Next Article in Journal
Numerical Study on the Formation of Shear Fracture Network
Previous Article in Journal
Multi-Objective Predictive Balancing Control of Battery Packs Based on Predictive Current
Article Menu
Issue 4 (April) cover image

Export Article

Open AccessArticle
Energies 2016, 9(4), 300; doi:10.3390/en9040300

Preliminary Development of a Free Piston Expander–Linear Generator for Small-Scale Organic Rankine Cycle (ORC) Waste Heat Recovery System

1
College of Environmental and Energy Engineering, Beijing University of Technology, Pingleyuan No. 100, Beijing 100124, China
2
Collaborative Innovation Center of Electric Vehicles in Beijing, Pingleyuan No. 100, Beijing 100124, China
*
Author to whom correspondence should be addressed.
Academic Editor: K. T. Chau
Received: 24 January 2016 / Revised: 14 April 2016 / Accepted: 14 April 2016 / Published: 20 April 2016
View Full-Text   |   Download PDF [5979 KB, uploaded 20 April 2016]   |  

Abstract

A novel free piston expander-linear generator (FPE-LG) integrated unit was proposed to recover waste heat efficiently from vehicle engine. This integrated unit can be used in a small-scale Organic Rankine Cycle (ORC) system and can directly convert the thermodynamic energy of working fluid into electric energy. The conceptual design of the free piston expander (FPE) was introduced and discussed. A cam plate and the corresponding valve train were used to control the inlet and outlet valve timing of the FPE. The working principle of the FPE-LG was proven to be feasible using an air test rig. The indicated efficiency of the FPE was obtained from the pV indicator diagram. The dynamic characteristics of the in-cylinder flow field during the intake and exhaust processes of the FPE were analyzed based on Fluent software and 3D numerical simulation models using a computation fluid dynamics method. Results show that the indicated efficiency of the FPE can reach 66.2% and the maximal electric power output of the FPE-LG can reach 22.7 W when the working frequency is 3 Hz and intake pressure is 0.2 MPa. Two large-scale vortices are formed during the intake process because of the non-uniform distribution of velocity and pressure. The vortex flow will convert pressure energy and kinetic energy into thermodynamic energy for the working fluid, which weakens the power capacity of the working fluid. View Full-Text
Keywords: free piston expander (FPE); conceptual design; cam plate; dynamic characteristics; 3D numerical simulation free piston expander (FPE); conceptual design; cam plate; dynamic characteristics; 3D numerical simulation
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Li, G.; Zhang, H.; Yang, F.; Song, S.; Chang, Y.; Yu, F.; Wang, J.; Yao, B. Preliminary Development of a Free Piston Expander–Linear Generator for Small-Scale Organic Rankine Cycle (ORC) Waste Heat Recovery System. Energies 2016, 9, 300.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Energies EISSN 1996-1073 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top