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Abstract: Shear fracture network is important to the hydraulic fracturing treatment of a shale gas
reservoir. In this paper, the formation of shear fracture network is investigated by a Displacement
Discontinuity Method (DDM) based model. The results show that the sliding of fracture surface is
irreversible but may change significantly after fluid pressure dissipates. The final sliding distance is
different for natural and hydraulic fractures. Most of the shear fractures are natural fractures while
the newly formed hydraulic fractures tend to be totally closed after pressure dissipates. The effects
of in situ stress are investigated. The affected area reaches its maximum value when the maximum
principle stress direction is perpendicular to the principal fracture direction. The effects of the
injection rate are also investigated. The increasing of the injection rate is helpful in increasing the
fracture aperture, but has no effect on the final sliding distance. Moreover, the effects of the injection
rate on the affected area depend on the connectivity of natural fractures. The affected area increases
with the injection rate when the connectivity is poor but decreases slightly with injection rate when
the connectivity is good.

Keywords: displacement discontinuity method; discrete fracture network; hydraulic fracture; shear
fracture network

1. Introduction

Several mechanisms can lead to the permeability enhancement of the shale gas reservoir during
hydraulic fracturing treatment [1]: (1) the propagation of Hydraulic Fractures (HFs); (2) the opening of
Natural Fractures (NFs). This is reversible, i.e., the fractures will close after fluid pressure dissipates;
and (3) the shear stimulation, and is irreversible. Clearly, the formation of a shear fracture network is
important to the hydraulic fracturing treatment of shale gas reservoir.

However, the investigation on the formation of a shear fracture network is challenging.
The hydraulic fracturing process depends on many important factors, such as natural fractures, rock
properties, in situ stress, fluid properties, injection rate, etc. Moreover, the physical phenomena is not
only complex but also ill conditioned [2]. The simulation domain is often hundreds of meters, whereas
the typical fracture aperture is a small fraction of a millimeter. A deformation that is considered small
“noise” in the solid solver may induce dramatic oscillation of fluid pressure in the flow solver [2].
Many models in early stages, such as Perkins–Kern (PK) model [3], Perkins–Kern–Nordgren (PKN)
model [4], Khristianovich-Geertsma-Deklerk (KGD) mode [5], pseudo-3D models, and planar-3D
models [6], cannot be used in simulating the propagation of complex fracture network. To meet the
need of hydraulic fracturing design, many numerical models, such as the finite element method [7],
extended finite element method [8], discrete element method [2] and mesh less method [9–14] have
been developed in recent years. For example, Zhuang and Rabczuk et al. [12–14] proposed a meshless
method that is able to treat the nucleation of fractures and complex patterns involving fracture
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branching and crossing in a simple and effective way. Fu, Johnson and Carrigan [2] developed a model
based on a discrete element method and simulated the propagation of fracture network with tens of
fractures. The Displacement Discontinuity Method (DDM) [15] is another novel method for modelling
the ill conditioned fluid-rock coupling system of hydraulic process. First, fracture displacements can
be calculated with very high precision because the analytical solution is directly used to calculate the
induced stress. Second, the grid number is much less than that in other methods because the rock
matrix is not discretized. The propagation of complex fracture network with hundreds of fractures can
be easily simulated by DDM based models [16–22]. Moreover, based on the traditional DDM, Verde
and Ghassemi [23,24] proposed a fast multipole displacement discontinuity method by considering the
difference when calculating the induced stress of far field elements and the near field elements. Using
this technique, a fracture system with up to 100,000 boundary elements can be simulated on currently
mainstream computers. In summary, there are a variety of methods that can be used in modelling the
hydraulic fracturing process nowadays.

Many researchers have investigated the shearing of fractures. For example, Pine and
Batchelor [25] found that microseismic events are associated with shearing and the shearing during
fluid injection is caused by the anisotropic in situ stress interacting with critically aligned joints.
Willis-Richards et al. [26] presented a model in which the amount of shear displacement depends on
the fracture shear stiffness and on the amount of “excess” shear stress available. Zhang et al. [27] derived
the governing equations and the boundary conditions for equilibrium shear fractures, simulated the
plane-strain fluid-driven fracture propagates and showed that the shear strength of a fracture can be
reduced as fluid pressure increases until shearing is possible. De Bremaecker and Ferris [28] simulated
the fracture propagation and showed that shear fractures can propagate in three different patterns,
depending on the lateral normal stress. The fracture propagation occurs by a purely closed shear
fracture at sufficiently high lateral normal stress. Majer et al. [29] showed that microseismic monitoring
can only detect shear failure because of the very high frequency signals of tensile failure in many
instances. Chipperfield et al. [30] presented a shear dilation diagnostics tool for evaluating tight gas
stimulation treatments using the results of a simulation model which was devised to honor shear
failure mechanisms. Nagel and Sanchez-Nagel [31] evaluated the shear failure along fracture surfaces
as a function of fracture-induced stress and stress shadowing by utilizing the discrete element model.
Nagel et al. [32] built a three-dimensional model of a reservoir section using a real Discrete Fracture
Network (DFN), simulated the propagation of a large number of fractures and showed that the lower
injection rate and the lower viscosity favor the creation of shear fracture. Zoback et al. [33] implemented
both laboratory experiments and numerical modelling, and demonstrated the slow slip on pre-existing
fractures is important to the effectiveness of slick-water hydraulic fracturing in shale gas reservoirs.
Jung [34] reviewed the results and observations of the major Enhanced Geothermal System (EGS)
projects and proved that the basic mechanism controlling the EGS projects is not the shearing of the
fracture network but the formation of single large wing-cracks. Zangeneh et al. [35] investigated the
relationship between hydraulic fracturing and the triggering of fracture slip of a naturally fractured
rock mass. Riahi and Damjanac [1] performed a series of comparative studies and found that higher
injection rates result in smaller shear stimulated areas. McClure and Horne [36] investigated the
conditions required for shear stimulation and showed that hydraulic fracturing stimulation may occur
through a mixture of the opening and sliding of preexisting fractures and the propagation of new
fractures. McClure and Horne [20] proposed a tendency-for-shear-stimulation test for determining the
degree to which shear stimulation contributes to stimulation and argued that shear stimulation is the
only possible mechanism when bottom hole fluid pressure is slightly less than the minimum principal
stress. In summary, the existing works have demonstrated the importance of the fracture shearing
and have reached many useful conclusions. For example, the microseismic events are associated with
shearing source mechanism [25], lower injection rate and the lower viscosity favor the creation of shear
fracture [32], etc. Most of these conclusions are based on the fracture configurations during hydraulic
fracturing treatment. However, the fracture geometries during fluid injection and shale gas production
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processes may not be the same because the fractures that have been created or reopened during fluid
injection may partially close during production after fluid pressure dissipates [37]. Therefore, it would
be important to investigate the configurations of shear fracture network after fluid pressure dissipation.

In this paper, a DDM based model is developed and complex fracture networks are used to
investigate the formation of shear fracture network. Considering that the fracture configurations may
change after fluid pressure dissipates [37], both the hydraulic fracturing and the fluid leak off processes
are simulated to get the final configurations of shear fracture network. We will first check how the
fracture sliding distance changes after pressure dissipation and then investigate the optimization of
the final shear fracture network after fluid pressure dissipation.

2. The Model

2.1. Numerical Method

A DDM-based model is used to simulate the hydraulic fracturing process. The following
assumptions are used: the domain of rock matrix is infinite, and the rock matrix is homogeneous,
isotropous and linear elastic [15]. The rock matrix is treated as impermeable due to the ultra-low
permeability of shale matrix. The fluid injected is Newtonian, single phase and laminar [20,38,39].

The elastic equilibrium equations for a system of N fracture elements are [39]:

σn pxq “
N
ř

r“1

r lr
0 rG11 px, sqw psq ` G12 px, sqν psqsK px, sq ds

τs pxq “
N
ř

r“1

r lr
0 rG21 px, sqw psq ` G22 px, sqν psqsK px, sq ds,

(1)

where x = (x, y) is the coordinate, w is the normal displacement discontinuity, v is the shear displacement
discontinuity, lr is the length of fracture r, and Gij is the hyper singular Green’s functions [39]. σn is
the normal stress and τs is the shear stress, obeying Coulomb’s frictional law characterized by the
coefficient of friction λ:

|τs| ď λσn, (2)

which can act in parts of fractures that are in contact, and vanishes along the separated parts. Along
the opened fracture portions with fluid pressure, pf, we have:

σn “ pf. (3)

K is the three dimensional correction coefficient. Using the parameters given by Wu and Olson [40],
the correction coefficient K proposed by Olson [41] can be written as:

K px1, x2q “ 1´
d3

”

d2 ´ ph{2q2
ı3{2

, (4)

where h is the limite layer thickness perpendicular to the simulation plain, and d is the distance between
points x1 and x2.

Volumetric flux q of fluid in fracture is given by:

q “ ´
pw`w0q

3

12µ
Bpf
Bs

, (5)

where µ is fluid dynamic viscosity, w0, which is a reflection of the fracture surface roughness, is the
initial hydraulic aperture, w is the fracture aperture, and Bpf

Bs is the fluid pressure gradient.
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The global mass balance requires:

B

Bt

ˆ

δvf
δL

˙

`
Bq
Bs
“ 0, (6)

where vf is fluid volume, L is fracture segment length, and q is the volumetric flux of fluid.
The fracture growth is based on the maximum hoop stress criterion, with the maximum

mixed-mode intensity factor reaching a critical value [39,42]:

1
2

cos
θ0

2
rKI p1` cosθ0q ´ 3KI Isinθ0s “ KIC, (7)

where KI and KII are stress intensity factors, KIC is tensile mode fracture toughness, θ is the fracture
propagation direction relative to the current fracture orientation and satisfies [39,42]:

KIsinθ` KI I p3cosθ´ 1q “ 0. (8)

The fractures are meshed with constant displacement elements. The hydraulic fracture problem is
solved simultaneously including the effects of viscous fluid flow and coupled rock deformation.

2.2. Model Validation

The solving of the fracture aperture is one of the most important foundations for the modelling.
Given the fluid pressure, the aperture of a single fracture in infinite rock matrix follows [15]:

w pxq “ ´
2 p1´ νPoq

G
pfa

c

1´
x2

a2 , (9)

where a is the fracture half length, pf is the net fluid pressure, x is the distance to the center of the
fracture, G is the shear modulus, and νPo is Poisson’s ratio.

The numerical model is validated against the analytical solution. A single fracture is simulated
with the parameters listed in Table 1. The aperture profile of the fracture is compared with the analytical
solution as shown in Figure 1. The numerical results agree well with the analytical one, even when
there are only five grids.

The precise solving of the tip element aperture is especially important because the intensity factors
are estimated by the displacements of the tip element [43]:

KI “
2G
κ` 1

w
c

π

l
, (10)

KII “
2G
κ` 1

v
c

π

l
, (11)

where w and v are the normal and shear displacements of the tip element respectively, κ “ 3´ 4vPo,
and l is the length of the tip element.

Table 2 shows the precision of the displacements of tip element under different grid numbers.
The error of the numerical simulation is significant. The reason is the use of the constant displacement
element. However, the error is almost a constant. Therefore, a correction coefficient is introduced, i.e.,:

KI “ C
2G
κ` 1

w
c

π

l
, (12)

KII “ C
2G
κ` 1

v
c

π

l
, (13)

where C = 0.79 is the correction coefficient.



Energies 2016, 9, 299 5 of 16

Table 1. Input parameters for the calculation of fracture aperture profile. Here pf is the fluid pressure,
G is the shear modulus, σx and σy are the principle stresses along x and y directions respectively.

Parameter Value Parameter Value

Fracture length 1 m Layer thickness Infinite
pf{G 1 Far-field stress σx “ σy “ 0

Poisson’s ratio 0.1
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Figure 1. The comparison of numerical modelling with analytical solution.

Table 2. The comparison of numerical modelling with analytical solution for the aperture of tip element.

Grid Number Numerical (m) Analytical (m) Analytical/Numerical

5 0.498 0.392 0.787
10 0.354 0.281 0.793
15 0.290 0.230 0.794

We refer for comparison to the model of Wu and Olson [44] for the fracture configurations of a
single horizontal wellbore with two initial fractures (Figure 2a) and two horizontal wellbores with
one fractures each (Figure 2b). These are the most classic fracture configurations and have been
simulated in many works [18,19,32,40,44,45]. The correct simulation of these configurations requires
the precise solving of the stress field and fluid pressure, and the correct calculating of the stress intensity
factors of fracture tips. These two configurations are simulated with the parameters listed in Table 3,
which is the same as that of Wu and Olson [44]. The results are shown in Figure 3. For the initial
configuration, as shown in Figure 3a, the two fractures propagate away from each other, while for the
initial configuration as shown in Figure 3b, the two fractures grow towards each other. In summary,
our model compares favorably with previous works.
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Table 3. Input parameters (reproduced from Wu and Olson [44]). Here σx and σy are the principle
stresses along x and y directions respectively.

Parameter Value Parameter Value

Injection Rate 8.8 ˆ 10´4 m3/s/m Layer Thickness 120 m
Fluid Viscosity 1.0 cP Fracture Toughness 1.0 ˆ 106 Pa¨m0.5

Young’s modulus 3.0 ˆ 1010 Pa Far-field stress σx “ σy “ 47 MPa
Poisson’s ratio 0.35
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2.3. Dimensionless Numbers

The anisotropy of crustal stress is important to the propagation of hydraulic fractures. Considering
that the rock strength can be quantified by the initiation fluid pressure pini, the stress anisotropy will
be normalized by pini in this paper. Here, pini refers to the net fluid pressure above which HFs begin
to propagate. As discussed by Zhang et al. [17], pini is proportional to KIC{

?
s, where s is the average

fracture spacing;, then, we define:

SA “ pσmax ´ σminq

?
s

KIC
, (14)

where SA is the dimensionless stress anisotropy, σmax and σmin are the two principle stresses,
respectively, and s is the average fracturing spacing of natural fracture network.

Specifically, when the principle stress directions are parallel to the coordinate axis, the
dimensionless stress difference SA can be written as:

SAxy “
`

σx ´ σy
˘

?
s

KIC
, (15)

where σx and σy are the principle stresses along x and y directions, respectively.
The viscosity of fluid is an important operating parameter. Normalized by rock strength,

a dimensionless number M is proposed to quantify the viscous effect of fluid by Zhang et al. [17]:

M “
qµE3

KIC
4 (16)

where q is the injection rate, µ is fluid dynamic viscosity, and E is the Young’s modulus.
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3. Fracture Sliding During Pressure Dissipates

The fluid injection into a single natural fracture as shown in the sub graph of Figure 4a is first
simulated. Fluid is injected from the center of the natural fracture. KIC is set to be infinite so the
fracture propagation is forbidden. All of the other parameters are listed in Table 4. The variation of
the average fracture aperture and sliding distance are shown in Figure 4a. Here, the fracture aperture
is the normal displacement w in Equation (1), and the sliding distance is the shear displacement v
in Equation (1). During the leak off process, the fracture aperture decreases. By contrast, the sliding
distance is constant.
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Table 4. Input parameters.

Parameter Value Parameter Value

Injection Rate 1.0 ˆ 10´3 m3/s/m Stress Angle ψ 3π{4
Fluid Viscosity 1.0 cP Fracture Toughness Infinite

Young’s Modulus 1.8 ˆ 1010 Pa Stress Difference 0.5 ˆ 106 Pa
Poisson’s ratio 0.2 The coefficient of friction 0.9

The fluid injection into two natural fractures as shown in the sub graph of Figure 4b is also
simulated. The results are different with the single fracture case. The average sliding distance of the
two fractures is not a constant but decreases after fluid pressure dissipates. However, the sliding
distance is greater than zero when the fractures are closed. These results indicate that the sliding of
fracture is irreversible during fracturing treatment. Moreover, the sliding distance may change after
fluid pressure dissipates.

4. Shear Fracture Network

4.1. Numerical Setting

The numerical setting is shown in Figure 5. The natural fracture network is reconstructed by a
discrete fracture network model [1]. The intersection angle between the natural fractures and x-axis
is 60˝. Fluid is injection with constant rate from the center. The fluid injection stops when any
hydraulic fracture reaches the region boundary, i.e., the red dashed box in Figure 5. The pressure
dissipation process is simulated based on the results of hydraulic fracturing simulation. KIC is set
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to be 1.0 ˆ 106 Pa¨m0.5, and the other default parameters are listed in Table 4, which are used in the
following sections if there is no special statement.
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4.2. Effects of Stress Anisotropy

The hydraulic fracturing process under different values of SA are simulated. The principle crustal
stress angle ψ is set to zero, i.e., the principle stresses are parallel to the coordinate axis. The fracture
networks after fluid injection are shown in Figure 6. When SAxy = 0, the hydraulic fractures propagate
farther along the y-axis direction. This is caused by the fact that the intersection angle between
natural fractures and the y-axis is smaller than that of the x-axis. When SAxy < 0, the principal natural
fracture direction is parallel to the principle stress direction, a narrower fracturing region is formed
and the fracture network is less complex. By contrast, when SAxy > 0, a very complex fracture network
is formed.

The pressure dissipation process is then simulated and the final shear fracture networks are
shown in Figure 7. The fracturing region after pressure dissipation is comparable with that after fluid
injection. However, the final sliding distance of a fracture has little relation with the fracture aperture
and fluid pressure during fluid injection, i.e., the simulation of fluid pressure dissipation is meaningful
to the prediction of fracture network configuration in production.

In Figure 7, most of the shear fractures are natural fractures. By contrast, although there are
many newly formed hydraulic fractures, both the sliding and the aperture of these newly formed
fractures tend to be disappear after pressure dissipates. This is because hydraulic fractures will change
propagation direction when the fracture surface slides, which is required by the maximum hoop stress
criterion that is defined by Equations (7) and (8).

The variation of the affected area, which is defined as the area of the region that experienced fluid
pressure increase due to the fluid injection [1], is shown in Figure 8a. The affected area increases with
SAxy, which is consistent with the results shown in Figure 6. Moreover, with the increase of stress
difference, as shown in Figure 8b,c, both the average fracture density and the sliding distance in the
fracturing region increase, which is beneficial to shale gas production.

The hydraulic fracturing processes under different principle stress angle ψ are simulated.
The stress anisotropy SA is set to 0.5. The results are shown in Figure 9. It is clear that the affected area
decreases with ψ. Moreover, there is a minimum value of fracture density and sliding distance when
ψ « 60˝, which is the angle of one set of natural fractures. This indicates that it is unfavorable for shear
simulation when the maximum principle stress direction is parallel to the natural fractures, under
which circumstance the shear stress induced by crustal stress along natural fractures equals zero.
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First, we simulated the fracturing processes under different values of injection rate with poorly
connected natural fracture network. The principle crustal stress angle ψ is set to 3π{4. The final
fracture network configurations are shown in Figure 10. It is clear that the principal hydraulic fractures
are formed when the value of M is small. By contrast, the large value of M will induce the very
complex fracture network. Therefore, the affected area increases with the increasing of M, as shown in
Figure 11a. The main reason is the localization instability of hydraulic fracture propagation can be
partly suppressed by fluid viscosity when the injection rate is high. The stability problem of hydraulic
fracture propagation has been discussed in our previous work [17].

The fracture propagation is dominated by the directions of both the natural fracture and the
maximum principle stress. It can also be seen in Figure 10. The hydraulic fractures propagate along
the maximum principle stress direction. However, when a hydraulic fracture encounters a natural
fracture, it may be arrested by the natural fracture and then propagate along the natural fracture.
The maximum principle stress direction may be different with the natural fracture direction. Therefore,
the propagation direction of fracture network is controlled by both of the two directions.

The variation of fracture density and fracture displacement discontinuities are shown in
Figure 11b,c. It is clear that the increasing of the injection rate is helpful for the increasing of fracture
density and the displacement discontinuities during fracturing treatment. However, the increasing
of M has no effect on the increasing of final sliding distance after pressure dissipates. These results
indicate that the sliding of fractures is mainly controlled by the stress condition and the direction of
natural fractures.

The fracturing processes with well-connected natural fracture networks are also simulated.
The final fracture network configurations are shown in Figure 12. With the increase of M, the fracture
density increases. This could also be seen from Figure 13b. However, the affected area does not increase
with M as the poorly connected natural fracture network case. By contrast, the affected area may
decrease, as shown in Figure 13a. This can be explained by the final fracture network configuration.
When M is very big, i.e., the viscosity effect is strong, the shape of the fracturing region tends to be a
round region that is centered with the injection point. By contrast, when M is small, i.e., the viscosity
effect is weak, the fracturing fluid has sufficient time to fill most of the connected natural fractures.
Therefore, the affected area may be larger when the M is smaller. The variation of fracture density and
average sliding distance of fracture surface is similar with that of the poorly connected natural fracture
network case. Both the fracture aperture and the sliding distance in fracturing treatment increases
with the increasing of M. However, the final sliding distance of fracture surface does not change with
the value of M.
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5. Conclusions

The sliding of fracture surface is irreversible during the hydraulic fracturing process. However, the
shear fracture network changes significantly after fluid pressure dissipates, i.e., the fracture network
in fracturing treatment is different with the fracture network in shale gas production. Therefore,
in fracturing treatment design, we should pay attention to the variation of fracture network during the
pressure dissipation process.

The anisotropy of crustal stress is crucially important to the hydraulic fracture propagation and
the final fracture configuration. The affected area reaches its maximum value when the maximum
principle stress direction is perpendicular to the principal fracture direction.

The effect of natural fracture can be concluded into two aspects. First, the propagation direction
of hydraulic fracture is controlled by the principal natural fracture direction. Second, as the sliding
distance of hydraulic fracture is smaller than that of the natural fracture, the conductance of natural
fracture network is important to the conductance of the final fracture network. Therefore, the natural
fracture network is very important to the fracturing treatment and the production of shale gas.

The increasing of injection rate is helpful to the fracturing treatment by increasing the fracture
aperture and the sliding distance during the fracturing process. However, the increasing of the injection
rate has no effect on the final fracture sliding distance after fluid pressure dissipates.

The effects of the injection rate on the affected area depend on the connectivity of natural fracture.
The affected area increases with the injection rate when the connectivity of the natural fracture is poor.
However, when the connectivity of the natural fracture is good, the increasing of the injection rate has
no effect on the increasing of the affected area. By contrast, the affected area may be smaller when the
injection rate is high. Therefore, the injection rate should be determined according to the connectivity
of the natural fracture during the design of hydraulic fracturing treatment.
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