. As one knows, the GRC may generate adverse impact on the LFC performances
if the GRC is not considered sufficiently in LFC design.
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Figure 1. Load frequency control (LFC) diagram of Area i. ACE: area control error; GRC: generation
rate constraint.

The GRC of LFC model shown in Figure 1 includes the magnitude and rate saturation of the
states. This kind of state saturation nonlinearity causes much difficulty in controller design.

Remark 1. For a real power system, we know the fact that the generation unit will operate in the
linear region (without touching the saturation bounds), if the power increment is limited in the
magnitude and rate ranges appropriately. In other words, the generation unit can meet its GRC when
the proper rate and magnitude constraints are imposed on the control signal of the LFC. Based on
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the above fact, the LFC design with GRC can be solved through dealing with the problem on the
controller synthesis subject to the magnitude and rate saturation of the control. Assuming that the
deigned controller makes the generation unit operate in the linear region, the nonlinear GRC of the
LFC model can be removed, and thus the original LFC model can be modified into a new one as
shown in Figure 2.
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Figure 2. Modified LFC diagram of Area i.

According to the LFC dynamic model diagram shown in Figure 2, the state-space LFC model
can be written as: 

∆ ḟi =
1

Hi

(
∆Pti − ∆PLi − ∆Ptiei − Di∆ fi

)
∆Ṗti = − 1

Tti
(∆Pti − ∆Pgi)

∆Ṗgi = − 1
Tgi

(∆Pgi − ∆Pci +
1
Ri

∆ fi)

∆Ṗtiei = γi∆ fi − ηi

İACEi = ACEi = βi∆ fi + ∆Ptiei

yi1 = ∆ fi

yi2 = ACEi = βi∆ fi + ∆Ptiei

yi3 = IACEi

(1)

where γi =
N
∑

j=1,j 6=i
Tij; ηi =

N
∑

j=1,j 6=i
Tij∆ f j; fi denotes the system frequency; Pti denotes the turbine

power; Pgi denotes the governor valve; Pci denotes the governor power setpoint; PLi denotes the load
demand; Ptiei denotes the net tie-line power; ACEi denotes the area control error; IACEi denotes the
integral of ACEi; ∆ denotes the deviation from normal value; βi denotes the frequency bias coefficient;
Ri denotes the droop coefficient; Tgi denotes the governor time constant; Tti denotes the turbine time
constant; Hi denotes the area aggregate inertia constant; Di denotes the area load damp constant; and
Tij denotes the tie-line synchronizing coefficient.

Usually, we focus on the frequency deviation, the ACE and the control energy cost when
evaluating the LFC performances. Thus, the controlled variables z for the H∞ control design are
selected as follows: 

zi1 = ∆ fi

zi2 = IACEi

zi3 = ∆Pci

(2)

For convenience, by defining the state variables x = [∆ fi, ∆Pti, ∆Pgi, ∆Ptiei , IACEi ]
T ∈ R5,

the control variable u = ∆Pci ∈ R1, the output variables y = [yi1, yi2, yi3]
T ∈ R3 , the controlled

variables z = [zi1, zi2, zi3]
T ∈ R3, and the disturbance variables d = [∆PLi,ηi]

T ∈ R2, the state-space
model P consisting of Equations (1) and (2) can be rewritten as:

P :


ẋ = Ax + Buu + Bdd
y = Cyx + Dyuu + Dydd
z = Czx + Dzuu + Dzdd

(3)



Energies 2016, 9, 330 4 of 18

where:

A =


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Cy =

 1 0 0 0 0
βi 0 0 1 0
0 0 0 0 1

 ; Dyu =

 0
0
0

 ; Dyd =

 0 0
0 0
0 0



Cz =

 1 0 0 0 0
0 0 0 0 1
0 0 0 0 0

 ; Dzu =

 0
0
1

 ; Dzd =

 0 0
0 0
0 0


The control input with rate and magnitude saturations shown in Figure 2 can be defined as:

u = satm(ϕ) =


m, ϕ > m
ϕ, m ≤ ϕ ≤ m
m, ϕ < m

ϕ̇ = satr(µ) =


r, µ > r
µ, r ≤ µ ≤ r
r, µ < r

(4)

where sat(·) denotes saturation function, [m, m] and [r, r] denote the magnitude bound and the rate
bound, respectively.

3. Anti-Windup Load Frequency Controller Design

In this section, we design the LFC to ensure that the control input never exceeds the magnitude
limit and the rate limit to meet the GRC. Based on the LFC model P , the anti-windup schemes [31,32]
are employed to synthesize the LFC in the following subsections.

3.1. Original H∞ Controller Design

According to the anti-windup scheme, a robust H∞ controller is designed on the basis of the LFC
model P in absence of the control input saturation in advance. Assuming that the system (A, Bu, Cy)

is controllable and observable, we can design an H∞ dynamic controller C̄ with the following form:

C̄ :

{
ẋc̄ = Ac̄xc̄ + Bc̄uc̄

yc̄ = Cc̄xc̄ + Dc̄uc̄
(5)

where xc̄ ∈ R5 are the state variables of the controller; uc̄ ∈ R3 are the input variables of the controller
(the measured variables of P : uc̄ = y); yc̄ ∈ R1 is the output variable of the controller (the control
input variable of P : yc̄ = u); and Ac̄, Bc̄, Cc̄, Dc̄ are the constant matrices with appropriate dimension.

Since the robust H∞ design method is well-known, we do not intend to repeat them. If the
detailed introduction of the method is needed, one can refer to the literatures [33,34]. In this
paper, we use the MATLAB/Robust Linear Matrix Inequality (LMI) Control Box [35] to solve the
robust controller C̄ directly. Here, it is assumed that the closed-loop system consisting of P and
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C̄ is well posed and gains the prescribed H∞ performance without consideration of the control
input saturations.

3.2. Anti-Windup Compensator Design

To tackle the magnitude and rate saturations of the control input, we borrow the anti-windup
control scheme [32] shown in Figure 3.
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Figure 3. Structure of an anti-windup control scheme. AWC: anti-windup compensator.

In the anti-windup control approach, it is needed to compute the first-order derivative of the
controller output yc̄. Here, the differentiator s is replaced by a linear filter s

1+τs with a sufficiently
small constant τ, considering that the controller output may be not strictly proper. The modified
controller consists of the original controller C̄ and the filter s

1+τs can be expressed as:

C :

{
ẋc = Acxc + Bcuc

yc = Ccxc + Dcuc
(6)

where xc = [xT
c̄ , xf]

T ∈ R6 are the modified controller states; xf ∈ R1 are the filter states; uc = uc̄ ∈ R1

is the modified controller input; yc = [yc̄, yc̄,d]
T ∈ R2 are the modified controller outputs; yc̄,d ∈ R1

denote approximate derivatives of yc̄; and the parameter matrices of C are:

Ac =

[
Ac̄ 0
Cc̄
τ

−1
τ

]
, Bc =

[
Bc̄
Dc̄
τ

]
, Cc =

[
Cc̄ 0
Cc̄
τ

−1
τ

]
, Dc =

[
Dc̄
Dc̄
τ

]
In Figure 3, the AWC is designed to cope with the controller limits. The AWC is formulated

as follows:

AWC :



ẋaw = Axaw + Bu(u− yc̄)

yaw = Cyxaw + Dyu(u− yc̄)

zaw = Czxaw + Dzu(u− yc̄)

v = Kaw

[
xaw

ϕaw

] (7)

where xaw ∈ R5 are the AWC states; yaw ∈ R3 are the AWC output; (u− yc̄) and ϕaw = (ϕ− yc̄)

serve as the AWC input; zaw ∈ R3 are the AWC controlled variables; v ∈ R1 is the stabilizing signal
which needs to be designed; and Kaw ∈ R1×6 is the gain matrix.

The plant Equation (3), the control input limitation Equation (4), the modified Controller
Equation (6), and the AWC Equation (7) are interconnected by the following relationship:

uc = y− yaw, µ = yc̄,d + v, ϕaw = ϕ− yc̄ (8)



Energies 2016, 9, 330 6 of 18

From the interconnection diagram shown in Figure 3, by defining the coordinate
(x`, xc, xaw,ϕaw) = (x − xaw, xc, xaw,ϕ− yc̄), after some derivations, we can obtain the equivalent
expression of the whole closed-loop system as follows:

ẋ` = Ax`+ Buyc̄ + Bdd
y` = Cyx`+ Dyuyc̄ + Dydd
z` = Czx`++Dzuyc̄ + Dzdd
ẋc = Acxc + Bcy`

yc = Ccxc + Dcy`

(9a)


ẋaw = Axaw + Bu [satm(ϕaw + yc̄)− yc̄]

ϕ̇aw = satr

(
Kaw

[
xaw

ϕaw

]
+ yc̄,d

)
− yc̄,d

zaw = Czxaw + Dzu [satm(ϕaw + yc̄)− yc̄]

(9b)

where y` = y− yaw; zaw = z− z` denotes the mismatch between the desirable performance output z
of the modified closed-loop system Equations (3), (4) and (6) and the actual performance output z` of
the anti-windup closed-loop system Equations (3), (4), (6) and (7).

Theorem 1. Given the anti-windup closed-loop system Equations (3), (4), (6) and (7), if xaw(0) = 0
and ϕ(0) = yc̄(0), then the control input u of the plant never exceeds the magnitude and
rate saturation bounds. Moreover, if the Kaw selection guarantees the asymptotic stability of the
subsystem Equation (9b), then the following conclusions hold [31,32,36]:

• Given any response of the modified closed-loop system Equations (3), (4) and (6) such that
yc̄ = satm(yc̄) and yc̄,d = satr(yc̄,d) for all t, then z` = z for all t, namely, the response of the
anti-windup closed-loop system coincides with the response of the modified closed-loop system;

• The origin of the anti-windup closed-loop system is asymptotically stable.

Remark 2. (1) Under the initial conditions: xaw(0) = 0 and ϕ(0) = yc̄(0), obviously, the control
input u meets the magnitude and the rate constraints since they are prescribed by two saturation
functions; (2) If the gain matrix Kaw keeps the subsystem Equation (9b) stable under the foregoing
initial conditions, we know that the variables xaw = 0, ϕaw = 0, and v = 0, thus zaw = Czxaw +

Dzu [satm(ϕaw + yc̄)− yc̄] = Dzu [satm(yc̄)− yc̄] = 0 with the given assumption yc̄ = satm(yc̄) for all
t, so z` = z for all t is obtained based on the definition zaw = z− z`. (3) Given that Kaw guarantees
the asymptotic stability of subsystem Equation (9b), it can be known that xaw → 0, ϕaw → 0, v → 0,
yc̄ → satm(yc̄), and yc̄,d → satr(yc̄,d) from Equation (9b), then the magnitude and rate saturations
of the control input are ignored, and the differentiator s/(1 + τs) offsets the integrator 1/s in the
control loop shown Figure 3, thus the asymptotic stability of the anti-windup closed-loop system is
guaranteed by the original robust H∞ controller c̄.

The proof of the above theorem is omitted in this paper, since it has been presented in the
literature [31,32,36] in detail. According to the theorem, the key step for synthesizing the anti-windup
controller is to design the gain matrix Kaw to keep the subsystem Equation (9b) stable. In terms of the
recipe in [32], the gain matrix Kaw is selected to stabilize the following dynamic model:[

ẋaw

ϕ̇aw

]
=

([
A Bu

0 0

]
+

[
0
I

]
Kaw

)[
xaw

ϕaw

]
(10)

Here, the LQR method can be used to obtain Kaw. Obviously, Kaw stabilizing the dynamic model
Equation (10) implies the asymptotic stability of Equation (9b), when yc, yc,d and v are sufficiently
small (not to cause the saturation nonlinearity).
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Remark 3. From the control diagram shown in Figure 3, we can see that theAWC is inserted between
the robust H∞ controller c̄ and the plant P , thus the closed-loop system has a typical structure of the
cascade control system. To obtain satisfied performances of the closed-loop system, it is required that
the response time of the AWC in inner loop should be much shorter than that of the H∞ controller c̄
in outer loop. Thus, when solving the gain matrix Kaw based on the dynamic model Equation (10),
we need to take the above requirement into account.

4. Case Study

To test the proposed LFC design method, firstly a typical two-area interconnected power system
shown in Figure 4 is selected to make simulations. In the test system, each area is represented
by a equivalent generation unit with a turbine and a governor. For simplicity, it is assumed that
the two areas are identical, and the corresponding parameters are as [29]: Tg1 = Tg2 = 0.08 (s),
Tt1 = Tt2 = 0.3 (s), H1 = H2 = 0.1667 (pu.s), D1 = D2 = 0.0083 (pu/Hz), T12 = T21 = γ1 =

γ2 = 0.545 (pu/Hz), R1 = R2 = 2.4 (Hz/pu), β1 = β2 = 0.425 (pu/Hz), rate constraint (pu/s):
[−0.0017, 0.0017], magnitude constraint (pu): [−0.1, 0.1]. Then, based on the above parameters, the
two-area system shown in Figure 4 is modified into a single-area system and two three-area systems
in the following simulations.

In this section, the proposed method for LFC design is compared with the methods proposed by
Tan [29] and Anwar [30] for three scenarios with different load disturbances.

4.1. Scenario 1: Simulations on Single-Area System

In Scenario 1, we set the same load disturbances in the two areas of the system shown in Figure 4.
By this way, each area can be treated as a single-area system, since the two areas have the same
structure and parameters.
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Figure 4. Diagram of a two-area interconnected power system.
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Towards the LFC model of the test system, by the proposed method, we design the anti-windup
LFC consisting of a robust H∞ dynamic controller, a linear filter, a magnitude and rate saturation
loop, and an AWC as follows:

The robust H∞ dynamic controller:

C̄ ′ :

{
ẋc̄ = A′c̄xc̄ + B′c̄uc̄

yc̄ = C′c̄xc̄ + D′c̄uc̄
(11)

where:

A′c̄ =


−9.94374 −2.32119 0.620889 4.096447 312.625
21.43163 −15.2773 −0.43206 12.18535 1229.041
117.987 −167.214 −881.295 −93.2623 −113.066
2211.94 −3412.12 −1198.68 −15702.6 189.4382
759871.3 −734389 −395045 84813.64 −157822



B′c̄ =


146.091 153.625 1.605
894.647 414.317 −405.444

8964.850 −4553.067 −240549.496
641800.483 −1031816.318 31109.807

54307506.731 30731255.138 1104996.282


C′c̄ =

[
−0.027 0.024 −0.006 −0.041 −3.200

]
D′c̄ =

[
−1.134 −1.560 −0.006

]
The linear filter (approximate differentiator):

s/(1 + τs) = s/(1 + 0.01s) (12)

The magnitude and rate bounds of the control input:

[m, m] = [−0.1, 0.1], [r, r] = [−0.0017, 0.0017] (13)

The AWC: [
ẋaw

ϕ̇aw

]
=

([
A Bu

0 0

]
+

[
0
I

]
K′aw

)[
xaw

ϕaw

]
(14)

where K′aw = [0.908 3.929 1.367 − 3.777 3.162 6.646].
Based on the designed anti-windup LFC Equations (11)–(14), we make two tests: one is for step

load decrease ∆PL1 = ∆PL2 = −0.015 (pu), the other is for step load increase ∆PL1 = ∆PL2 =

0.01 (pu). The system responses to the load decrease and increase are shown in Figures 5 and 6,
respectively. Considering that Area 1 and 2 have the same responses, we only illustrate the simulation
results of Area 1. The concerned variables, such as frequency deviation ∆ f , ACE, tie-line power
deviation ∆Ptie, control input u, and rate of control input du/dt, are shown in Figures 5 and 6.

From the results of both of the above tests, it is shown that, compared with the controllers
presented by Tan and by Anwar, the proposed controller generates smaller overshoot and takes
shorter settling time to force the frequency deviation and ACE to zeros. Furthermore, seeing from
the control input curves, one can find that the control signal of the proposed controller in this paper
meets the prescribed magnitude and rate constraint, while the control signals of Tan’s and Anwar’s
controllers exceed the rate constraint. Here, it should be noted that ∆Ptie is always equal to zero since
there is no tie-line power deviation between the two symmetrical areas.



Energies 2016, 9, 330 9 of 18

-0.4
-0.2

0
0.2
0.4

"f
1
(H

z)

 

 

-0.2
-0.1

0
0.1
0.2

AC
E 1

(pu
)

-0.02
-0.01

0
0.01
0.02

"P
tie

1
(pu

)

-0.1
-0.05

0
0.05

0.1

u 1
(pu

)

0 5 10 15 20 25 30 35 40-0.2
-0.1

0
0.1
0.2

t (s)

du
1=d

t(
pu

/s)
Proposed    Anwar    Tan  

Figure 5. Results for load decrease in a single-area system.
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Figure 6. Results for load increase in a single-area system.

4.2. Scenario 2: Simulations on a Two-Area System

The anti-windup LFC in Scenario 2 is the same as the controller Equations (11)–(14) in Scenario 1,
since the parameters of the area model are identical in both systems. In this scenario, different
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load disturbances are set for two tests as: ∆PL1 = 0.01 (pu) and ∆PL2 = 0.02 (pu) for Test 1;
∆PL1 = 0.02 (pu) and ∆PL2 = −0.01 (pu) for Test 2. The simulations are performed on the two-area
system directly, and the results are shown in Figures 7–10.
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Figure 7. Results of Area 1 in a two-area system for Test 1.
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Figure 8. Results of Area 2 in a two-area system for Test 1.
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Figure 9. Results of Area 1 in a two-area system for Test 2.
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Figure 10. Results of Area 2 in a two-area system for Test 2.
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From the results in Figures 7–10, it is observed that all the three controllers can drive the
system frequency deviation, the ACE and the tie-line power deviation to zero, but the proposed
anti-windup controller obtains more favorable performances than the other two controllers at aspect
of overshoot and settling time. In addition, unlike Tan’s method and Anwar’s method, the proposed
method avoids the undesired oscillation. Seeing the control input u, we also find that the proposed
anti-windup controller can match the magnitude and rate constraint. Therefore, the system can
operate in the linear region, and thus the nonlinear GRC is tackled.

By comparing the results in Scenario 1 and Scenario 2, it can be observed that the control
performances of Scenario 1 are better than that of Scenario 2. The reason is that, in Scenario 1,
the controller only needs to attenuate the local load disturbance, but, in Scenario 2, both the load
disturbance in local area and the tie-line power disturbance from the neighboring area are needed to
be restrained.

4.3. Scenario 3: Simulations on Three-Area Systems

In Scenario 3, the two-area system shown in Figure 4 is changed into two three-area
interconnected systems. One is a chain-type system shown in Figure 11, the other is a delta-type
system shown in Figure 12. For simplicity, we make the parameters of each area in the three-area
systems be the same to those in the two-area system. In addition, the tie-line synchronizing
coefficients are selected as: for the chain-type system, T12 = T21 = T23 = T32 = 0.545 (pu/Hz), γ1 =

T12 = 0.545 (pu/Hz), γ2 = T21 + T23 = 1.09 (pu/Hz), γ3 = T32 = 0.545 (pu/Hz); for the delta-type
system, T12 = T21 = T23 = T32 = T13 = T31 = 0.545 (pu/Hz), γ1 = T12 + T13 = 1.09 (pu/Hz),
γ2 = T21 + T23 = 1.09 (pu/Hz), γ3 = T31 + T32 = 1.09 (pu/Hz).

Area 1 Area 2 Area 3

Figure 11. Diagram of a three-area chain-type interconnected power system.

Area 2

Area 1 Area 3

Figure 12. Diagram of a three-area delta-type interconnected power system.

For Areas 1 and 3 of the chain-type system, their anti-windup LFC are the same as the one
in Scenario 1, namely Equations (11)–(14), since these area models have identical parameters in
Equation (3). For Area 2, however, the anti-windup LFC needs to be redesigned, because the
parameter γ2 in the matrix A in Equation (3) is not equal to γ1. Based on the given parameters, a
robust H∞ dynamic controller and an AWC are designed for Area 2 as follows:

The robust H∞ dynamic controller:

C̄ ′′ :

{
ẋc̄ = A′′c̄ xc̄ + B′′c̄ uc̄

yc̄ = C′′c̄ xc̄ + D′′c̄ uc̄
(15)
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where:

A′′c̄ =


−9.357 −2.267 −2.343 5.018 535.792
18.070 −16.938 0.246 5.616 1531.194

149.396 236.362 −1083.630 183.093 381.424
233.018 −2806.868 1859.898 −7169.953 −314.377

1014222.355 −978906.090 −830564.259 430071.155 −251967.406



B′′c̄ =


154.484 127.097 2.559
902.163 −213.902 704.383
−2720.065 11933.119 −116445.141
222855.373 −438613.914 −30897.537

68477106.358 11506520.276 1200741.256


C′′c̄ =

[
−0.040 0.028 0.030 −0.062 −6.652

]
D′′c̄ =

[
−1.532 −1.569 −0.002

]
The AWC: [

ẋaw

ϕ̇aw

]
=

([
A Bu

0 0

]
+

[
0
I

]
K′′aw

)[
xaw

ϕaw

]
(16)

where K′′aw = [0.908 3.929 1.367 − 3.777 3.162 6.646].
Combining the above robust controller and AWC with the bounds of the control input and the

linear filter presented in Scenario 1, we obtain the anti-windup LFC of Area 2, namely, Equations (12),
(13), (15) and (16).

In summary, for the three-area chain-type system, the anti-windup LFCs are described as:
Equations (11)–(14) for Area 1 and 3; Equations (12), (13), (15) and (16) for Area 2. For the three-area
delta-type system, the anti-windup LFCs are expressed as Equations (12), (13), (15) and (16) for Area
1, 2, and 3, since the three areas in the delta-type system have the same parameters as Area 2 in the
chain-type system.

In Scenario 3, the load disturbances are set as: in the chain-type system, PL1 = 0.01 (pu) in
Area 1, PL2 = −0.01 (pu) in Area 2, and PL3 = −0.01 (pu) in Area 3; in the delta-type system,
PL1 = 0.02 (pu) in Area 1, PL2 = 0.01 (pu) in Area 2, and PL3 = −0.01 (pu) in Area 3.

The results are shown in Figures 13–15 for the chain-type system and Figures 16–18 for
the delta-type system. The simulations reveal that the proposed method can restrain the load
disturbances, regulate the frequency of each area, and restore the tie-line power to its scheduled value.
In other words, the proposed method can realize the LFC objectives of multi-area interconnected
power system. Compared with Tan’s method and Anwar’s method, the method in this paper
obtains better performances in overshoot and settling time. The magnitude and rate of the
input signals are especially controlled in the predetermined ranges by the proposed anti-windup
controller, which helps to reduce the wear and tear of generators and improve the stability of the
closed-loop system.
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Figure 13. Results of Area 1 in a three-area chain-type system.
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Figure 14. Results of Area 2 in a three-area chain-type system.



Energies 2016, 9, 330 15 of 18

-0.1
-0.05

0
0.05

0.1
"f

3
(pu

)

 

 

-0.05
-0.025

0
0.025

0.05

AC
E 3

(pu
)

-0.02
-0.01

0
0.01
0.02

"P
tie

3
(pu

)

-0.05
-0.025

0
0.025

0.05

u 3
(pu

)

0 5 10 15 20 25 30 35 40-0.5
-0.25

0
0.25

0.5

t (s)

du
3=d

t(
pu

/s)
Proposed    Anwar    Tan   

Figure 15. Results of Area 3 in a three-area chain-type system.
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Figure 16. Results of Area 1 in a three-area delta-type system.
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Figure 17. Results of Area 2 in a three-area delta-type system.
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Figure 18. Results of Area 3 in a three-area delta-type system.
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5. Conclusions

Towards the GRC problem in the LFC, this paper proposes an anti-windup controller design
method. In the anti-windup LFC, the H∞ dynamic controller is designed to guarantee robust
performance against load disturbances and tie-line power disturbances, and the AWC is used to
restrict the magnitude and rate of the control input so that the system can operate in the linear
region to overcome the GRC. The simulation results show that the proposed anti-windup LFC design
method effectively improves the performances against disturbances and GRC. Further work will
focus on the coordination method of different LFCs to improve the overall performances of the
multi-area interconnected power system.
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